

SPECIFICATION FOR LCD MODULE

MODULE NO: AES400300B00-4.2ENRS REVISION NO: 1.0

Customer's Approval:		
	SIGNATURE	DATE
PREPARED BY (RD ENGINEER)		
CHECKED BY		
APPROVED BY	·	

REVISION HISTORY

Rev	Date	Item	Page	Remark
1.0	JUL.16.2024	New Creation	ALL	

LIST

1. Over View	(4)
2. Features	(4)
3. Mechanical Specifications	(4)
4. Mechanical Drawing of EPD module	(5)
5. Input /Output Pin Assignment	(6-7)
6. Electrical Characteristics	(7)
6.1 Absolute Maximum Rating	(7)
6.2 Panel DC Characteristics	(8)
6.3 Panel AC Characteristics	(9)
6.3.1 MCU Interface Selection	(9)
6.3.2 MCU Serial Interface(4-wire SPI)	(9)
6.3.3 MCU Serial Peripheral Interface (3-wire SPI)	(10)
6.3.4 Interface Timing	(11)
7. Command Table	(12-25)
8. Optical Specifications	(26)
9. Handling, Safety and Environment Requirements	(26)
10. Reliability test	(27)
11. Typical Application Circuit with SPI Interface	(28)
12. Typical Operating Sequence	(29)
12.1 Normal Operation Flow	(29)
12.2 Normal Operation Reference Program Code	(30)
13. Part Number Definition	(31)
14. Inspection method and condition	(32)
14.1 Inspection condition	(32)
14.2 Display area	(32)
14.3 General inspection standards for product	(33-35)
15 Packaging	(36)

1. Over View

AES400300B00-4.2ENRS is an Active Matrix Electrophoretic Display (AM EPD), with interface and a reference system design. The display is capable to display images at 1-bit white, black full display capabilities. The 4.2 inch active area contains 300×400 pixels. The module is a TFT-array driving electrophoresis display, with integrated circuits including gate driver, source driver, MCU interface, timing controller, oscillator, DC-DC, SRAM, LUT, VCOM. Module can be used in portable electronic devices, such as Electronic Shelf Label (ESL) System.

2.Features

- 300×400 pixels display
- High contrast High reflectance
- Ultra wide viewing angle Ultra low power consumption
- Pure reflective mode
- Bi-stable display
- Commercial temperature range
- Landscape portrait modes
- Hard-coat antiglare display surface
- Ultra Low current deep sleep mode
- On chip display RAM
- Waveform can stored in On-chip OTP or written by MCU
- Serial peripheral interface available
- On-chip oscillator
- On-chip booster and regulator control for generating VCOM, Gate and Source driving voltage
- I²C signal master interface to read external temperature sensor
- Support partial update mode
- Built-in temperature sensor

3. Mechanical Specifications

Parameter	Specifications	Unit	Remark
Screen Size	4.2	Inch	
Display Resolution	400(H)×300(V)	Pixel	Dpi:120
Active Area	84.8×63.6	mm	
Pixel Pitch	0.212×0.212	mm	
Pixel Configuration	Rectangle		
Outline Dimension	91 (H)×77 (V) ×1.2(D)	mm	
Weight	16.1±0.5	g	

4. Mechanical Drawing of EPD module

5. Input /Output Pin Assignment

No.	Name	I/O	Description	Remark
1	NC		Do not connect with other NC pins	Keep Open
2	GDR	О	N-Channel MOSFET Gate Drive Control	
3	RESE	I	Current Sense Input for the Control Loop	
4	NC		Do not connect with other NC pins	Keep Open
5	VSH2	С	Positive Source driving voltage(Red)	
6	TSCL	O	This pin is I ² C Interface to digital temperature sensor Clock pin. External pull up resistor is required when connecting to I ² C slave. When not in use: VSS	
7	TSDA	I/O	This pin is I ² C Interface to digital temperature sensor Data pin. External pull up resistor is required when connecting to I ² C slave. When not in use: VSS	
8	BS1	I	Bus Interface selection pin	Note 5-5
9	BUSY	О	Busy state output pin	Note 54
10	RES#	I	Reset signal input. Active Low.	Note 5-3
11	D/C#	I	Data /Command control pin	Note 5-2
12	CS#	I	Chip select input pin	Note 5-1
13	SCL	I	Serial Clock pin (SPI)	
14	SDA	I/O	Serial Data pin (SPI)	
15	VDDIO	P	Power Supply for interface logic pins It should be connected with VCI	
16	VCI	P	Power Supply for the chip	
17	VSS	P	Ground	
18	VDD	C	Core logic power pin VDD can be regulated internally from VCI. A capacitor should be connected between VDD and VSS	
19	VPP	P	FOR TEST	
20	VSH1	C	Positive Source driving voltage	
21	VGH	С	Power Supply pin for Positive Gate driving voltage and VSH1	
22	VSL	С	Negative Source driving voltage	

23	VGL		Power Supply pin for Negative Gate driving voltage VCOM and VSL	
24	VCOM	C	VCOM driving voltage	

- I = Input Pin, O =Output Pin, I/O = Bi-directional Pin (Input/output), P = Power Pin, C =Capacitor Pin
- Note 5-1: This pin (CS#) is the chip select input connecting to the MCU. The chip is enabled for MCU communication only when CS# is pulled LOW.
- Note 5-2: This pin is (D/C#) Data/Command control pin connecting to the MCU in 4-wire SPI mode. When the pin is pulled HIGH, the data at SDA will be interpreted as data. When the pin is pulled LOW, the data at SDA will be interpreted as command.
- Note 5-3: This pin (RES#) is reset signal input. The Reset is active low.
- Note 5-4: This pin is Busy state output pin. When Busy is High, the operation of chip should not be interrupted, command should not be sent. The chip would put Busy pin High when –Outputting display waveform -Communicating with digital temperature sensor

Note 5-5: Bus interface selection pin

BS1 State	MCU Interface
L	4-lines serial peripheral interface(SPI) - 8 bits SPI
Н	3- lines serial peripheral interface(SPI) - 9 bits SPI

6. Electrical Characteristics

6.1 Absolute Maximum Rating

Parameter	Symbol	Rating	Unit
Logic supply voltage	VCI	-0.5 to +6.0	V
Logic Input voltage	VIN	-0.5 to VCI +0.5	V
Logic Output voltage	VOUT	-0.5 to VCI +0.5	V
Operating Temp range	TOPR	0 to +50	° C
Storage Temp range	TSTG	-25 to+70	
Optimal Storage Temp	TSTGo	23±2	° C
Optimal Storage Humidity	HSTGo	55±10	%RH

Note: 1. Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Panel DC Characteristics tables.

6.2 DC Characteristics

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR =23°C

Parameter Parameter	Symbol	Conditions	Applica ble pin	Min.	Typ.	Max	Units
Single ground	V_{SS}	-		-	0	-	V
Logic supply voltage	V_{CI}	-	VCI	2.3	3.0	3.7	V
Core logic voltage	$ m V_{DD}$		VDD	1.7	1.8	1.9	V
High level input voltage	$ m V_{IH}$	-	-	$0.8~\mathrm{V_{CI}}$	-	-	V
Low level input voltage	$V_{\rm IL}$	-	-	-	-	0.2 V _{CI}	V
High level output voltage	$ m V_{OH}$	IOH = -100uA	-	0.9 VCI	-	-	V
Low level output voltage	$ m V_{OL}$	IOL = 100uA	-	-	-	$0.1~\mathrm{V_{CI}}$	V
Typical power	P_{TYP}	$V_{CI} = 3.0 V$	-	-	10.8	-	mW
Deep sleep mode	P_{STPY}	$V_{\rm CI} = 3.0 \rm V$	-	-	0.009	-	mW
Typical operating current	Iopr_V _{CI}	$V_{CI} = 3.0V$	-	-	3.6	-	mA
Image update time	-	25 °C	-	-	3	-	sec
Sleep mode current	Islp_V _{CI}	DC/DC off No clock No input load Ram data retain	-	-	25	-	uA
Deep sleep mode current	Idslp_V _{CI}	DC/DC off No clock No input load Ram data not retain	-	-	3	-	uA

Notes: 1. The typical power is measured with following transition from horizontal 2 scale pattern to vertical 2 scale pattern.

- 2. The deep sleep power is the consumed power when the panel controller is in deep sleep mode.
- 3. The listed electrical/optical characteristics are only guaranteed under the controller & waveform provided by ODNA.

6.3AC Characteristics

6.3.1 MCU Interface Selection

The IC can support 3-wire/4-wire serial peripheral. MCU interface is pin selectable by BS1 shown in Table 6-1.

Table 6-1: Interface pins assignment under different MCU interface

MCU Interface	Pin Name					
	BS1	RES#	CS#	D/C#	SCL	SDA
4-wire serial peripheral interface (SPI)	L	RES#	CS#	DC#	SCL	SDA
3-wire serial peripheral interface (SPI) – 9 bits SPI	н	RES#	CS#	L	SCL	SDA

Note: (1) L is connected to VSS and H is connected to VDDIO

6.3.2 MCU Serial Interface (4-wire SPI)

The 4-wire SPI consists of serial clock SCL, serial data SDA, D/C# and CS#. The control pins status in 4-wire SPI in writing command/data is shown in Table 6-2 and the write procedure 4-wire SPI is shown in Table 6-2

Table 6-2: Control pins status of 4-wire SPI

Function	SCL pin	SDA pin	D/C# pin	CS# pin
Write command	1	Command bit	L	
Write data	1	Data bit	Н	Large St.

Note:(1) L is connected to VSS and H is connected to VDDIO

- (2) † stands for rising edge of signal
- (3) SDA (Write Mode) is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0. The level of D/C# should be kept over the whole byte. The data byte in the shift register is written to the Graphic Display Data RAM (RAM)/Data Byte register or command Byte register according to D/C# pin.

Figure 6-1: Write procedure in 4-wire SPI mode

6.3.3 MCU Serial Peripheral Interface (3-wire SPI)

MCU Serial Peripheral Interface (3-wire SPI) The 3-wire SPI consists of serial clock SCL, serial data SDA and CS#. The operation is similar to 4-wire SPI while D/C# pin is not used and it must be tied to LOW. The control pins status in 3-wire SPI is shown in Table 6-3.

In the write operation, a 9-bit data will be shifted into the shift register on every clock rising edge. The bit shifting sequence is D/C# bit, D7 bit, D6 bit to D0 bit. The first bit is D/C# bit which determines the following byte is command or data. When D/C# bit is 0, the following byte is command. When D/C# bit is 1, the following byte is data. Table 6-3 shows the write procedure in 3-wire SPI

Table 6-3: Control pins status of 3-wire SPI

Function	SCL pin	SDA pin	D/C# pin	CS# pin
Write command	1	Command bit	Tie LOW	L
Write data	1	Data bit	Tie LOW	

Note: (1) L is connected to VSS and H is connected to VDDIO

(2) † stands for rising edge of signal

Figure 6-3: Write procedure in 3-wire SPI

6.4.4 Interface Timing

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR =25°C.

Write mode

Symbol	Parameter	Min	Тур	Max	Unit
fscL	SCL frequency (Write Mode)	740	320	20	MHz
tcssu	Time CS# has to be low before the first rising edge of SCLK	60	3-3		ns
tcsHLD	Time CS# has to remain low after the last falling edge of SCLK	60			ns
tсsнівн	Time CS# has to remain high between two transfers	100			ns
tsclnigh	Part of the clock period where SCL has to remain high	25	:-:		ns
tscllow	Part of the clock period where SCL has to remain low	25	(· •)	-	ns
t sisu	Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL	10			ns
tsihld	Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL	40	. ::•::		ns

Read mode

Parameter	Min	Тур	Max	Unit
SCL frequency (Read Mode)		#	2.5	MHz
Time CS# has to be low before the first rising edge of SCLK	100	- 51		ns
Time CS# has to remain low after the last falling edge of SCLK	50	. 5	-5	ns
Time CS# has to remain high between two transfers	250	3	200	ns
Part of the clock period where SCL has to remain high	180	8		ns
Part of the clock period where SCL has to remain low	180		25	ns
Time SO(SDA Read Mode) will be stable before the next rising edge of SCL	=	50		ns
Time SO (SDA Read Mode) will remain stable after the falling edge of SCL	-	0	-	ns
	SCL frequency (Read Mode) Time CS# has to be low before the first rising edge of SCLK Time CS# has to remain low after the last falling edge of SCLK Time CS# has to remain high between two transfers Part of the clock period where SCL has to remain high Part of the clock period where SCL has to remain low Time SO(SDA Read Mode) will be stable before the next rising edge of SCL	SCL frequency (Read Mode) Time CS# has to be low before the first rising edge of SCLK 100 Time CS# has to remain low after the last falling edge of SCLK 50 Time CS# has to remain high between two transfers 250 Part of the clock period where SCL has to remain high Part of the clock period where SCL has to remain low 180 Time SO(SDA Read Mode) will be stable before the next rising edge of SCL -	SCL frequency (Read Mode) Time CS# has to be low before the first rising edge of SCLK 100 - Time CS# has to remain low after the last falling edge of SCLK 50 - Time CS# has to remain high between two transfers 250 - Part of the clock period where SCL has to remain high 180 - Part of the clock period where SCL has to remain low 180 - Time SO(SDA Read Mode) will be stable before the next rising edge of SCL 50	SCL frequency (Read Mode) - 2.5 Time CS# has to be low before the first rising edge of SCLK 100 Time CS# has to remain low after the last falling edge of SCLK 50 Time CS# has to remain high between two transfers 250 Part of the clock period where SCL has to remain high 180 Part of the clock period where SCL has to remain low 180 Time SO(SDA Read Mode) will be stable before the next rising edge of SCL 50 -

Note: All timings are based on 20% to 80% of VDDIO-VSS

7. Command Table

	UNITED SEASONS	200	ble	1	100000	Total Control									
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Descripti	on		
0	0	01	0	0	0	0	0	0	0	1	Driver Output control	Gate setti	ing		
0	1		A ₇	A ₆	A5	A ₄	A ₃	A ₂	A ₁	Ao], 300 MU	
0	1		0	0	0	0	0	0	0	A ₈	1	MUX Gat	e lines se	tting as (A	[8:0] + 1)
0	1		0	0	0	0	0	B ₂	Bı	Bo		B [2:0] = 0	non IPOR	1	
£11 :	35		10770		350	2	(43)		3.73%			Gate scar		uence and	d direction
												B[2]: GD Selects th	ne 1st outp	out Gate	
												GD=0 [PC			
														output cha	
													quence is	G0,G1, G	i2, G3,
												GD=1,	1st gate o	output cha	nnel gate
														G1, G0, 0	
												B[1]: SM			
													canning o	order of ga	te driver.
												SM=0 [PC		00 // *:	
														99 (left ar	nd right ga
												interlaced SM=1,	1)		
											34G29	4, G1, G3	G299		
														HALL CONTRACTOR CONTRACTOR	
														from G0 G299 to G	to G299
0	0	02	0	0					1		Coto Delvino veltoro	TB = 0 [P TB = 1, so	can from (G299 to G	to G299
0	0	03	0	0	0	0	0	0	1	1	Gate Driving voltage	TB = 0 [P TB = 1, so	driving vo	G299 to G	to G299
0	0	03	0	0	0 0	0 A4	0 A ₃	0 A ₂	1 A ₁	1 A ₀	Gate Driving voltage Control	TB = 0 [P TB = 1, so Set Gate A[4:0] = 0	driving vo	G299 to G	to G299 0.
000	7000	03	707490	2017033		-	10.80	. 10000				TB = 0 [P TB = 1, so Set Gate A[4:0] = 0 VGH setti	driving vo	G299 to G Itage OV to 20V	to G299 0.
CENT	7000	03	707490	2017033		-	10.80	. 10000				TB = 0 [P TB = 1, so Set Gate A[4:0] = 0	driving vo	G299 to G	to G299 0.
000	7000	03	707490	2017033		-	10.80	. 10000				TB = 0 [P TB = 1, so Set Gate A[4:0] = 0 VGH setti A[4:0]	driving vo	G299 to G Itage 0V to 20V A[4:0]	to G299 0.
0000	7000	03	707490	2017033		-	10.80	. 10000				TB = 0 [P TB = 1, so Set Gate A[4:0] = 0 VGH setti A[4:0] 00h 03h 04h	driving vo 0h [POR] ing from 1 VGH 20 10	Itage OV to 20V A[4:0] ODh OEh OFh	to G299 0. VGH 15 15.5
000	7000	03	707490	2017033		-	10.80	. 10000				TB = 0 [P TB = 1, so Set Gate A[4:0] = 0 VGH setti A[4:0] 00h 03h 04h 05h	driving vo 0h [POR] ing from 1 VGH 20 10 10.5	Itage OV to 20V A[4:0] ODh OEh OFh 10h	to G299 0. VGH 15 15.5 16
000	7000	03	707490	2017033		-	10.80	. 10000				TB = 0 [P TB = 1, so Set Gate A[4:0] = 0 VGH setti A[4:0] 00h 03h 04h 05h 06h	driving vo 0h [POR] ing from 1 VGH 20 10 10.5 11 11.5	Itage OV to 20V A[4:0] ODh OEh OFh 10h 11h	to G299 0. VGH 15 15.5 16 16.5
-50	7000	03	707490	2017033		-	10.80	. 10000				TB = 0 [P TB = 1, so Set Gate A[4:0] = 0 VGH setti A[4:0] 00h 03h 04h 05h 06h 07h	driving vo 0h [POR] ing from 1 VGH 20 10 10.5 11 11.5	0V to 20V A[4:0] 0Dh 0Eh 0Fh 10h 11h	vGH 15 15.5 16 16.5 17
500	7000	03	707490	2017033		-	10.80	. 10000				TB = 0 [P TB = 1, so Set Gate A[4:0] = 0 VGH setti A[4:0] 00h 03h 04h 05h 06h 07h 08h	driving vo 0h [POR] ing from 1 VGH 20 10 10.5 11 11.5 12 12.5	0V to 20V A[4:0] 0Dh 0Eh 0Fh 10h 11h 12h 13h	to G299 0. VGH 15 15.5 16 16.5 17 17.5
500	7000	03	707490	2017033		-	10.80	. 10000				TB = 0 [P TB = 1, so Set Gate A[4:0] = 0 VGH setti A[4:0] 00h 03h 04h 05h 06h 07h 08h 07h	driving vo 0h [POR] ng from 1 VGH 20 10 10.5 11 11.5 12 12.5 12	Itage OV to 20V A[4:0] ODh OEh 10h 11h 12h 13h 14h	to G299 0. VGH 15 15.5 16 16.5 17 17.5 18
-50	7000	03	707490	2017033		-	10.80	. 10000				TB = 0 [P TB = 1, so Set Gate A[4:0] = 0 VGH setti A[4:0] 00h 03h 04h 05h 06h 07h 08h 07h	driving vo 0h [POR] ng from 1 VGH 20 10 10.5 11 11.5 12 12.5 12 12.5	Itage OV to 20V A[4:0] ODh OEh 10h 11h 12h 13h 14h 15h	to G299 0. VGH 15 15.5 16 16.5 17 17.5 18 18.5
-50	7000	03	707490	2017033		-	10.80	. 10000				TB = 0 [P TB = 1, so Set Gate A[4:0] = 0 VGH setti A[4:0] 00h 03h 04h 05h 06h 07h 08h 07h 08h 09h	driving vo 00h [POR] ng from 1 VGH 20 10 10.5 11 11.5 12 12.5 12 12.5 13	Itage OV to 20V A[4:0] ODh OEh 10h 11h 12h 13h 14h 15h 16h	to G299 0. VGH 15 15.5 16 16.5 17 17.5 18 18.5 19
000	7000	03	707490	2017033		-	10.80	. 10000				TB = 0 [P TB = 1, so Set Gate A[4:0] = 0 VGH setti A[4:0] 00h 03h 04h 05h 06h 07h 08h 07h 08h 09h	driving vo oh [POR] ng from 1 VGH 20 10 10.5 11 11.5 12 12.5 12 12.5 13 13.5	Itage OV to 20V A[4:0] ODh OEh 10h 11h 12h 13h 14h 15h 16h 17h	to G299 0. VGH 15 15.5 16 16.5 17 17.5 18 18.5 19
000	7000	03	707490	2017033		-	10.80	. 10000				TB = 0 [P TB = 1, so Set Gate A[4:0] = 0 VGH setti A[4:0] 00h 03h 04h 05h 06h 07h 08h 07h 08h 09h	driving vo 00h [POR] ng from 1 VGH 20 10 10.5 11 11.5 12 12.5 12 12.5 13	Itage OV to 20V A[4:0] ODh OEh 10h 11h 12h 13h 14h 15h 16h	to G299 0. VGH 15 15.5 16 16.5 17 17.5 18 18.5 19

Com	man	d Ta	ble	Y	53	111 - 2					20			
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	DO	Comm	nand		Description
0	0	04	0	0	0	0	0	1	0	0		Driving	voltage	Set Source driving voltage
0	1		A ₇	A ₆	A5	A ₄	Аз	A ₂	A ₁	Ao	Contro	ol		A[7:0] = 41h [POR], VSH1 at 15V
0	1		B ₇	B ₆	B 5	B ₄	Вз	B ₂	Bı	B₀]			B [7:0] = A8h [POR], VSH2 at 5V. C[7:0] = 32h [POR], VSL at -15V
0	1		C ₇	C ₆	C ₅	C ₄	Сз	C ₂	C ₁	Co				Remark: VSH1>=VSH2
B[7] = 1,		10000	-C-0-5-11	100			A	7]/B[7	7] = 0),			C[7] = 0,
VSI	H2 vo		setti	ng fr	om 2	.4V to	0	VS	SH1/			e setting	from 8.8	V VSL setting from -5V to -17V
8.6		Lucu	1/VSH2	A //	N7.01	LVOLIA	11/01/10		17V	1 100	NIK MOUD I	A (DEZ-01	Tuoi Hayou	017.01
	B[7:0] 8Eh	D1000-10	2.4	2000	[7:0] Eh	and the second	/VSH2		A/B[7:0] 21h	VS	8.8 8.8	A/B[7:0] 37h	VSH1/VSH	[2] C[7:0] VSL OAh -5
	8Fh	8	2.5	_	Fh	5	.7		23h		9	38h	13.2	0Ch -5.5
_	90h	-	2.6	-	80h	100	8.		24h		9.2	39h	13.4	0Eh -6
_	91h 92h	_	2.7 2.8	-	31h 32h	-	6	-	25h 26h	-	9.4	3Ah 3Bh	13.6	10h -6.5
_	93h		2.9	-	33h	_	.1		27h	+	9.8	3Ch	14	12h -7 14h -7.5
-	94h		3	223	34h	- 22	.2		28h		10	3Dh	14.2	14h -7.5 16h -8
_	95h	_	3.1	-	85h	-	.3		29h		10.2	3Eh	14.4	18h -8.5
₁—	96h 97h		3.2	_	86h 87h		.5	-	2Ah 2Bh	+	10.4	3Fh 40h	14.6 14.8	1Ah -9
-	98h	_	3.4	_	88h	_	.6		2Ch	50	10.8	41h	15	1Ch -9.5
-	99h	-	3.5	-	19h		.7		2Dh		11	42h	15.2	1Eh -10 20h -10.5
_	9Ah 9Bh		3.6 3.7		Ah Bh		.8		2Eh		11.2	43h 44h	15.4 15.6	22h -11
_	9Ch	_	3.8	-	Ch	-	7	1	30h	+	11.4	44n 45h	15.8	24h -11,5
	9Dh		3.9	В	Dh	7	1		31h		11.8	46h	16	26h -12
_	9Eh		4	0.0	Eh	2.7	.2		32h	\bot	12	47h	16.2	28h -12.5 2Ah -13
_	9Fh A0h	-	4.1 4.2	-	8Fh 20h	_	.3	-	33h 34h	-	12.2	48h 49h	16.4 16.6	2Ch -13.5
-	A1h	_	4.3	-	21h	_	.5		35h		12.6	4Ah	16.8	2Eh -14
-	A2h	_	4.4	-	2h	_	.6		36h		12.8	4Bh	17	30h -14.5
_	A3h	_	4.5	_	3h	_	.7				Į.	Other	NA	32h -15
_	A4h A5h	_	4.6 4.7		24h 25h		.8							34h -15.5 36h -16
_	A6h		4.8	-	26h		8							38h -16.5
_	A7h		4.9	12	7h	_	.1							3Ah -17
-	A8h A9h		5 5.1	10 123	28h 29h	11	.2							Other NA
·	AAh	_	5.2	5.0	Ah	- 12	.4							
-	ABh		5.3	C	Bh	8	.5							
-	ACh	_	5.4	133	Ch	_	.6							
	ADh		5.5	0	ther	N	IA .							
0	0	08	0	0	0	0	1	0	0	0	Initial	Code Set	ting	Program Initial Code Setting
U	"	00		0	U		'	0	0	0		rogram	urig	1 Togram minar oode Setting
											0.11	rogram		The command required CLKEN=1.
														Refer to Register 0x22 for detail.
														BUSY pad will output high during
		L				<u>. </u>	<u> </u>		<u> </u>	0.2	ļ.			operation.
0	0	09	0	0	0	0	1	0	0	1	Write I	Register f	or Initial	Write Register for Initial Code Setting
0	1	1000	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	Aı	Ao		Setting	nue l'affection	Selection
0	1	1	B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	Bı	Bo				A[7:0] ~ D[7:0]: Reserved
141111			100000				-				-			Details refer to Application Notes of Initia
0	1	4 - 4	C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀	-			Code Setting
0	1	- 4	D ₇	D ₆	D ₅	D ₄	Dз	D ₂	D ₁	D ₀	6			
		2.20					12							
0	0	0A	0	0	0	0	1	0	1	0		Register i Setting	tor Initial	Read Register for Initial Code Setting

DUCKEN N	man D/C#	CONTRACTOR OF STREET	-	De	DE	D4	Da	DO	D4	DA	Commond	Description
/ VV #	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
n	0	00	0	0	0	0	4		0	0	Donatas Caff atast	Booster Enable with Phase 1, Phase 2 and Pha
0	0	0C	0	0	0	0	1	1	0	0	Booster Soft start Control	for soft start current and duration setting.
0	1		1	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Control	A[7:0] -> Soft start setting for Phase1
0	1		1	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	B ₀		= 8Bh [POR]
0	1		1	C ₆	C ₅	C ₄	Сз	C ₂	C ₁	C ₀		B[7:0] -> Soft start setting for Phase2 = 9Ch [POR]
0	1		0	0	D 5	D ₄	D ₃	D ₂	D ₁	D ₀		C[7:0] -> Soft start setting for Phase3 = 96h [POR] D[7:0] -> Duration setting = 0Fh [POR] Bit Description of each byte: A[6:0] / B[6:0] / C[6:0]:
												Bit[6:4] Selection
												000 1 (Weakest)
												001 2
												010 3
												011 4
												100 5
												101 6
												110 7
												111 8(Strongest)
												Bit[3:0] Min Off Time Setting of GDR
												0000
												0011 NA
												0100 2.6
												0101 3.2
												0110 3.9
												0111 4.6
												1000 5.4
												1001 6.3
												1010 7.3
												1011 8.4
												1100 9.8
												1101 11.5
												1110 13.8
												1111 16.5
												D[5:0]: duration setting of phase D[5:4]: duration setting of phase 3 D[3:2]: duration setting of phase 2 D[1:0]: duration setting of phase 1
												Bit[1:0] Duration of Phase [Approximation]
												00 10ms
												01 20ms
												10 30ms
												11 40ms

	man	70 707									1-	12
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	10	0	0	0 0	1 0	0	0 0	0 A1	O Ao	Deep Sleep mode	Deep Sleep mode Control: A[1:0]: Description 00 Normal Mode [POR] 01 Enter Deep Sleep Mode 1 11 Enter Deep Sleep Mode 2 After this command initiated, the chip will enter Deep Sleep Mode, BUSY pad will keep output high. Remark:
•											D. F	To Exit Deep Sleep mode, User required t send HWRESET to the driver
0	0	11	0	0	0	0	0	0 A ₂	0 A ₁	1 A ₀	Data Entry mode setting	Define data entry sequence A[2:0] = 011 [POR] A [1:0] = ID[1:0] Address automatic increment / decrement setting The setting of incrementing or decrementing of the address counter can be made independently in each upper and lower bit of the address. 00 - Y decrement, X decrement, 01 - Y decrement, X increment, 11 - Y increment, X increment [POR] A[2] = AM Set the direction in which the address counter is updated automatically after data are written to the RAM. AM= 0, the address counter is updated in the X direction. [POR] AM = 1, the address counter is updated in the Y direction.
0	0	12	0	0	0	1	0	0	1	0	SW RESET	It resets the commands and parameters to their S/W Reset default values except R10h-Deep Sleep Mode During operation, BUSY pad will output high. Note: RAM are unaffected by this command.

		d Ta		-			D.S.	-		-	0	Description
	D/C#		D7	D6	D5	D4	D3	D2	D1	DO	Command	Description
0	0	14	0	0	0	1	0	1	0	0	HV Ready Detection	HV ready detection A[7:0] = 00h [POR] The command required CLKEN=1 and ANALOGEN=1. Refer to Register 0x22 for detail. After this command initiated, HV Ready detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).
0	1		0	A ₆	A 5	A4	0	A ₂	Aı	Ao		A[6:4]=n for cool down duration: 10ms x (n+1) A[2:0]=m for number of Cool Down Loop to detect. The max HV ready duration is 10ms x (n+1) x (m) HV ready detection will be trigger after each cool down time. The detection will be completed when HV is ready. For 1 shot HV ready detection, A[7:0] can be set as 00h.
0	0	15	0	0	0	1	0	1	0	1	VCI Detection	VCI Detection
0	1		0	0	0	0	0	A2	Aı	Ao		A[2:0] = 100 [POR] , Detect level at 2.3V A[2:0] : VCI level Detect A[2:0] VCI level 011 2.2V 100 2.3V 101 2.4V
												110 2.5V
												111 2.6V Other NA
			С ,									The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail. After this command initiated, VCI detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).
0	0	18	0	0	0	1	1	0	0	0	Temperature Sensor	Temperature Sensor Selection
0	1	.0	A ₇	A ₆	A ₅	A ₄	Аз	A ₂	Aı	Ao	Control	A[7:0] = 48h [POR], external temperatrure
	od.			, 10	X. 100	5,20)		5 ME		110		sensor A[7:0] = 80h Internal temperature sensor
0	0	1A	0	0	0	1	1	0	1	0	Temperature Sensor	Write to temperature register.
0	1		A 7	A ₆	A 5	A4	Аз	A ₂	A ₁	Ao	Control (Write to temperature register)	A[7:0] = 7Fh [POR]
0	0	1B	0	0	0	-	4	0	1	1	Tomporature Conser	Read from temperature register
1	1	ID	1 S 1	- V.S.	100	1 A ₄	1	Yalio	100	A ₀	Temperature Sensor Control (Read from	Read from temperature register.
	1		A ₇	A ₆	A ₅	H4	A ₃	A ₂	A ₁	H0	temperature register)	

Contract of	de la financia de	d Ta				_			_		1	
/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	1C	0	0	0	1	1	1	0	0	Tompovoturo Consor	Write Command to External temperature
-		10		100	100	- 600	- 62		100	-	Temperature Sensor Control (Write Command	sensor.
0	1		A ₇	A 6	A 5	A ₄	Аз	A ₂	A ₁	Ao	to External temperature	A[7:0] = 00h [POR],
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo	sensor)	B[7:0] = 00h [POR],
0	1		C ₇	C ₆	C ₅	C ₄	Сз	C ₂	C ₁	Co	Local-decoporament (C[7:0] = 00h [POR],
												A[7:6]
												A[7:6] Select no of byte to be sent
												00 Address + pointer
												01 Address + pointer + 1st parameter Address + pointer + 1st parameter +
												2nd pointer
												11 Address
												A[5:0] – Pointer Setting
												B[7:0] - 1st parameter
												C[7:0] – 2 nd parameter
												The command required CLKEN=1.
												Refer to Register 0x22 for detail.
												After this command initiated, Write Command to external temperature senso
												starts. BUSY pad will output high during
												operation.
-			¥						_	L		
0	0	20	0	0	1	0	0	0	0	0	Master Activation	Activate Display Update Sequence
												The Display Update Sequence Option is located at R22h.
												located at 112211.
												BUSY pad will output high during
												operation. User should not interrupt this
												operation to avoid corruption of panel
												images.
0	0	21	0	0	1	0	0	0	0	1	Display Update Control	RAM content option for Display Update
0	1		A ₇	A 6	A ₅	A ₄	Аз	A ₂	A ₁	Ao	1	A[7:0] = 00h [POR] B[7:0] = 00h [POR]
0	1		B ₇	0	0	0	0	0	0	0		A(7-4) D-4 DAM
												A[7:4] Red RAM option
												0000 Normal
												0100 Bypass RAM content as 0
												1000 Inverse RAM content
												A[3:0] BW RAM option
- 1		1										
											I .	0000 Normal
												0000 Normal 0100 Bypass RAM content as 0

	man			1925/20) 	Tessen)	10000	ingredi	880	1_	Î-v-	
/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	DO	Command	Description	
0	0	22	0 A ₇	0 A 6	1 A ₅	0 A ₄	0 А з	0 A ₂	1 A ₁	0 A ₀	Display Update Control 2	Display Update Sequence Opti Enable the stage for Master Ad A[7:0]= FFh (POR)	
												Operating sequence	Paramete (in Hex)
												Enable clock signal	80
												Disable clock signal	01
												Enable clock signal → Enable Analog	C0
												Disable Analog → Disable clock signal	03
												Enable clock signal → Load LUT with DISPLAY Mode 1 → Disable clock signal	91
												Enable clock signal → Load LUT with DISPLAY Mode 2 → Disable clock signal	99
												Enable clock signal → Load temperature value → Load LUT with DISPLAY Mode 1 → Disable clock signal	В1
												Enable clock signal → Load temperature value → Load LUT with DISPLAY Mode 2 → Disable clock signal	B9
												Enable clock signal → Enable Analog → Display with DISPLAY Mode 1 → Disable Analog → Disable OSC	C7
												Enable clock signal → Enable Analog → Display with DISPLAY Mode 2 → Disable Analog → Disable OSC	CF
												Enable clock signal → Enable Analog → Load temperature value → DISPLAY with DISPLAY Mode 1 → Disable Analog → Disable OSC	F7
												Enable clock signal → Enable Analog → Load temperature value → DISPLAY with DISPLAY Mode 2 → Disable Analog → Disable OSC	FF
0	0	24	0	0	1	0	0	1	0	0	Write RAM (Black White) / RAM 0x24	After this command, data entrie written into the BW RAM until a command is written. Address p advance accordingly	another
							0.					For Write pixel: Content of Write RAM(BW) = For Black pixel: Content of Write RAM(BW) =	

	man	2000		1 335	355439	1000	I secessi	5,555	I BORNO	1	12	120
/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	26	0	0	1	0	0	1	1	0	Write RAM (RED) / RAM 0x26	After this command, data entries will be written into the RED RAM until another command is written. Address pointers will advance accordingly. For Red pixel: Content of Write RAM(RED) = 1 For non-Red pixel [Black or White]:
												Content of Write RAM(RED) = 0
0	0	27	0	0	1	0	0	1	1	1	Read RAM	After this command, data read on the MCU bus will fetch data from RAM. According to parameter of Register 41h to select reading RAM0x24/ RAM0x26, until anothe command is written. Address pointers will advance accordingly.
												The 1st byte of data read is dummy data.
0	0	28	0	0	1	0	1	0	0	0	VCOM Sense	Enter VCOM sensing conditions and hold for duration defined in 29h before reading VCOM value. The sensed VCOM voltage is stored in register The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail. BUSY pad will output high during
												operation.
											#b	49.
0	0	29	0	0	1	0	1	0	0	1	VCOM Sense Duration	Stabling time between entering VCOM
0	1		0	1	0	0	A ₃	A2	Aı	Ao		sensing mode and reading acquired. A[3:0] = 9h, duration = 10s. VCOM sense duration = (A[3:0]+1) sec
0	0	2A	0	0	1	0	1	0	1	0	Program VCOM OTP	Program VCOM register into OTP
												The command required CLKEN=1. Refer to Register 0x22 for detail.
												BUSY pad will output high during operation.

Marine Co.		d Ta			I				F			1_	V-		
/W#	D/C#	ALTESSA.	D7	D6	D5	D4	D3	D2	D1	D0	Command	Descript	Marie Control		
0	1	2C	0 A 7	0 A ₆	1 A ₅	0 A ₄	1 A ₃	1 A ₂	0 A ₁	0 A ₀	Write VCOM register		OM regist 00h [POR]		CU interface
												A[7:0]	VCOM	A[7:0]	VCOM
												08h	-0.2	44h	-1.7
												0Ch	-0.3	48h	-1.8
												10h	-0.4	4Ch	-1.9
												14h	-0.5	50h	-2
												18h	-0.6	54h	-2.1
												1Ch	-0.7	58h	-2.2
												20h	-0.8	5Ch	-2.3
												24h	-0.9	60h	-2.4
												28h	-1	64h	-2.5
												2Ch	-1.1	68h	-2.6
												30h	-1.2	6Ch	-2.7
												34h	-1.3	70h	-2.8
												38h	-1.4	74h	-2.9
												3Ch	-1.5	78h	-3
												40h	-1.6	Other	NA
	0	2D	0			0	1	41			OTD Desistes Desistes	D D		Diaminus	N-6
)		20	100	0	1	150		1	0	1	OTP Register Read for Display Option	Read R	egister for	Display C	option:
	1		A 7	A ₆	A 5	A ₄	A ₃	A ₂	A ₁	Ao	Display Option	A[7:0]-	VCOM OT	P Selection	nn
	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo			and 0x37,		111
1	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co		A SPANNERS OF	AVI - SPORTER		
1	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	Do			VCOM Re		
1	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	Eo		(Comm	and 0x2C)		
1	1		F ₇	F ₆	F ₅	F ₄	Fa	F ₂	F ₁	Fo		C[7:0]~	G[7:0]: Dis	nlay Mod	Α.
1	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	Go			and 0x37,		
1	1		H ₇	H ₆	H ₅	H ₄	H ₃	H ₂	Hı	Ho		[5 bytes			-,,
1	1		17	16	l ₅	14	I ₃	I ₂	l ₁	lo		1.117.01	W. 7. 01. 14/-		
1	1		J ₇	Je	J ₅	J ₄	Jз	J ₂	J ₁	Jo			K[7:0]: Wa and 0x37,		
1	1		K ₇	K ₆	K ₅	K ₄	K ₃	K ₂	K ₁	Ko		[4 bytes		byte G to	Dyle 3)
	-		IX/	176	11.5	1\4	1/3	1/2	IX1	NO		[Dytos	1		
)	0	2E	0	0	1	0	1	1	1	0	User ID Read		Byte Use		
1	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao			J[7:0]; Use [10 bytes]	riD (H38,	Byte A and
1	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	152.47	B ₀		Dyie o)	[. o bytes]		
1	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co					
1	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	Do					
1	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	Eo					
1	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	Fı	Fo					
1	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	G ₀					
1	1		H ₇	H ₆	H ₅	H ₄	Нз	H ₂	H ₁	Ho					
1	1		17	16	l ₅	14	l 3	l ₂	l ₁	lo					
1	1		J ₇	J ₆	J ₅	J ₄	Jз	J ₂	J ₁	Jo		1			

om	man	d Ta	ble		15							
/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	2F	0	0	1	0	1	1	1	1	Status Bit Read	Read IC status Bit [POR 0x01]
1	1		0	0	A ₅	A4	0	0	A ₁	Ao		A[5]: HV Ready Detection flag [POR=0] 0: Ready 1: Not Ready A[4]: VCI Detection flag [POR=0] 0: Normal 1: VCI lower than the Detect level A[3]: [POR=0] A[2]: Busy flag [POR=0] 0: Normal 1: BUSY A[1:0]: Chip ID [POR=01] Remark: A[5] and A[4] status are not valid after RESET, they need to be initiated by command 0x14 and command 0x15 respectively.
										V=		
0	0	30	0	0	1	1	0	0	0	0	Program WS OTP	Program OTP of Waveform Setting The contents should be written into RAM before sending this command. The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
					1		100000		7520		L	
0	0	31	0	0	1	1	0	0	0	1	Load WS OTP	Load OTP of Waveform Setting The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	32	0	0	1	1	0	0	1	0	Write LUT register	Write LUT register from MCU interface
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀		[227 bytes], which contains the content of VS[nX-LUTm], TP[nX], RP[n], SR[nXY], FF
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	B ₀		and XON[nXY]
0	1			-	:	8		:	- 53	3		Refer to Session 6.7 WAVEFORM
0	1		•	•	3.5	·	3.5%	٠	*	2.5		SETTING
0	0	34	0	0	1	1	0	1	0	0	CRC calculation	CRC calculation command For details, please refer to SSD1683 application note. BUSY pad will output high during operation.
_			_					/	•		000	lana a
0	0	35	0	0	1	1	0	1	0	1	CRC Status Read	CRC Status Read A[15:0] is the CRC read out value
1	1		A ₁₅	937	100	A ₁₂	A11	A10	90000	A8		, i, v.o, io the offer read out value
1	1_		A ₇	A ₆	A ₅	A ₄	Аз	A ₂	A ₁	A ₀		

		d Ta			i de la constantina	i i i i i i i i i i i i i i i i i i i	Paramet	i menerala	# D/C# Hex D7 D6 D5 D4 D3 D2 D1 D0 Command Description												
/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command										
0	0	36	0	0	1	1	0	1	1	0	Program OTP selection	Program OTP Selection according to the OTP Selection Control [R37h and R38h] The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.									
0	0	37	0	0	1	1	0	1	1	1	Write Register for Display	Write Register for Display Option									
0	1		A ₇	0	0	0	0	0	0	0	Option	A[7] Spare VCOM OTP selection 0: Default [POR]									
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	B ₀		0: Default [POR] 1: Spare									
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	Cı	Co											
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	Do		B[7:0] Display Mode for WS[7:0]									
0	1	1	E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	Εo		C[7:0] Display Mode for WS[15:8]									
0	1		0	F ₆	0	0	F ₃	F ₂	Fı	F ₀		D[7:0] Display Mode for WS[23:16] 0: Display Mode 1									
0	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	Go		1: Display Mode 2									
0	1		H ₇	H ₆	H ₅	H ₄	Нз	H ₂	Hı	Ho		FIG. Dine Dane for Dinelar Made 2									
0	1		17	l 6	15	14	lз	l ₂	I ₁	lo		F[6]: Ping-Pong for Display Mode 2 0: RAM Ping-Pong disable [POR]									
0	1		J ₇	J ₆	J 5	J ₄	J ₃	J ₂	J_1	Jo		1: RAM Ping-Pong enable									
				8 75	[c*		10 g					G[7:0]~J[7:0] module ID /waveform version. Remarks: 1) A[7:0]~J[7:0] can be stored in OTP 2) RAM Ping-Pong function is not support for Display Mode 1									
0	0	38	0	0	1	1	1	0	0	0	Write Register for User ID	Write Register for User ID									
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao		A[7:0]]~J[7:0]: UserID [10 bytes]									
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀		Remarks: A[7:0]~J[7:0] can be stored in									
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀		OTP									
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	Dı	D ₀											
0	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	Εı	E ₀											
0	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	F ₀											
0	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	Gı	Go											
0	1		H ₇	H ₆	H ₅	H ₄	Нз	H ₂	Hı	Ho											
0	1		17	16	l ₅	14	l ₃	12	l ₁	lo											
0			J ₇	J ₆	J ₅	J ₄	J ₃	J ₂	J ₁	Jo	<u></u>										
0	0	39	0	0	1	1	1	0	0	1	OTP program mode	OTP program mode									
0	9		0	0	0	0	0	0	A ₁	Ao		A[1:0] = 00: Normal Mode [POR] A[1:0] = 11: Internal generated OTP programming voltage Remark: User is required to EXACTLY									

	man	-	DIE					_		_	r-	r	
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description	
0	0	3C	0	0	1	1	1	1	0	0	Border Waveform Control		
0	1		A ₇	A ₆	A 5	A4	0	0	A ₁	A ₀			[POR], set VBD as HIZ.
												A[7:6]	Select VBD as
												00	GS Transition,
													Defined in A[2] and A[1:0]
												01	Fix Level,
													Defined in A[5:4]
												10	VCOM
												11[POR]	HiZ
												A [5:4] Fix Le	evel Setting for VBD
												A[5:4]	VBD level
												00	VSS
												01	VSH1
												10	VSL
												11	VSH2
												A [1:0] GS T	ransition setting for VBD
												VBD Level S	
									00b: VCOM	; 01b: VSH1;			
												10b: VSL; 11	
										A[1:0]	VBD Transition		
												00	LUT0
												01	LUT1
												10	LUT2
												11	LUT3
	-										1)		
0	0	3F	0	0	1	1	1	1	1	1	End Option (EOPT)	Option for LU	JT end
0	1		A ₇	A ₆	A 5	A4	Аз	A ₂	Aı	Ao		Set this byte	
16/1/			A., 000.	X	-	7.50.00			3.331	10.7490			Words Product Profes
0	0	41	0	1	0	0	0	0	0	1	Read RAM Option	Read RAM C	Option
0	1		0	0	0	0	0	0	0	Ao		A[0]= 0 [POF	
			•	•				•		7.0			M corresponding to RAM0x24
												1 : Read RAI	M corresponding to RAM0x26
													NV 50-98
0	0	44	0	1	0	0	0	1	0	0	Set RAM X - address		tart/end positions of the
0	1		0	0	A ₅	A4	Аз	A ₂	Aı	Ao	Start / End position		ess in the X direction by an
0	1		0	0	B ₅	B ₄	B ₃	B ₂	B ₁	Bo		address unit	for RAM
U	*		U	U	D5	D 4	D3	D2	וט	D0			10
												A[5:0]: XSA[5:0], XStart, POR = 00h
							2 3					D[D:U]: XEA[5:0], XEnd, POR = 31h
0	0	45	0	1	0	0	0	1	0	1	Set Ram Y- address	Specify the o	tart/end positions of the
221	90	40	02001		-	1000	1	25	100	78	Start / End position		ess in the Y direction by an
0	1	- 5	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	- Chart End position	address unit	
0	1		0	0	0	0	0	0	0	A ₈	_	70. NIN Y 70. NI	
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	B ₀		A[8:0]: YSA[8	8:0], YStart, POR = 000h
0	1		0	0	0	0	0	0	0	B ₈		B[8:0]: YEA[8	8:0], YEnd, POR = 12Bh
0	0	46	0	1	0	0	0	1	1	0	Auto Write RED RAM for	Auto Write P	ED RAM for Regular Pattern
	U	40	U	- 1	U	U	U	18	-1	U			
0	1	- 81	A ₇	A ₆	A ₅	A ₄	0	A ₂	A ₁	Ao	Regular Pattern	A[7:0] = 00h	[POR]

	man D/C#			D6	D5	D4	D3	D2	D1	DO	Command	Descripti	on		
				- Andrew (/).	(allah)		, lander	104.01	1000	Service .	- Sammana		1st step va	alue. POF	R = 0
													ep Height,		
															on accordi
												to Gate			
												A[6:4]	Height	A[6:4]	Height
												000	8	100	128
												001	16	101	256
												010	32	110	300
												011	64	111	NA
) on accordi
												A[2:0]	Width	A[2:0]	Width
												000	8	100	128
												001	16	101	256
												010	32	110	400
												011	64	111	NA
													d will outpu		
3	0	47	0	1	0	0	0	1	1	1	Auto Write B/W RAM for	Auto Write	B/W RAN	M for Reg	ular Patter
ğ,	1		A7	A ₆	A 5	A ₄	0	A ₂	A ₁	Ao	Regular Pattern	A[7:0] = 0	Oh [POR]		
												Step of all to Gate		Y-direction	on accordi
												A[6:4]	Height	A[6:4]	Height
												000	8	100	128
												001	16	101	256
												010	32	110	300
												011	64	111	NA
												A[2:0]: Ste Step of al to Source A[2:0]	ter RAM ir	POR= 000 X-direction) on accordi Width
												000	8	100	128
												001	16	101	256
													32		
	1											010		110	400
												011	64	111	NA
										l		During on			
													eration H	ISV nad	will outpu
			727					70 0		n)		high.	eration, B	USY pad	will output
		AF	0								C-A DAM V - 11	high.			will output
	0	4E	0	1 0	0 As	0 A4	1 A ₃	1 A ₂	1 A ₁	0 A ₀	Set RAM X address	high.	al settings	for the R/	will output

COII	man	u ia	DIE			,			,						
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	DO	Command	Description			
												A[5:0]: 00h [POR].			
in the address souther (AC)											Make initial settings for the RAM Y address				
0	1		A 7	A ₆	A 5	A ₄	Аз	A ₂	A ₁	Ao	counter	in the address counter (AC) A[8:0]: 000h [POR].			
0	1		0	0	0	0	0	0	0	Aa					
0	0	7 F	0	1	1	1	1	1	1	1	NOP	This command is an empty command; it does not have any effect on the display module. However it can be used to terminate Frame Memory Write or Read Commands.			

8. Optical Specifications

Measurements are made with that the illumination is under an angle of 45 degree, the detection is perpendicular unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур.	Max	Units	Notes
R	White Reflectivity	White	30	35	ı	%	8-1
CR	Contrast Ratio	Indoor	8:1		-		8-2
GN	2Grey Level	-		DS+(WS-DS)*n(m-1)			8-3
T update	Image update time	at 25 °C		3	-	sec	
Life		Topr		1000000times or 5years			

- Notes: 8-1. Luminance meter: Eye-One Pro Spectrophotometer.
 - 8-2. CR=Surface Reflectance with all white pixel/Surface Reflectance with all black pixels.
 - 8-3. WS: White state, DS: Dark state

9. Handling, Safety and Environment Requirements

Warning

The display glass may break when it is dropped or bumped on a hard surface. Handle with care. Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

Caution

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components. Disassembling the display module.

Disassembling the display module can cause permanent damage and invalidates the warranty agreements.

Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to static electricity and other rough environmental conditions.

	Data sheet status								
Product specification	This data sheet contains final product specifications.								
Limiting values									
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC									
134). Stress above one or more of the limiting values may cause permanent damage to the device.									
These are stress ratings only and ope	eration of the device at these or at any other conditions above								
those given in the Characteristics see	ctions of the specification is not implied. Exposure to limiting								
values for extended periods may affe	ect device reliability.								
	Application information								
Where application information is given	ven, it is advisory and does not form part of the specification.								

10.Reliability test

NO	Test items	Test condition
1	Low-Temperature Storage	T = -25°C, 240 h Test in white pattern
2	High-Temperature Storage	T=60°C, RH=35%, 240h Test in white pattern
3	High-Temperature Operation	T=40°C, RH=35%, 240h
4	Low-Temperature Operation	0° C, 240h
5	High-Temperature, High-Humidity Operation	T=40°C, RH=80%, 240h
6	High Temperature, High Humidity Storage	T=50°C, RH=90%, 240h Test in white pattern
7	Temperature Cycle	1 cycle:[-25° C 30min]→[+60° C 30 min] : 50 cycles Test in white pattern
8	UV exposure Resistance	765W/m² for 168hrs,40 °C Test in white pattern
9	ESD Gun	Air+/-15KV;Contact+/-8KV (Test finished product shell, not display only) Air+/-8KV;Contact+/-6KV (Naked EPD display, no including IC and FPC area) Air+/-4KV;Contact+/-2KV (Naked EPD display, including IC and FPC area)

Note: Put in normal temperature for 1hour after test finished, display performance is ok.

11. Typical Application Circuit with SPI Interface

Part Name	Value	Requirements/Reference Part
C0-C1	1uF	X5R/X7R; Voltage Rating: 6V or 25V
C2-C7	1uF	0603/0805; X5R/X7R; Voltage Rating: 25V
C8	0.47uF, 1uF	0603/0805; X7R; Voltage Rating : 25V
R1	2.2 ohm	0603/0805; 1% variation, ≥ 0.05W
D1-D3	Diode	MBR0530 1) Reverse DC voltage ≥ 30V 2) Io ≥ 500mA 3) Forward voltage ≤ 430mV
Q1	NMOS	Si1304BDL/NX3008NBK 1) Drain-Source breakdown voltage ≥ 30V 2) Vgs(th) = 0.9V (Typ), 1.3V (Max) 3) Rds on ≤ 2.1Ω @ Vgs = 2.5V
L1	47uH	CDRH2D18 / LDNP-470NC lo= 500mA (Max)
U1	0.5mm ZIF socket	24pins, 0.5mm pitch

12. Typical Operating Sequence

12.1 Normal Operation Flow

12.2 Normal Operation Reference Program Code

ACTION	VALUE/DATA	COMMENT
	POWER ON	
delay	10ms	
PIN CONFIG		
RESE#	low	Hardware reset
delay	200us	
RESE#	high	
delay	200us	
Read busy pin		Wait for busy low
Command 0x12		Software reset
Read busy pin		Wait for busy low
Command 0x01	Data0x2b 0x01 0x00	Set display size and driver output control
Command 0x11	Data 0x01	Ram data entry mode
Command 0x44	Data 0x00 0x31	Set Ram X address
Command 0x45	Data 0x2b 0x01 0x00 0x00	Set Ram Y address
Command 0x3C	Data 0x01	Set border
	LOAD IMAGE AND	UPDATE
Command 0x4E	Data 0x00	Set Ram X address counter
Command 0x4F	Data 0x2b 0x00	Set Ram Y address counter
Command 0x24	Data 0xXX, 0xXX	Write B/W image data into to Register 0x24 RAM
Command 0x4E	Data 0x00	Set Ram X address counter
Command 0x4F	Data 0x2b 0x00	Set Ram Y address counter
Command 0x26	Data 0xXX, 0xXX	Write Red image data into Register 0x26 RAM
Command 0x20		
Read busy pin	·	
Command 0x10	Data 0X01	Enter deep sleep mode
	POWER OF	F

13. Part Number Definition

TBA

14. Inspection method and condition

14. 1 Inspection condition

Item	Condition
Illuminance	800~1500 lux
Temperature	22°C ±3°C
Humidity	55±10 %RH
Distance	≥30cm
Angle	Vertical fore and aft 45
Inspection method	By eyes

14. 2 Zone definition

A Zone: Active area B Zone: Border zone

C Zone: From B zone edge to panel edge

14. 3 General inspection standards for products

14.3.1 Appearance inspection standard

Inspecti	on item	Fi	gure	A zone inspection standard	B/C zone	Inspection method	MAJ/ MIN
	Spot defects such as dot, foreign matter, air bubble, and dent etc.	Diameter D=(L+W)/2 (L-length, W-width) Measuring method shown in the figure below L W D=(L+W)/2	The distance between the two spots should not be less than 10mm	7.5"-13.3"Module (Not include 7.5"): D>1mm N=0 0.5 <d≤0.8 (not="" 0.8<d≤1="" 4.2"):="" 4.2"-7.5"module="" d="" d≤0.5="" ignore="" include="" n≤2="" n≤4="">0.5 N=0 0.4<d≤0.5 0.25<d≤0.4="" 4.2":="" below="" d="" d≤0.25="" ignore="" module="" n≤2="" n≤4="">0.5 N=0 0.4<d≤0.5 0.1mm<d≤0.25="" 0.25<d≤0.4="" cm²<="" d≤0.25="" ignore="" n≤1="" n≤3="" n≤4="" th=""><th>Foreign matter D≤1mm Pass</th><th>Check by eyes Film gauge</th><th>MIN</th></d≤0.5></d≤0.5></d≤0.8>	Foreign matter D≤1mm Pass	Check by eyes Film gauge	MIN

Inspection item		F	igure	A zone inspection standard	B/C zone	Inspection method	MA J/ MI N
Line defects	Line defects such as scratch, hair etc.	L-Length, W-Width, (W/L)<1/4 Judged by line, (W/L)≥1/4 Judged by dot	The distance between the two lines should not be less than 5mm	7.5"-13.3"Module (Not include 7.5"): L>10mm,N=0 W>0.8mm, N=0 5mm≤L≤10mm, 0.5mm≤W≤0.8mm N≤2 L≤5mm, W≤0.5mm Ignore 4.2"-7.5"Module (Not include 4.2"): L>8mm,N=0 W>0.2mm, N=0 2mm≤L≤8mm, 0.1mm≤W≤0.2mm N≤4 L≤2mm, W≤0.1mm Ignore Module below 4.2": L>5mm,N=0 W>0.2mm, N=0 2mm≤L≤5mm, 0.1mm≤W≤0.2mm N≤4 L≤2mm, W≤0.1mm Ignore	Ignore	Check by eyes Film gauge	MIN

Inspection item		Figure	Inspection standard	Inspection method	MA J/ MIN
Panel chipping and crack defects	TFT panel chipping	X the length, Y the width, Z the chipping height, T the thickness of the panel	Chipping at the edge: Module over 7.5" (Include 7.5"): $X \leq 6mm, Y \leq 1mm Z \leq T N=3 \text{Allowed}$ Module below 7.5" (Not include 7.5"): $X \leq 3mm, Y \leq 1mm Z \leq T N=3 \text{Allowed}$ Chipping on the corner: $IC \text{ side } X \leq 2mm Y \leq 2mm, \text{ Non-IC side } X \leq 1mm Y \leq 1mm \text{Allowed}$ Note: $Chipping \text{ should} \text{not damage the edge wiring. If it does not affect the display, allowed}$	Check by eyes. Film gauge	MIN
	Crack	玻璃视纹	Crack at any zone of glass, Not allowed	Check by eyes. Film gauge	MIN
	Burr edge	† <u></u>	No exceed the positive and negative deviation of the outline dimensions X+Y≤0.2mm Allowed	Calliper	MIN
	Curl of panel	H Curl height	Curl height H≤Total panel length 1% Allowed	Check by eyes	MIN

Inspec	tion item	Figure	Inspection standard	Inspecti on method	MAJ / MIN
PS defect	Water proof film		Waterproof film damage, wrinkled, open edge, not allowed Exceeding the edge of module(according to the lamination drawing) Not allowed Edge warped exceeds height of technical file, not allowed	Check by eyes	MIN
RTV defect	Adhesive effect		Adhesive height exceeds the display surface, not allowed 1 .Overflow, exceeds the panel side edge, affecting the size, not allowed 2 .No adhesive at panel edge≤1mm, mo exposure of wiring, allowed 3. No adhesive at edge and corner1*1mm, no exposure of wiring, allowed	Check by eyes	MIN
	Adhesive re-fill		Protection adhesive, coverage width within W≤1.5mm, no break of adhesive, allowed Dispensing is uniform, without obvious concave and breaking, bubbling and swell, not higher than the upper surface of the PS, and the diameter of the adhesive re-filling is not more than 8mm, allowed	Check by eyes	MIN
EC defect	Adhesive bubble	防水腔涂布区 封边康汶沙堡 PS边缘 Border外缘(PPL边缘)	 Effective edge sealing area of hot melt products ≥1/2 edge sealing area; Bubble a+b≥1/2 effective width, N≤3, spacing≥5mm, allowed No exposure of wiring, allowed 	Check by eyes	MIN

Inspection item		Figure	Inspection standard	Inspection method	MAJ/ MIN
EC defect	Adhesive effect		1. Overflow, exceeds the panel side edge, affecting the size, not allowed 2.No adhesive at panel edge≤1mm, mo exposure of wiring, allowed 3.No adhesive at edge and corner 1*1mm, no exposure of wiring, allowed 4. Adhesive height exceeds the display surface, not allowed	Visual, caliper	MIN
Silver dot adhesive	Silver dot		 Single silver dot dispensing amount ≥1mm, allowed One of the double silver dot dispensing amount is ≥1mm and the other has adhesive (no reference to 1mm) Allowed 	Visual	MIN
defect			Silver dot dispensing residue on the panel ≤0.2mm, allowed	Film gauge	MIN
FPC defect	FPC wiring		FPC, TCP damage / gold finger peroxidation, adhesive residue, not allowed	Visual	MIJ
	FPC golden finger		The height of burr edge of TCP punching surface ≥ 0.4mm, not allowed	Caliper	MIN
	FPC damage/cr ease		Damage and breaking, not allowed Crease does not affect the electrical performance display, allowed	Check by eyes	MIN

Inspection item		Figure	Inspection standard	Inspection method	MAJ/ MIN
Protective film defect	Protective			Check by eyes	MIN
	film			Check by eyes	MIN
Stain defect	Stain	If stain can be normally wiped clean by > 99% alcohol, allowed		Visual	MIN
Pull tab defect	Pull tab	The position and direction meet the document requirements, and ensure that the protective film can be pulled off.		Check by eyes/ Manual pulling	MIN
Shading tape defect	Shading tape	Tilt≤10°, flat without warping, completely covering the IC.		Check by eyes/ Film gauge	MIN
Stiffener	Stiffener	Flat without warping, Exceeding the left and right edges of the FPC is not allowed. Left and right can be less than 0.5mm from FPC edge		Check by eyes	MIN
Label	Label/ Spraying code	The content meets the requirements of the work sheet. The attaching position meets the requirements of the technical documents.		Check by eyes	MIN

15.Packaging TBA