

Specification for E-Paper

AEZ122250A00-2.13ENRWS

Revision 1.0

А	Orient Display
EZ	E-Paper
122250	Resolution 122 x 250
A00	Revision A00
2.13	Diagonal: 2.13", Module: 29.2(H)×59.2 (V) ×1.65(D)mm
Е	EPD - Electrophoretic Display (Active Matrix)
N	Top: 0°C ~ +50°C; Tstr: -25°C ~ +70°C
R	Reflective Polarizer
W	White Front Light
S	3-/4-wire SPI Interface
/	Controller SSD1680 Or Compatible
/	ZIF FPC
1	Ultra Wide Viewing Angle
/	Ultra Low Power Consumption

REVISION HISTORY

Rev	Date	Item	Page	Remark
1.0	MAR.14.2025	New Creation	ALL	

LIST

1. Over View	(4)
2. Features	(4)
3. Mechanical Specifications	(4)
4. Mechanical Drawing of EPD module	(5)
5. Input /Output Pin Assignment	(6-7)
6. Electrical Characteristics	(7)
6.1 Absolute Maximum Rating	(7)
6.2 Panel DC Characteristics	(8)
6.3 Panel AC Characteristics	(9)
6.3.1 MCU Interface Selection	(9)
6.3.2 MCU Serial Interface(4-wire SPI)	(9-10)
6.3.3 MCU Serial Interface(3-wire SPI)	(10-11)
6.3.4 Interface Timing	(11)
7. Command Table	(12-22)
8. Optical Specifications	(23)
9. Handling, Safety and Environment Requirements	(23)
10. Reliability test	(24)
11. Typical Application Circuit with SPI Interface	(25)
12. Typical Operating Sequence	(26)
12.1 Normal Operation Flow	(26)
13. Part Number Definition	(27)
14. Inspection method and condition	(27)
14.1 Inspection condition	(27)
14.2 Display area	(27)
14.3 General inspection standards for product	(28-30)
15. Packaging	(31)

1. Over View

AEZ122250A00-2.13ENRWS is an Active Matrix Electrophoretic Display (AM EPD), with interface and a reference system design. The display is capable to display images at 1-bit white, black full display capabilities. The 2.13 inch active area contains 122×250 pixels. The module is a TFT-array driving electrophoresis display, with integrated circuits including gate driver, source driver, MCU interface, timing controller, oscillator, DC-DC, SRAM, LUT, VCOM. Module can be used in portable electronic devices, such as Electronic Shelf Label (ESL) System.

2.Features

- 122×250 pixels display
- High contrast High reflectance
- Ultra wide viewing angle Ultra low power consumption
- Pure reflective mode
- Bi-stable display
- Commercial temperature range
- Landscape portrait modes
- Hard-coat antiglare display surface
- Ultra Low current deep sleep mode
- On chip display RAM
- Waveform can stored in On-chip OTP or written by MCU
- Serial peripheral interface available
- On-chip oscillator
- On-chip booster and regulator control for generating VCOM, Gate and Source driving voltage
- I²C signal master interface to read external temperature sensor
- Built-in temperature sensor

3. Mechanical Specifications

Parameter	Specifications	Unit	Remark
Screen Size	2.13	Inch	
Display Resolution	122(H)×250(V)	Pixel	Dpi:130
Active Area	23.7×48.55	mm	
Pixel Pitch	0.1943×0.1942	mm	
Pixel Configuration	Square		
Outline Dimension	29.2(H)×59.2 (V) ×1.65(D)	mm	
Weight	TBD	g	

4. Mechanical Drawing of EPD module

5. Input /Output Pin Assignment

No.	Name	I/O	Description	Remark
1	NC		Do not connect with other NC pins	Keep Open
2	GDR	О	N-Channel MOSFET Gate Drive Control	
3	RESE	I	Current Sense Input for the Control Loop	
4	NC	NC	Do not connect with other NC pins	Keep Open
5	VSH2	С	Positive Source driving voltage(Red)	
6	TSCL	O	This pin is I ² C Interface to digital temperature sensor Clock pin. External pull up resistor is required when connecting to I ² C slave. When not in use:VSS	
7	TSDA	I/O	This pin is I ² C Interface to digital temperature sensor Data pin. External pull up resistor is required when connecting to I ² C slave. When not in use: VSS	
8	BS1	I	Bus Interface selection pin	Note 5-5
9	BUSY	О	Busy state output pin	Note 5-4
10	RES#	I	Reset signal input. Active Low.	Note 5-3
11	D/C#	I	Data /Command control pin	Note 5-2
12	CS#	I	Chip select input pin	Note 5-1
13	SCL	Ι	Serial Clock pin (SPI)	
14	SDA	I/O	Serial Data pin (SPI)	
15	VDDIO	P	Power Supply for interface logic pins It should be connected with VCI	
16	VCI	P	Power Supply for the chip	
17	VSS	P	Ground	
18	VDD	С	Core logic power pin VDD can be regulated internally from VCI. A capacitor should be connected between VDD and VSS	
19	VPP	P	FOR TEST	
20	VSH1	C	Positive Source driving voltage	
21	VGH	C	Power Supply pin for Positive Gate driving voltage and VSH1	
22	VSL	C	Negative Source driving voltage	

23	VGL		Power Supply pin for Negative Gate driving voltage VCOM and VSL	
24	VCOM	С	VCOM driving voltage	

I = Input Pin, O =Output Pin, I/O = Bi-directional Pin (Input/output), P = Power Pin, C = Capacitor Pin Note 5-1: This pin (CS#) is the chip select input connecting to the MCU. The chip is enabled for MCU communication only when CS# is pulled LOW.

- Note 5-2: This pin is (D/C#) Data/Command control pin connecting to the MCU in 4-wire SPI mode. When the pin is pulled HIGH, the data at SDA will be interpreted as data. When the pin is pulled LOW, the data at SDA will be interpreted as command.
- Note 5-3: This pin (RES#) is reset signal input. The Reset is active low.
- Note 5-4: This pin is Busy state output pin. When Busy is High, the operation of chip should not be interrupted, command should not be sent. The chip would put Busy pin High when –Outputting display waveform -Communicating with digital temperature sensor

Note 5-5: Bus interface selection pin

BS1 State	MCU Interface
L	4-lines serial peripheral interface(SPI) - 8 bits SPI
Н	3- lines serial peripheral interface(SPI) - 9 bits SPI

6. Electrical Characteristics

6.1 Absolute Maximum Rating

Parameter	Symbol	Rating	Unit
Logic supply voltage	VCI	-0.5 to +6.0	V
Logic Input voltage	VIN	-0.5 to VCI +0.5	V
Logic Output voltage	VOUT	-0.5 to VCI +0.5	V
Operating Temp range	TOPR	0 to +50	° C
Storage Temp range	TSTG	-25 to+70	° C
Optimal Storage Temp	TSTGo	23±2	° C
Optimal Storage Humidity	HSTGo	55±10	%RH

Note:

Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Panel DC Characteristics tables.

6.2 Panel DC Characteristics

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR =25°C.

Parameter	Symbol	Conditions	Applica ble pin	Min.	Typ.	Max	Units
Single ground	V_{SS}	-		-	0	-	V
Logic supply voltage	V_{CI}	-	VCI	2.2	3.0	3.7	V
Core logic voltage	$V_{ m DD}$		VDD	1.7	1.8	1.9	V
High level input voltage	V_{IH}	-	-	0.8 V _{CI}	-	-	V
Low level input voltage	$V_{\rm IL}$	-	-	-	-	0.2 V _{CI}	V
High level output voltage	V_{OH}	IOH = -100uA	-	0.9 VCI	-	-	V
Low level output voltage	$V_{ m OL}$	IOL = 100uA	-	-	-	0.1 V _{CI}	V
Typical power	P_{TYP}	V _{CI} =3.0V	-	-	10.5	-	mW
Deep sleep mode	P_{STPY}	$V_{CI} = 3.0V$	-	-	0.003	-	mW
Typical operating current	Iopr_V _{CI}	V _{CI} =3.0V	-	-	3.5	-	mA
Image update time	-	25 °C	-	-	3	-	sec
Sleep mode current	Islp_V _{CI}	DC/DC off No clock No input load Ram data retain	-	-	20		uA
Deep sleep mode current	Idslp_V _{CI}	DC/DC off No clock No input load Ram data not retain	-	-	1	5	uA

Notes: 1. The typical power is measured with following transition from horizontal 2 scale pattern to vertical 2 scale pattern.

- 2. The deep sleep power is the consumed power when the panel controller is in deep sleep mode.
- 3. The listed electrical/optical characteristics are only guaranteed under the controller & waveform provided by ODNA.

6.3 Panel AC Characteristics

6.3.1 MCU Interface Selection

The pin assignment at different interface mode is summarized in Table 6-4-1. Different MCU mode can be set by hardware selection on BS1 pins. The display panel only supports 4-wire SPI or 3-wire SPI interface mode.

Pin Name	Data/Comma	nd Interface	(Control Signa	l
Bus interface	SDA	SCL	CS#	D/C#	RES#
BS1=L 4-wire SPI	SDA	SCL	CS#	D/C#	RES#
BS1=H 3-wire SPI	SDA	SCL	CS#	L	RES#

6.3.2 MCU Serial Interface (4-wire SPI)

The serial interface consists of serial clock SCL, serial data SDA, D/C#, CS#. This interface supports Write mode and Read mode.

Function	CS#	D/C#	SCL
Write command	L	L	†
Write data	L	Н	1

Note: ↑ stands for rising edge of signal

In the write mode SDA is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0. The level of D/C# should be kept over the whole byte. The data byte in the shift register is written to the Graphic Display Data RAM /Data Byte register or command Byte register according to D/C# pin.

Figure 6-1: Write procedure in 4-wire SPI mode

In the Read mode:

- 1. After driving CS# to low, MCU need to define the register to be read.
- SDA is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0 with D/C# keep low.
- 3. After SCL change to low for the last bit of register, D/C# need to drive to high.
- 4. SDA is shifted out an 8-bit data on every falling edge of SCL in the order of D7, D6, ... D0.
- Depending on register type, more than 1 byte can be read out. After all byte are read, CS# need to drive to high to stop the read operation.

Figure 6-2: Read procedure in 4-wire SPI mode

6.3.3 MCU Serial Interface (3-wire SPI)

The 3-wire serial interface consists of serial clock SCL, serial data SDA and CS#. This interface also supports Write mode and Read mode.

The operation is similar to 4-wire serial interface while D/C# pin is not used. There are altogether 9-bits will be shifted into the shift register on every ninth clock in sequence: D/C# bit, D7 to D0 bit. The D/C# bit (first bit of the sequential data) will determine the following data byte in the shift register is written to the Display Data RAM (D/C# bit = 1) or the command register (D/C# bit = 0).

Function	CS#	D/C#	SCL
Write command	L	Tie	†
Write data	L	Tie	†

Note: † stands for rising edge of signal

SDA (Write Mode)

Register

Register

Register

Register

Figure 6-3: Write procedure in 3-wire SPI mode

In the Read mode:

- 1. After driving CS# to low, MCU need to define the register to be read.
- 2. D/C=0 is shifted thru SDA with one rising edge of SCL
- 3. SDA is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0.
- 4. D/C=1 is shifted thru SDA with one rising edge of SCL
- 5. SDA is shifted out an 8-bit data on every falling edge of SCL in the order of D7, D6, ... D0.
- 6. Depending on register type, more than 1 byte can be read out. After all byte are read, CS# need to drive to high to stop the read operation.

Figure 6-4: Read procedure in 3-wire SPI mode

6.3.4 Interface Timing

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR =25°C.

Serial Interface Timing Characteristics

 $(VCI - VSS = 2.2V \text{ to } 3.7V, TOPR = 25^{\circ}C, CL=20pF)$

Write mode

Parameter	Min	Тур	Max	Unit
SCL frequency (Write Mode)			20	MHz
Time CS# has to be low before the first rising edge of SCLK	60			ns
Time CS# has to remain low after the last falling edge of SCLK	65			ns
Time CS# has to remain high between two transfers	100			ns
Part of the clock period where SCL has to remain high	25			ns
Part of the clock period where SCL has to remain low	25			ns
Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL	10			ns
Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL	40			ns
	SCL frequency (Write Mode) Time CS# has to be low before the first rising edge of SCLK Time CS# has to remain low after the last falling edge of SCLK Time CS# has to remain high between two transfers Part of the clock period where SCL has to remain high Part of the clock period where SCL has to remain low Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL	SCL frequency (Write Mode) Time CS# has to be low before the first rising edge of SCLK 60 Time CS# has to remain low after the last falling edge of SCLK 65 Time CS# has to remain high between two transfers 100 Part of the clock period where SCL has to remain high 25 Part of the clock period where SCL has to remain low 25 Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL 10	SCL frequency (Write Mode) Time CS# has to be low before the first rising edge of SCLK 60 Time CS# has to remain low after the last falling edge of SCLK 65 Time CS# has to remain high between two transfers 100 Part of the clock period where SCL has to remain high 25 Part of the clock period where SCL has to remain low 25 Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL 10	SCL frequency (Write Mode) Time CS# has to be low before the first rising edge of SCLK Time CS# has to remain low after the last falling edge of SCLK Time CS# has to remain high between two transfers Part of the clock period where SCL has to remain high Part of the clock period where SCL has to remain low Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL 10

Read mode

Parameter	Min	Тур	Max	Unit
SCL frequency (Read Mode)		1	2.5	MHz
Time CS# has to be low before the first rising edge of SCLK	100			ns
Time CS# has to remain low after the last falling edge of SCLK	50			ns
Time CS# has to remain high between two transfers	250			ns
Part of the clock period where SCL has to remain high	180			ns
Part of the clock period where SCL has to remain low	180			ns
Time SO(SDA Read Mode) will be stable before the next rising edge of SCL		50		ns
Time SO (SDA Read Mode) will remain stable after the falling edge of SCL		0		ns
	SCL frequency (Read Mode) Time CS# has to be low before the first rising edge of SCLK Time CS# has to remain low after the last falling edge of SCLK Time CS# has to remain high between two transfers Part of the clock period where SCL has to remain high Part of the clock period where SCL has to remain low Time SO(SDA Read Mode) will be stable before the next rising edge of SCL	SCL frequency (Read Mode) Time CS# has to be low before the first rising edge of SCLK 100 Time CS# has to remain low after the last falling edge of SCLK 50 Time CS# has to remain high between two transfers 250 Part of the clock period where SCL has to remain high 180 Part of the clock period where SCL has to remain low 180 Time SO(SDA Read Mode) will be stable before the next rising edge of SCL	SCL frequency (Read Mode) Time CS# has to be low before the first rising edge of SCLK Time CS# has to remain low after the last falling edge of SCLK Time CS# has to remain high between two transfers 250 Part of the clock period where SCL has to remain high Part of the clock period where SCL has to remain low Time SO(SDA Read Mode) will be stable before the next rising edge of SCL 50	SCL frequency (Read Mode) Time CS# has to be low before the first rising edge of SCLK Time CS# has to remain low after the last falling edge of SCLK Time CS# has to remain high between two transfers Part of the clock period where SCL has to remain high Part of the clock period where SCL has to remain low Time SO(SDA Read Mode) will be stable before the next rising edge of SCL 2.5 100 180 180 50

7. Command Table

	man		D7	D6	D5	D4	D3	D2	D1	D0	Command	Descripti	on		
0	0	01	0	0	0	0	0	0	0	1	Driver Output control	Gate setti	THE PARTY NAMED IN COLUMN TWO IS NOT THE PARTY N		
0	-	UI	1101		12.75	10000		70.000	-	- 10	Driver Output control], 296 MU	X
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀		MUX Gat	e lines se	tting as (A	[8:0] + 1)
1170.	-	-	1000	10.00		1.000	102	1000	A210	A ₈					
0	1		0	0	0	0	0	B ₂	B ₁	B ₀		B[2:0] = 0 Gate scar		uence and	d direction
												B[2]: GD Selects the 1st output Gate GD=0 [POR], G0 is the 1st gate output channel, gat output sequence is G0,G1, G2, G3, GD=1, G1 is the 1st gate output channel, gat output sequence is G1, G0, G3, G2, B[1]: SM Change scanning order of gate driver SM=0 [POR], G0, G1, G2, G3295 (left and right g interlaced) SM=1, G0, G2, G4G294, G1, G3,G29 B[0]: TB TB = 0 [POR], scan from G0 to G295 TB = 1, scan from G295 to G0.			62, G3, nnel, gate 33, G2, ate driver. and right ga
												TB = 0 [P	OR], scar	n from G0 G295 to G	to G295 0.
0	0	03	0	0	0	0	0	0	1	1	Gate Driving voltage	Set Gate			
0	1		0	0	0	A4	A ₃	A ₂	A ₁	Ao	Control	A[4:0] = 0			
														0V to 20V	
												A[4:0] 00h	VGH 20	A[4:0] 0Dh	VGH 15
												03h	10	COLOR DE LA COLOR	
												03h 04h		0Eh 0Fh	15.5 16
												04h	10.5 11	10h	16.5
												06h	11.5	11h	17
												07h	12		
												1		12h	17.5
												08h	12.5	13h	18
												07h	12	14h	18.5
												08h	12.5	15h	19
												09h	13	16h	19.5
												0Ah	13.5	17h	20
												0Bh 0Ch	14 14.5	Other	NA

		d Tal	- He	New York	<u>Lana</u>	2000			33=94	10.00	1_	2		
	D/C#		D7	D6	D5	D4	D3	D2	D1	D0	Comm	R - 5 (1) (1) (1)		Description
0	0	04	0	0	0	0	0	1	0	0	1 (2)	Driving	voltage	Set Source driving voltage
0	1		A ₇	A ₆	A ₅	A ₄	Аз	A ₂	A ₁	A ₀	Contro	,,		A[7:0] = 41h [POR], VSH1 at 15V B[7:0] = A8h [POR], VSH2 at 5V.
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo				C[7:0] = 32h [POR], VSL at -15V
0	1		C ₇	C ₆	C ₅	C ₄	Сз	C ₂	Cı	Co	3			Remark: VSH1>=VSH2
17	/B[7]	= 1,						Αſ	7]/B[7	7] = (),			C[7] = 0,
	H1/VS		oltag	je se	tting	from	2.4V					e setting	from 9V	VSL setting from -5V to -17V
	3.8V							to	17V					
A	B[7:0]		1/VSH2	_	[7:0]		/VSH2		A/B[7:0]	VS	H1/VSH2	A/B[7:0]	VSH1/VSH	olivel 102
-	8Eh 8Fh	1.5	2.4	- 72	Fh Oh		.7	\vdash	23h 24h	-	9.2	3Ch 3Dh	14 14.2	0Ah -5
	90h	1 10	2.6	- 2	1h	7-7	.9		25h		9.4	3Eh	14.4	0Ch -5.5 0Eh -6
	91h	-	2.7	В	2h		6		26h		9.6	3Fh	14.6	0Eh -6 10h -6.5
_	92h		2.8	_	3h		.1	\vdash	27h	_	9.8	40h	14.8	12h -7
_	93h 94h		2.9 3		4h 5h		.2	\vdash	28h 29h	+	10.2	41h 42h	15 15.2	14h -7.5
_	95h	_	3.1	_	6h	-	.4		2Ah		10.4	43h	15.4	16h -8
	96h	_	3.2	В	7h	_	.5		2Bh		10.6	44h	15.6	18h -8.5
	97h	_	3.3	_	8h	10.00	.6		2Ch		10.5	45h	15.8	1Ah -9
	98h 99h		3.4		9h Ah		.7	\vdash	2Dh 2Eh		11.2	46h 47h	16 16.2	1Ch -9.5
	9Ah	-	3.6	_	Bh		.9		2Fh		11.4	48h	16.4	1Eh -10
	9Bh	_	3.7		Ch	_	7		30h		11.6	49h	16.6	20h -10.5 22h -11
_	9Ch		3.8		Dh		.1		31h	4	11.8	4Ah	16.5	24h -11.5
_	9Dh 9Eh	_	3.9 4		Eh Fh		7.2		32h 33h	+	12.2	4Bh Other	17 NA	26h -12
	9Fh		4.1	_	0h				34h		12.4	Otto	74/3	28h -12.5
	A0h		4.2	C	1h	7	.5		35h		12.6			2Ah -13
	A1h	_	4.3	-	2h	_	.6		36h	_	12.8			2Ch -13.5
-	A2h A3h	_	4.4	_	3h 4h	_	.7	\vdash	37h 38h	+	13 13.2			2Eh -14
_	A4h	_	4.6	_	5h	_	.9		39h		13.4			30h -14.5
	A5h	_	4.7	-	6h	_	8		3Ah		13.6			32h -15
_	A6h A7h	_	4.8	_	7h 8h		.1		3Bh		13.5			34h -15.5 36h -16
-	A8h		5	_	9h		.3							38h -16.5
	A9h		5.1	С	Ah	8	.4							3Ah -17
	AAh	_	5.2	_	Bh	-	.5							Other NA
_	ABh ACh	_	5.3	_	Ch Dh	_	.6							1.
	ADh	_	5.5	_	Eh		.8							
	AEh	ं	5.6	0	ther	N	IA							
								=						3-
)	0	08	0	0	0	0	1	0	0	0	Initial (Code Set	tina	Program Initial Code Setting
												rogram	9	, regram maar code coming
											TO STREET STATES			The command required CLKEN=1.
														Refer to Register 0x22 for detail.
														BUSY pad will output high during
														operation.
				70									- 1/2 1442 - 1/1	1
)	0	09	0	0	0	0	1	0	0	1		Register f	or Initial	
)	1		A ₇	A ₆	A5	A4	Аз	A ₂	A ₁	Ao	Code	Setting		Selection
)	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	Bı	Bo	1			A[7:0] ~ D[7:0]: Reserved
)	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	Cı	B ₀ D			Details refer to Application Notes of Ini Code Setting	
			-		700	1000000000	Armer A.		100000000000000000000000000000000000000	-	+			Code Setting
)	1		D ₇	D ₆	D ₅	D ₄	Dз	D ₂	D ₁	Do	-			
								30-11	1,120			SIA CAR AND AND		
)	0	OA	0	0	0	0	1	0	1	0	Read I	Register f	or Initial	Read Register for Initial Code Setting
,	558	123000		597		0.6880	0.77		1125	12.00		Setting		Trodd Troglotor for Intian Code Cottant

	D/C#	d Tal	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
		OC.	0	0		0	1	1	-		Booster Soft start	Booster Enable with Phase 1, Phase 2 and Phase
0	0	UC	32270	0080	0	6707	-	1,000	0	0	Control	for soft start current and duration setting.
	1		1	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	_		A[7:0] -> Soft start setting for Phase1
)	1		1	B ₆	B ₅	B ₄	Вз	B ₂	2000000	2000	-	= 8Bh [POR]
)	1		1	C ₆	C ₅	C ₄	C ₃	C ₂	_		1	B[7:0] -> Soft start setting for Phase2 = 9Ch [POR]
)	1		0	0	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀		C[7:0] -> Soft start setting for Phase3
												= 96h [POR] D[7:0] -> Duration setting
												= 0Fh [POR]
												Bit Description of each byte: A[6:0] / B[6:0] / C[6:0]:
												Bit(6:4) Driving Strength
												000 Selection (Weakest)
												000 ((vreakest)
												010 3
												011 4
												100 5
												101 6
												110 7
												111 8(Strongest)
												Bit[3:0] Min Off Time Setting of GDR
												0000
												0011 NA
												0100 2.6
												0101 3.2
												0110 3.9
												0111 4.6
												1000 5.4
												1001 6.3
												1010 7.3
												1011 8.4
												1100 9.8
												1101 11.5
												1110 13.8
												1111 16.5
												D[5:0]: duration setting of phase D[5:4]: duration setting of phase 3 D[3:2]: duration setting of phase 2 D[1:0]: duration setting of phase 1 Bit[1:0] Duration of Phase [Approximation]
												00 10ms
												01 20ms
												10 30ms
												11 40ms
1	0	10	0	0	0	1	0	0	0	0 [eep Sleep mode	Deep Sleep mode Control:
)	1	10	0	0	0	0	0		-	A ₀	eeh sieeh mode	A[1:0]: Description
J	3		U	U	U	U	U	U	A ₁	A ₀		00 Normal Mode [POR]
												01 Enter Deep Sleep Mode 1
												11 Enter Deep Sleep Mode 2
												After this command initiated, the chip we enter Deep Sleep Mode, BUSY pad will keep output high. Remark:
												To Exit Deep Sleep mode, User require to send HWRESET to the driver

0	0	11	0	0	0	1	0	0	0	1	Data Entry mode setting	Define data entry sequence
0	1		0	0	0	0	0	A ₂	Aı	Ao		A[2:0] = 011 [POR] A [1:0] = ID[1:0] Address automatic increment / decrement setting The setting of incrementing or decrementing of the address counter can be made independently in each upper and lower bit of the address. 00 -Y decrement, X decrement, 01 -Y decrement, X increment, 10 -Y increment, X increment [POR] A[2] = AM Set the direction in which the address counter is updated automatically after data are written to the RAM. AM= 0, the address counter is updated in the X direction. [POR] AM = 1, the address counter is updated in the Y direction.
0	0	12	0	0	0	1	0	0	1	0	SW RESET	It resets the commands and parameters to their S/W Reset default values except R10h-Deep Sleep Mode During operation, BUSY pad will output high. Note: RAM are unaffected by this command.
0	0	14	0	0	0	1	0	1	0	0	HV Ready Detection	HV ready detection A[7:0] = 00h [POR] The command required CLKEN=1 and ANALOGEN=1. Refer to Register 0x22 for detail. After this command initiated, HV Ready detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).
0	1		0	A6	As	A4	0	A2	Aı	Ao		A[6:4]=n for cool down duration: 10ms x (n+1) A[2:0]=m for number of Cool Down Loop to detect. The max HV ready duration is 10ms x (n+1) x (m) HV ready detection will be trigger after each cool down time. The detection will be completed when HV is ready. For 1 shot HV ready detection, A[7:0] can be set as 00h.

0	0	15	0	0	0	1	0	1	0	1	VCI Detection	VCI Detection
0	1	13	0	0	0	0	0	A ₂	A ₁	Ao	VOI Detection	A[2:0] = 100 [POR] , Detect level at 2.3V
U	.1		Ü	U	U	U	U	H2	A1	A0		A[2:0] : VCI level Detect
												A[2:0] VCI level
												011 2.2V
												100 2.3V
												101 2.4V
												110 2.5V
												111 2.6V
												Other NA
												The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail. After this command initiated, VCI detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).
0	0	18	0	0	0	1	1	0	0	0	Temperature Sensor	Temperature Sensor Selection
1000	_	10		10000	45.00		1,500	- 20	7/2/8000	14577	Control	A[7:0] = 48h [POR], external temperatrure
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	Control	sensor
												A[7:0] = 80h Internal temperature sensor
0	0	1A	0	0	0	1	1	0	1	0	Temperature Sensor	Write to temperature register.
0	1		A ₁₁	A ₁₀	A ₉	Aε	A ₇	A ₆	A ₅	A ₄	Control (Write to temperature register)	A[11:0] = 7FFh [POR]
0	1		Аз	A ₂	A ₁	Ao	0	0	0	0	tomporature registery	
0	0	1B	0	0	0	1	1	0	1	1	Temperature Sensor	Read from temperature register.
1	1		A ₁₁	A ₁₀	A ₉	A ₈	A ₇	A ₆	A ₅	A4	Control (Read from	
1	1		A ₃	A ₂	A ₁	Ao	0	0	0	0	temperature register)	
_							2000		2000			
0	0	1C	0	0	0	1	1	1	0	0	Temperature Sensor Control (Write Command	Write Command to External temperature sensor.
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	to External temperature	A[7:0] = 00h [POR],
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	Bı	Bo	sensor)	B[7:0] = 00h [POR],
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co		C[7:0] = 00h [POR],
												A[7:6] A[7:6] Select no of byte to be sent 00 Address + pointer 01 Address + pointer + 1st parameter 10 Address + pointer + 1st parameter + 2nd pointer 11 Address A[5:0] - Pointer Setting B[7:0] - 1st parameter C[7:0] - 2nd parameter C[7:0] - 2nd parameter The command required CLKEN=1. Refer to Register 0x22 for detail. After this command initiated, Write Command to external temperature sensor starts. BUSY pad will output high during operation.
0	0	20	0	0	1	0	0	0	0	0	Master Activation	Activate Display Update Sequence The Display Update Sequence Option is located at R22h. BUSY pad will output high during operation. User should not interrupt this operation to avoid corruption of panel images.

0	0	21	0	0	1	0	0	0	0	1	Display Update Control	RAM content option for Display	Update
0	1	, and a	A ₇	A ₆	A ₅	A ₄	Аз	A ₂	A ₁	A ₀	1	A[7:0] = 00h [POR] B[7:0] = 00h [POR]	Vicinity of American Control
0	1		B ₇	0	0	0	0	0	0	0		A[7:4] Red RAM option 0000 Normal 0100 Bypass RAM cor 1000 Inverse RAM cor A[3:0] BW RAM option 0000 Normal 0100 Bypass RAM cor 1000 Inverse RAM cor B[7] Source Output Mode 0 Available Source from S	ntent as 0 ntent of the standard of the standa
0	0	22	0	0	1	0	0	0	1	0	Display Update	Display Update Sequence Opti	
0	1		A ₇	A ₆	A ₅	A ₄	Аз	A ₂	A ₁	A ₀	Control 2	Enable the stage for Master Ac A[7:0]= FFh (POR)	INVESTMENTAL AND AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON
												Operating sequence	Parameter (in Hex)
												Enable clock signal Disable clock signal	80 01
												Enable clock signal	
												→ Enable Analog Disable Analog	C0
												→ Disable clock signal	03
												Enable clock signal → Load LUT with DISPLAY Mode 1 → Disable clock signal	91
												Enable clock signal → Load LUT with DISPLAY Mode 2 → Disable clock signal	99
												Enable clock signal → Load temperature value → Load LUT with DISPLAY Mode 1 → Disable clock signal	B1
												Enable clock signal → Load temperature value → Load LUT with DISPLAY Mode 2 → Disable clock signal	B 9
												Enable clock signal → Enable Analog → Display with DISPLAY Mode 1 → Disable Analog → Disable OSC	C7
												Enable clock signal → Enable Analog → Dispay with DISPLAY Mode 2 → Disable Analog →Disable OSC	CF
												Enable clock signal →Enable Analog → Load temperature value → DISPLAY with DISPLAY Mode 1 → Disable Analog → Disable OSC	F7
			. bs									Enable clock signal →Enable Analog → Load temperature value → DISPLAY with DISPLAY Mode 2 → Disable Analog → Disable OSC	FF
0	0	24	0	0	1	0	0	1	0	0	Write RAM (Black White) / RAM 0x24	After this command, data entrie written into the BW RAM until a command is written. Address p advance accordingly	nother
												For Write pixel: Content of Write RAM(BW) = For Black pixel: Content of Write RAM(BW) =	

100	man D/C#	52 100	D7	D6	D5	D4	D3	D2	D1	DO	Command	Description
0	0	26	0	0	1	0	0	1	1	0	Write RAM (RED) / RAM 0x26	After this command, data entries will be written into the RED RAM until another command is written. Address pointers will advance accordingly.
				C								For Red pixel: Content of Write RAM(RED) = 1 For non-Red pixel [Black or White]: Content of Write RAM(RED) = 0
0	0	27	0	0	1	0	0	1	1	1	Read RAM	After this command, data read on the MCU bus will fetch data from RAM. According to parameter of Register 41h to select reading RAM0x24/ RAM0x26, until another command is written. Address pointers will advance accordingly. The 1st byte of data read is dummy data.
0	0	28	0	0	1	0	1	0	0	0	VCOM Sense	Enter VCOM sensing conditions and hold for duration defined in 29h before reading VCOM value. The sensed VCOM voltage is stored in register The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail.
	0			<u> </u>								BUSY pad will output high during operation.
0	0	29	0	0	1	0	1	0	0	1	VCOM Sense Duration	Stabling time between entering VCOM
0	1		0	1	0	0	A ₃	A ₂	Aı	Ao		sensing mode and reading acquired. A[3:0] = 9h, duration = 10s. VCOM sense duration = (A[3:0]+1) sec
0	0	2A	0	0	1	0	1	0	1	0	Program VCOM OTP	Program VCOM register into OTP
												The command required CLKEN=1. Refer to Register 0x22 for detail.
				o 5)			ļ		ž.			BUSY pad will output high during operation.
0	0	2B	0	0	1	0	1	0	1	1	Write Register for VCOM	This command is used to reduce glitch
-	1		0	0	0	0	0	1	0	0	Control	when ACVCOM toggle. Two data bytes
0												D04h and D63h should be set for this

CHERCHE	D/C#	The same of	ble D7	D6	D5	D4	D3	D2	D1	D0	Command	Descrip	tion				
0	0	2C	0	0	1	0	1	1	0	0	Write VCOM register	Contract to the second		er from M	ICU interfac		
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	, and vocan regions.	A[7:0] =	00h [POR]		i do intorido		
												A[7:0]	VCOM	A[7:0]	VCOM		
												08h	-0.2	44h	-1.7		
												0Ch	-0.3	48h	-1.8		
												10h	-0.4	4Ch	-1.9		
												14h	-0.5	50h	-2		
												18h	-0.6	54h	-2.1		
												1Ch	-0.7	58h	-2.2		
												20h	-0.8	5Ch	-2.3		
												24h	-0.9	60h	-2.4		
												28h	-1	64h	-2.5		
												2Ch	-1.1	68h	-2.6		
												30h	-1.2	6Ch	-2.7		
												34h	-1.3	70h	-2.8		
												38h	-1.4	74h	-2.9		
												3Ch -1.5 78h -3					
												40h -1.6 Other NA					
_		_										4011	-1.0	Other	IVA		
0	0	2D	0	0	1	0	1	1	0	1	OTP Register Read for	Read R	egister for	Display (Option:		
1	1		A ₇	A ₆	A ₅	A4	Аз	A ₂	A ₁	Ao	Display Option	A[7:0]: VCOM OTP Selection					
1	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo			VCOM OT and 0x37,		on		
1	1		C ₇	C ₆	C ₅	C ₄	Сз	C ₂	C ₁	Co		(Collin)	and uxor,	Dyle A)			
1	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	Do		B[7:0]:	VCOM Re	gister			
1	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	Eo			and 0x2C)				
1	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	Fo		1222122		res estate	10		
115				-					_	-			G[7:0]: Dis				
1	1	-	G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	G ₀		[5 bytes	and 0x37,	Byte B to	Byte F)		
1	1		H ₇	H ₆	H₃	H ₄	Нз	H ₂	H ₁	Ho		[O Dytos	2]				
1	1		17	16	15	14	l ₃	12	11	lo		H[7:0]~	K[7:0]: Wa	veform V	ersion		
1	1		J ₇	J ₆	J ₅	J ₄	J ₃	J ₂	J ₁	Jo			and 0x37,	Byte G to	Byte J)		
1	1		K ₇	K ₆	K ₅	K ₄	K ₃	K ₂	K ₁	K ₀		[4 bytes	5]				
0	0	2E	0	0	1	0	1	1	1	0	User ID Read	Bood 10	Byte User	ID store	d in OTD:		
	1	ZL	999.50	1100						-	Osel ID Read				Byte A and		
1			A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao		Byte J)	[10 bytes]	(, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	D ,10 / (a.) (
1	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo							
1	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co							
1	1		D ₇	D ₆	D ₅	D₄	D ₃	D ₂	D ₁	D ₀							
1	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	E ₀							
1	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	Fo							
1	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	Go							
1	1		H ₇	H ₆	H ₅	H ₄	Нз	H ₂	Hı	Ho							
1	1		17	16	15	14	l ₃	12	l ₁	lo							
1	1		J ₇	J ₆	J ₅	J ₄	J ₃	J ₂	J ₁	Jo							
		2-	-						100		Ct-t D# D1	Decision	-4-4 Diri	DOD 0-0	41		
0	0	2F	0	0	1 A ₅	0 A ₄	0	0	1 A ₁	1 Ao	Status Bit Read		status Bit Ready De		1] ig [POR=0]		
3	L		U	U	A5	74	U	U	A1	Λ0		0: Ready	,				
												1: Not Re					
													Detection	flag [POI	R=0]		
												0: Norma			Towns or the		
													wer than th	ne Detect	level		
												A[3]: [PC	y flag [PO	P=01			
												0: Norma		11-0]			
												1: BUSY					
												Linds of Line Colors and Parkets	hip ID [PO	R=01]			
												D	7370	-			
												Remark:	A[4] status	are not	valid after		
		1 1			1							RESET, they need to be initiated by command 0x14 and command 0x15					
							- 1					respectively.					

0	0	30	0	0	1	1	0	0	0	0	Program WS OTP	Program OTP of Waveform Setting The contents should be written into RAM before sending this command. The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	31	0	0	1	1	0	0	0	1	Load WS OTP	Load OTP of Waveform Setting The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0 0 0 0	0 1 1 1 1 1	32	0 A ₇ B ₇ :	0 A ₆ B ₆	1 A ₅ B ₅	1 A ₄ B ₄ :	0 A ₃ B ₃	0 A ₂ B ₂	1 A ₁ B ₁	0 A ₀ B ₀	Write LUT register	Write LUT register from MCU interface [153 bytes], which contains the content of VS[nX-LUTm], TP[nX], RP[n], SR[nXY], FR[n] and XON[nXY] Refer to Session 6.7 WAVEFORM SETTING
0	0	34	0	0	1	1	0	1	0	0	CRC calculation	CRC calculation command For details, please refer to SSD1680 application note. BUSY pad will output high during operation.
0 1 1	0 1 1	35	0 A ₁₅	0 A ₁₄ A ₆	1 A ₁₃ A ₅	1 A ₁₂ A ₄	0 A ₁₁ A ₃	1 A ₁₀	0 A ₉	1 A ₈	CRC Status Read	CRC Status Read A[15:0] is the CRC read out value
0	0	36	0	0	1	1	0	1	1	0	Program OTP selection	Program OTP Selection according to the OTP Selection Control [R37h and R38h] The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
941				0 2		100			100			
0	0	37	0	0	0	0	0	0	0	1	Write Register for Display Option	Write Register for Display Option A[7] Spare VCOM OTP selection
0	1		A ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	Bo	13 200 A 10 C	0: Default [POR]
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co		1: Spare
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	Do		B[7:0] Display Mode for WS[7:0]
0	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	E ₀		C[7:0] Display Mode for WS[15:8]
0	1		0	F ₆	0	0	F ₃	F ₂	F ₁	F ₀		D[7:0] Display Mode for WS[23:16] E[7:0] Display Mode for WS[31:24]
0	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	G ₀		F[3:0 Display Mode for WS[35:32]
0	1		H ₇	H ₆	H ₅	H4	Нз	H ₂	H ₁	Ho		0: Display Mode 1 1: Display Mode 2
0	1		17	l ₆	l 5	14	l ₃	12	11	lo		I. Display Mode 2
0	1		J ₇	J€	J 5	J4	J ₃	J ₂	J ₁	Jo		F[6]: PingPong for Display Mode 2 0: RAM Ping-Pong disable [POR] 1: RAM Ping-Pong enable G[7:0]~J[7:0] module ID /waveform version. Remarks: 1) A[7:0]~J[7:0] can be stored in OTP 2) RAM Ping-Pong function is not support for Display Mode 1

AEZ122250A00-2.13ENRWS

0	0	38	0	0	1	1	1	0	0	0	Write Register for User ID	Write Register	for User ID
0	1	30	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	White Register for User ID]: UserID [10 bytes]
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo		Remarks: A17-	:0]~J[7:0] can be stored in
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co		OTP	.oj o[r.o] can be stoled in
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	Do		anacodil tota	
0	1		E ₇	E ₆	E ₅	E ₄	Ез	E ₂	E ₁	Εo			
0	1		F ₇	Fe	F ₅	F ₄	Fз	F ₂	F ₁	Fo			
0	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	Go			
0	1		H ₇	H ₆	H ₅	H ₄	Нз	H ₂	H ₁	Ho			
0	1		17	16	ls.	14	l ₃	12	l ₁	lo			
0	1		J ₇	J ₆	J ₅	J ₄	J ₃	J ₂	J ₁	Jo			
0	0	39	0	0	1	1	1	0	0	1	OTP program mode	OTP program	
0	1		0	0	0	0	0	0	A ₁	A ₀			ormal Mode [POR] ternal generated OTP voltage
													is required to EXACTLY rence code sequences
0	0	3C	0	0	1	1	1	1	0	0	Border Waveform Control		
0	1		A ₇	A 6	A ₅	A4	0	A2	A ₁	A ₀		A[7:0] = C0h [POR], set VBD as HIZ.
												A [7:6] :Select	Select VBD as
												00	GS Transition,
													Defined in A[2] and A[1:0]
												01	Fix Level,
												10	Defined in A[5:4]
												10 11[POR]	VCOM HiZ
												TIPON	1112
													vel Setting for VBD
												A[5:4]	VBD level
												00	VSS VSH1
												10	VSL
												11	VSH2
												AVOI OO T	10.
												A[2] GS Trans	Transition control
													llow LUT
													utput VCOM @ RED)
												1 Fo	llow LUT
												A [1:0] GS Tra	ansition setting for VBD
												A[1:0]	VBD Transition
												00	LUT0
												01	LUT1
												10	LUT2 LUT3
					_		<u> </u>					11	2010
0	0	3F	0	0	1	1	1	1	1	1	End Option (EOPT)	Option for LU	
0	1		A ₇	A ₆	A 5	A4	A ₃	A ₂	A ₁	Ao		A[7:0]= 02h [F	
												22h Norma 07h Source	e output level keep
													e output level keep ous output before power off
_	_		_								D I DAM G. W	n	
0	0	41	0	1	0	0	0	0	0	1	Read RAM Option	Read RAM O	
0	1		0	0	0	0	0	0	0	Ao		0 : Read RAM	corresponding to RAM0x2 corresponding to RAM0x2
0	0	44	0	1	0	0	0	1	0	0	Set RAM X - address	Specify the st	art/end positions of the
0	1		0	0	A ₅	A4	A ₃	A ₂	A ₁	Ao	Start / End position	window addre	ss in the X direction by an
0	1		0	0	B ₅	B ₄	Вз	B ₂	B ₁	Bo		address unit	for RAM
												A[5:0]: XSA[5:0], XStart, POR = B[5:0]: XEA[5:0], XEnd, POR =	

0	0	45	0	1	0	0	0	1	0	1	Set Ram Y- address		e start/en			
0	1		A7	A ₆	A5	A4	A ₃	A ₂	Aı	Ao	Start / End position	window a	ddress in t	he Y dire	ction by an	
0	1		0	0	0	0	0	0	0	As		address u	init for RA	M		
0	1		B ₇	B ₆	Bo	B ₄	Вз	B ₂	Bı	Bo		A[8:0]: VS	SAIR-DI VS	Start POF	2 = 000h	
0	1		0	0	0	0	0	0	0	Ba	†	A[8:0]: YSA[8:0], YStart, POR = 000h B[8:0]: YEA[8:0], YEnd, POR = 127h				
	77.00	1													- V20190P1	
)	1	46	0 A ₇	1 A ₆	0 A ₅	0 A ₄	0	1 A ₂	1 A ₁	0 A ₀	Auto Write RED RAM for Regular Pattern	Auto Write $A[7:0] = 0$		M for Reg	jular Patter	
												A[7]: The 1st step value, POR = 0 A[6:4]: Step Height, POR= 000 Step of alter RAM in Y-direction acc to Gate				
												A[6:4]	Height	A[6:4]	Height	
												000	8	100	128	
												001	16	101	256	
												010	32	110	296	
												011	64	111	NA	
												to Source	ter RAM in	X-directi	on accordi	
												A[2:0]	Width	A[2:0]	Width	
												000	8	100	128	
												001	16	101	176	
												010	32	110	NA	
												011	64	111	NA	
												BUSY pac operation.	d will outpo	ut high du	ring	
												A[6:4]: Ste Step of all to Gate	ter RAM ir	POR= 00 Y-directi	on accordi	
												A[6:4]: Ste Step of all to Gate A[6:4]	ep Height, ter RAM ir Height	POR= 00 Y-direction A[6:4]	on accordi Height	
												A[6:4]: Step of all to Gate A[6:4] 000	ep Height, ter RAM ir Height 8	POR= 00 Y-direction A[6:4]	on according Height 128	
												A[6:4]: Step of all to Gate A[6:4] 000 001	ep Height, ter RAM ir Height 8	POR= 00 Y-directi A[6:4] 100 101	on according Height 128 256	
												A[6:4]: Step of all to Gate A[6:4] 000	ep Height, ter RAM ir Height 8	POR= 00 Y-direction A[6:4]	on according Height 128	
												A[6:4]: Ste Step of all to Gate A[6:4] 000 001 010 011 A[2:0]: Ste Step of all to Source A[2:0] 000 001 010 011	ep Height, ler RAM ir Height 8 16 32 64 ep Width, ler RAM ir Width 8 16 32 64	POR= 000 A[6:4] 100 101 110 111 POR= 000 A[2:0] 100 101 110 111	Height 128 256 296 NA	
D	0	4F	0	1	0	0	1	1	3	0	Set RAM X address	A[6:4]: Step of all to Gate A[6:4]	ep Height, ter RAM ir Height 8 16 32 64 ep Width, ter RAM ir Width 8 16 32 64 eration, Bi	POR= 00 A Y-directi A[6:4] 100 101 110 111 POR= 000 A X-directi A[2:0] 100 101 110 111 USY pad	Height 128 256 296 NA On accordin Width 128 176 NA NA will output	
-	0	4E	0	1 0	0	0	1	1	1	0	Set RAM X address	A[6:4]: Step of all to Gate A[6:4]	ep Height, ter RAM ir Height 8 16 32 64 ep Width, ter RAM ir Width 8 16 32 64 eration, Bi	POR= 00 A Y-direction A[6:4] 100 101 110 111 POR= 000 A[2:0] 100 101 110 111 USY pad	Height 128 256 296 NA Oon accordin Width 128 176 NA NA will output	
-	0 1	4E	0 0	1 0	0 As	0 A4	1 A ₃	1 A ₂	1 A1	0 A ₀		A[6:4]: Step of all to Gate A[6:4]	ep Height, ter RAM ir Height 8 16 32 64 ep Width, ter RAM ir Width 8 16 32 64 eration, B	POR= 00 A Y-direction A[6:4] 100 101 110 111 POR= 000 A[2:0] 100 101 110 111 USY pad	Height 128 256 296 NA Oon accordin Width 128 176 NA NA will output	
0	7.7	4E	0.000	- 12	2 (5-70)		7.1	- 12	0.7	-		A[6:4]: Ste Step of all to Gate A[6:4] 000 001 010 011 A[2:0]: Ste Step of all to Source A[2:0] 000 001 010 011 During op high. Make initi address in A[5:0]: 00	ep Height, ter RAM ir Height 8 16 32 64 ep Width, ter RAM ir Width 8 16 32 64 eration, B	POR= 000 A Y-directi A[6:4] 100 101 110 111 POR= 000 A X-directi A[2:0] 100 101 110 111 USY pad for the Ress count	Height 128 256 296 NA On accordin Width 128 176 NA NA will output AM X er (AC)	
)	0		0	0	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	counter	A[6:4]: Step of all to Gate A[6:4] 000 001 010 011 A[2:0]: Step of all to Source A[2:0] 000 001 010 011 During op high. Make initi address in A[5:0]: 00	ep Height, ter RAM ir Height 8 16 32 64 ep Width, ter RAM ir Width 8 16 32 64 eration, Bi al settings in the adding the adding the adding the adding the adding in the adding	POR= 00 A Y-directi A[6:4] 100 101 110 111 POR= 000 A X-directi A[2:0] 100 101 110 111 USY pad for the R ess count	Height 128 256 296 NA Width 128 176 NA NA will output AM X er (AC)	
	0 1		0 0 A ₇	0 1 A ₆	0 A ₅	0 A4	A ₃	A ₂	A ₁	A ₀	counter Set RAM Y address	A[6:4]: Step of all to Gate A[6:4] 000 001 010 011 A[2:0]: Step of all to Source A[2:0] 000 001 010 011 During op high. Make initi address in A[5:0]: 00	ep Height, ter RAM ir Height 8 16 32 64 ep Width, ter RAM ir Width 8 16 32 64 eration, Black all settings in the address in th	POR= 00 A Y-directi A[6:4] 100 101 110 111 POR= 000 A X-directi A[2:0] 100 101 110 111 USY pad for the R ess count	Height 128 256 296 NA On according Width 128 176 NA NA will output AM X er (AC)	
)	0		0	0	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	counter Set RAM Y address	A[6:4]: Step of all to Gate A[6:4] 000 001 010 011 A[2:0]: Step of all to Source A[2:0] 000 001 010 011 During op high. Make initi address in A[5:0]: 00	ep Height, ter RAM ir Height 8 16 32 64 ep Width, ter RAM ir Width 8 16 32 64 eration, Bi al settings in the adding the adding the adding the adding the adding in the adding	POR= 00 A Y-directi A[6:4] 100 101 110 111 POR= 000 A X-directi A[2:0] 100 101 110 111 USY pad for the R ess count	Height 128 256 296 NA Width 128 176 NA NA will output AM X er (AC)	

8. Optical Specifications

Measurements are made with that the illumination is under an angle of 45 degree, the detection is perpendicular unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур.	Max	Units	Notes
R	White Reflectivity	White	30	35	1	%	8-1
CR	Contrast Ratio	Indoor	8:1		-		8-2
T update	Image update time	at 25 °C		3	-	sec	
Life		Topr		1000000times or 5years			

Notes: 8-1. Luminance meter: Eye-One Pro Spectrophotometer.

8-2. CR=Surface Reflectance with all white pixel/Surface Reflectance with all black pixels.

9. Handling, Safety and Environment Requirements

Warning

The display glass may break when it is dropped or bumped on a hard surface. Handle with care. Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

Caution

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components. Disassembling the display module.

Disassembling the display module can cause permanent damage and invalidates the warranty agreements.

Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to static electricity and other rough environmental conditions.

Data sheet status						
Product specification This data sheet contains final product specifications.						
	Limiting values					
134). Stress above one or more of the These are stress ratings only and open	e limiting values may cause permanent damage to the device. eration of the device at these or at any other conditions above ctions of the specification is not implied. Exposure to limiting fect device reliability.					
Application information						
Where application information is given, it is advisory and does not form part of the specification.						

10.Reliability test

NO	Test items	Test condition
1	Low-Temperature Storage	T = -25°C, 240 h Test in white pattern
2	High-Temperature Storage	T=60°C, RH=35%, 240h Test in white pattern
3	High-Temperature Operation	T=40°C, RH=35%, 240h
4	Low-Temperature Operation	T=0° C, 240h
5	High-Temperature, High-Humidity Operation	T=40°C, RH=80%, 240h
6	High Temperature, High Humidity Storage	T=50°C, RH=90%, 240h Test in white pattern
7	Temperature Cycle	1 cycle:[-25° C 30min]→[+60° C 30 min]: 50 cycles Test in white pattern
8	UV exposure Resistance	765W/m² for 168hrs,40 °C Test in white pattern
9	ESD Gun	Air+/-15KV;Contact+/-8KV (Test finished product shell, not display only) Air+/-8KV;Contact+/-6KV (Naked EPD display, no including IC and FPC area) Air+/-4KV;Contact+/-2KV (Naked EPD display, including IC and FPC area)

Note: Put in normal temperature for 1hour after test finished, display performance is ok.

11. Typical Application Circuit with SPI Interface

Part Name	Value	Requirements/Reference Part
C0-C1	1uF	X5R/X7R; Voltage Rating : 6V or 25V
C2-C7	1uF	0402/0603/0805; X5R/X7R; Voltage Rating : 25V
C8	0.47uF, 1uF	0603/0805; X7R; Voltage Rating : 25V Note: Effective capacitance > 0.25uF @ 18V DC bias
R1	2.2 ohm	0402, 0603, 0805; 1% variation, ≥ 0.05W
D1-D3	Diode	MBR0530 1) Reverse DC voltage ≥ 30V 2) Io ≥ 500mA 3) Forward voltage ≤ 430mV
Q1	NMOS	Si1304BDL/NX3008NBK 1) Drain-Source breakdown voltage ≥ 30V 2) Vgs(th) = 0.9V (Typ), 1.3V (Max) 3) Rds on ≤ 2.1Ω @ Vgs = 2.5V
L1	47uH	CDRH2D18 / LDNP-470NC lo= 500mA (Max)
U1	0.5mm ZIF socket	24pins, 0.5mm pitch

12. Typical Operating Sequence

12.1 Normal Operation Flow

AEZ122250A00-2.13ENRWS Page 26

END

13. Part Number Definition TBD

14. Inspection method and condition

14. 1 Inspection condition

Item	Condition
Illuminance	800~1500 lux
Temperature	22°C ±3°C
Humidity	55±10 %RH
Distance	≥30cm
Angle	Vertical fore and aft 45
Inspection method	By eyes

14. 2 Zone definition

A Zone: Active area
B Zone: Border zone

C Zone: From B zone edge to panel edge

14. 3 General inspection standards for products

14.3.1 Appearance inspection standard

Inspec	tion item	m Figure		A zone inspection standard	B/C zone	Inspection method	MAJ/ MIN
Spot defects	Spot defects such as dot, foreign matter, air bubble, and dent etc.	Diameter D=(L+W)/2 (L-length, W-width) Measuring method shown in the figure below D=(L+W)/2	The distance between the two spots should not be less than 10mm	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Foreign matter D≤1mm Pass	Check by eyes Film gauge	MIN

Insp	ection item	F	igure	A zone inspection standard	B/C zone	Inspection method	MA J/ MI N
Line defects	Line defects such as scratch, hair etc.	L-Length, W-Width, (W/L)<1/4 Judged by line, (W/L)≥1/4 Judged by dot	The distance between the two lines should not be less than 5mm	7.5"-13.3"Module (Not include 7.5"): L>10mm,N=0 W>0.8mm, N=0 5mm≤L≤10mm, 0.5mm≤W≤0.8mm N≤2 L≤5mm, W≤0.5mm Ignore 4.2"-7.5"Module (Not include 4.2"): L>8mm,N=0 W>0.2mm, N=0 2mm≤L≤8mm, 0.1mm≤W≤0.2mm N≤4 L≤2mm, W≤0.1mm Ignore Module below 4.2": L>5mm,N=0 W>0.2mm, N=0 2mm≤L≤5mm, 0.1mm≤W≤0.2mm N≤4 L≤2mm, W≤0.1mm Ignore	Ignore	Check by eyes Film gauge	MIN

Inspect	Inspection item Figure		Inspection standard	Inspection method	MA J/ MIN
Panel chipping and crack defects	TFT panel chipping	X the length, Y the width, Z the chipping height, T the thickness of the panel	Chipping at the edge: Module over 7.5" (Include 7.5"): $X \le 6mm, Y \le 1mm$ $Z \le T$ $N = 3$ Allowed Module below 7.5" (Not include 7.5"): $X \le 3mm, Y \le 1mm$ $Z \le T$ $N = 3$ Allowed Chipping on the corner: IC side $X \le 2mm$ $Y \le 2mm$, Non-IC side $X \le 1mm$ $Y \le 1mm$. Allowed Note: Chipping should not damage the edge wiring. If it does not affect the display, allowed	Check by eyes. Film gauge	MIN
	Crack	玻璃器纹	Crack at any zone of glass, Not allowed	Check by eyes. Film gauge	MIN
	Burr edge	+	No exceed the positive and negative deviation of the outline dimensions X+Y≤0.2mm Allowed	Calliper	MIN
	Curl of panel	H Curl height	Curl height H≤Total panel length 1% Allowed	Check by eyes	MIN

Inspec	tion item	Figure	Inspection standard	Inspecti on method	MAJ / MIN
PS defect	Water proof film		Waterproof film damage, wrinkled, open edge, not allowed Exceeding the edge of module(according to the lamination drawing) Not allowed Edge warped exceeds height of technical file, not allowed	Check by eyes	MIN
RTV defect	Adhesive effect		Adhesive height exceeds the display surface, not allowed 1 .Overflow, exceeds the panel side edge, affecting the size, not allowed 2 .No adhesive at panel edge≤1mm, mo exposure of wiring, allowed 3. No adhesive at edge and corner1*1mm, no exposure of wiring, allowed	Check by eyes	MIN
	Adhesive re-fill		Protection adhesive, coverage width within W≤1.5mm, no break of adhesive, allowed Dispensing is uniform, without obvious concave and breaking, bubbling and swell, not higher than the upper surface of the PS, and the diameter of the adhesive re-filling is not more than 8mm, allowed	Check by eyes	MIN
EC defect	Adhesive bubble	防水胶涂布区 封边胶边缘 PS边缘 防水胶涂布区 Border外缘(PPL边缘)	 Effective edge sealing area of hot melt products ≥1/2 edge sealing area; Bubble a+b≥1/2 effective width, N≤3, spacing≥5mm, allowed No exposure of wiring, allowed 	Check by eyes	MIN

Inspection item		Figure	Inspection standard	Inspection method	MAJ/ MIN
EC defect	Adhesive effect		1 .Overflow, exceeds the panel side edge, affecting the size, not allowed 2.No adhesive at panel edge≤1mm, mo exposure of wiring, allowed 3.No adhesive at edge and corner 1*1mm, no exposure of wiring, allowed 4. Adhesive height exceeds the display surface, not allowed	Visual, caliper	MIN
Silver dot adhesive	Silver dot adhesive		1. Single silver dot dispensing amount ≥1mm, allowed 2. One of the double silver dot dispensing amount is ≥1mm and the other has adhesive (no reference to 1mm) Allowed	Visual	MIN
defect			Silver dot dispensing residue on the panel ≤0.2mm, allowed	Film gauge	MIN
	FPC wiring	-	FPC, TCP damage / gold finger peroxidation, adhesive residue, not allowed	Visual	MIJ
FPC defect	FPC golden finger		The height of burr edge of TCP punching surface ≥ 0.4mm, not allowed	Caliper	MIN
	FPC damage/cr ease		Damage and breaking, not allowed Crease does not affect the electrical performance display, allowed	Check by eyes	MIN

Inspection item		Figure	Inspection standard	Inspection method	MAJ/ MIN
Protective	Protective	Scratch and crease on the surface but no affe	ct to protection function, allowed	Check by eyes	MIN
film defect	film	Adhesive at edge L≤5mm, W≤0.5mm, N=	2, no entering into viewing area	Check by eyes	MIN
Stain defect	Stain	If stain can be normally wiped clean by > 99	% alcohol, allowed	Visual	MIN
Pull tab defect	Pull tab	The position and direction meet the documer film can be pulled off.	nt requirements, and ensure that the protective	Check by eyes/ Manual pulling	MIN
Shading tape defect	Shading tape	Tilt≤10°, flat without warping, completely co	overing the IC.	Check by eyes/ Film gauge	MIN
Stiffener	Stiffener	Flat without warping, Exceeding the left and Left and right can be less than 0.5mm from I		Check by eyes	MIN
Label	Label/ Spraying code	The content meets the requirements of the w requirements of the technical documents.	ork sheet. The attaching position meets the	Check by eyes	MIN
Front li	ighting	Evenly under	Check by eyes	MIN	
Structure, specification			re meets the corresponding design requirements mponents installing position meet the requirement		

15. Packaging TBD