HIGH-VOLTAGE MIXED-SIGNAL IC

UG1617w

128 x 128 4S STN LCD Controller-Driver

MP Specifications Revision 1.21

November 2, 2006

TABLE OF CONTENT

Introduction	
Ordering Information	2
Block Diagram	3
Pin Description	4
Recommended COG Layout	7
Control Registers	8
Command Summary	11
Command Description	13
LCD Voltage Setting	25
V _{LCD} Quick Reference	26
LCD Display Controls	28
ITO Layout Considerations	29
Host Interface	31
Display Data RAM	39
Reset & Power Management	42
MULTI-Time Program NV Memory	44
MTP Operation for LCM Makers	45
Absolute Maximum Ratings	50
Specifications	51
AC Characteristics	52
Physical Dimensions	59
Alignment Mark Information	60
Pad Coordinates	61
Tray Information	64
Revision History	65

UC1617w

Single-Chip, Ultra-Low Power 128COM x 128SEG Matrix Passive LCD Controller-Driver

INTRODUCTION

UC1617w is an advanced high-voltage mixedsignal CMOS IC, especially designed for the display needs of low power hand-held devices.

This chip employs UltraChip's unique DCC (Direct Capacitor Coupling) driver architecture and FRM (Frame Rate Modulation) gray-shade modulation scheme to achieve near crosstalk free images, with well balanced gray shades.

In addition to low power COM and SEG drivers, UC1617w contains all necessary circuits for high-V LCD power supply, bias voltage generation, temperature compensation, timing generation and graphics data memory.

Advanced circuit design techniques are employed to minimize external component counts and reduce connector size while achieving extremely low power consumption.

MAIN APPLICATIONS

 Cellular Phones and other battery operated palm top devices or portable Instruments

FEATURE HIGHLIGHTS

- Single chip controller-driver for 128x128 matrix STN LCD with 4 gray shades and B/W Mode.
- Two software-readable ID pins and two MTP programmable ID bits to support configurable vender identification.
- Partial scroll function and programmable data update window to support flexible manipulation of screen data.
- Support both row ordered and page_c (page column) ordered display buffer RAM access.
- Support industry standard 2-wire, 3-wire, 4-wire serial bus (I²C, S8, S8uc) and 8-bit parallel bus (8080 or 6800).

- Special driver structure and gray shade modulation scheme. Consistent low power consumption under all display patterns.
- Fully programmable Mux Rate, partial display window, Bias Ratio and Line Rate allow many flexible power management options.
- Four software programmable frame rates up to 201Hz. Support the use of fast Liquid Crystal material for speedy LCD response.
- Software programmable 4 temperature compensation coefficients.
- On-chip Power-ON Reset and Software RESET command, make RST pin optional.
- Self-configuring 9x charge pump with onchip pumping capacitors. Only 3 external capacitors are required to operate.
- Flexible data addressing/mapping schemes to support wide ranges of software models and LCD layout placements.
- Very low pin count (9~10 pins with S8 or I²C) allows exceptional image quality in COG format on conventional ITO glass.
- Many on-chip and I/O pad layout features to support optimized COG applications.

• V_{DD} (digital) range: $1.8V \sim 3.3V$ V_{DD} (analog) range: $2.6V \sim 3.3V$ LCD V_{OP} range: $6.0V \sim 15V$

- Available MTP trimming support precise LCD contrast matching.
- Available in gold bump dies
 Bump pitch: 45 μM
 Bump gap: 16 μM
 Bump surface: 2,378 μΜ²

High-Voltage Mixed-Signal IC

ORDERING INFORMATION

Part Number	MTP	I ² C	Description
UC1617wGAB	Yes	Yes	Gold bumped die with MTP function and I ² C interface

General Notes

APPLICATION INFORMATION

For improved readability, the specification contains many application data points. When application information is given, it is advisory and does not form part of the specification for the device.

BARE DIE DISCLAIMER

All die are tested and are guaranteed to comply with all data sheet limits up to the point of wafer sawing. There is no post waffle saw/pack testing performed on individual die. Although the latest processes are utilized for wafer sawing and die pick-&-place into waffle pack carriers, UltraChip has no control of third party procedures in the handling, packing or assembly of the die. Accordingly, it is the responsibility of the customer to test and qualify their applications in which the die is to be used. UltraChip assumes no liability for device functionality or performance of the die or systems after handling, packing or assembly of the die.

MTP LIGHT SENSITIVITY

The MTP memory cell is sensitive to photon excitation. Under extended exposure to strong ambient light, the MTP cells can lose its content before the specified memory retention time span. The system designer is advised to provide proper light shields to realize full MTP content retention performance.

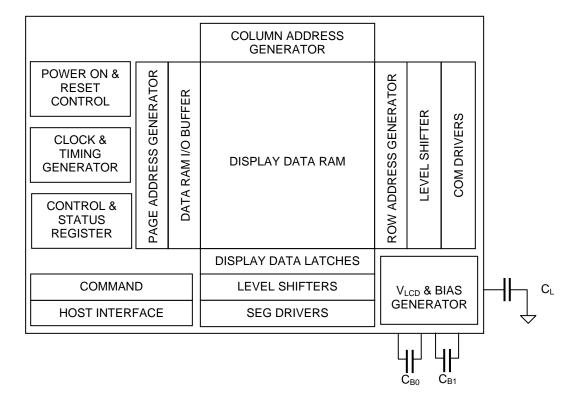
USE OF I2C

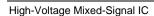
The implementation of I^2C is already included and tested in all silicon. However, unless I^2C licensing obligation is executed satisfactorily, it is not legal to use UltraChip product for I^2C applications. Unless I^2C version is ordered from UltraChip, the customer will take the responsibility for all such licensing liabilities.

LIFE SUPPORT APPLICATIONS

These devices are not designed for use in life support appliances, or systems where malfunction of these products can reasonably be expected to result in personal injuries. Customer using or selling these products for use in such applications do so at their own risk.

CONTENT DISCLAIMER


UltraChip believes the information contained in this document to be accurate and reliable. However, it is subject to change without notice. No responsibility is assumed by UltraChip for its use, nor for infringement of patents or other rights of third parties. No part of this publication may be reproduced, or transmitted in any form or by any means without the prior consent of UltraChip Inc. UltraChip's terms and conditions of sale apply at all times.


CONTACT INFORMATION

UltraChip Inc. (Headquarter) 2F, No. 70, Chowtze Street, Nei Hu District, Taipei 114, Taiwan, R. O. C.

Tel: +886 (2) 8797-8947 Fax: +886 (2) 8797-8910 Sales e-mail: sales@ultrachip.com Web site: http://www.ultrachip.com

BLOCK DIAGRAM

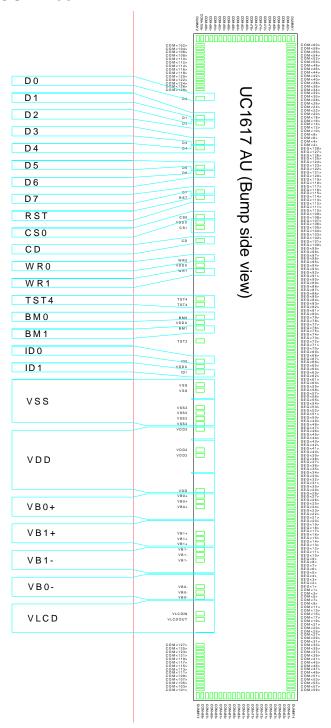
PIN DESCRIPTION

Name	Туре	Pins	Description								
	Main Power Supply										
V_{DD}		1	V_{DD} is the digital power supply and it should be connected to a voltage source that is no higher than V_{DD2}/V_{DD3} . V_{DD2}/V_{DD3} is the analog power supply and it should be connected to the same power source.								
V_{DD2} V_{DD3}	PWR	2 1	Please maintain the following relationship: $V_{DD}+1.3V \ge V_{DD2/3} \ge V_{DD}$								
			Minimize the trace resistance for V_{DD} and V_{DD2}/V_{DD3} .								
V_{SS} V_{SS2}	GND	2 4	Ground. Connect V_{SS} and V_{SS2} to the shared GND pin. Minimize the trace resistance for this node.								
			LCD Power Supply & Voltage Control								
V _{B1+} V _{B1-}	PWR	3, 3	LCD Bias Voltages. These are the voltage sources to provide SEG driving currents. These voltages are generated internally. Connect capacitors of C_{BX} value between $V_{\text{BX+}}$ and $V_{\text{BX-}}$.								
V _{B0+} V _{B0-}	FVVK	3, 3	The resistance of these traces directly affects the driving strength of SEG electrodes and impacts the image of the LCD module. Minimize the trace resistance is critical in achieving high quality image.								
W		1	High voltage LCD Power Supply. Connect these pins together.								
V_{LCDIN} V_{LCDOUT}	PWR	1	By-pass capacitor C_L is optional. It can be connected between V_{LCD} and V_{SS} . When C_L is used, keep the trace resistance under 50 Ω .								

Note

Recommended capacitor values:

 C_B : 150~250x LCD load capacitance or 2.2 μ F (5V), whichever is higher. C_L : 330nF (25V) is appropriate for most applications.


Name	Туре	Pins			De	scription							
				Host	INTERFACE	•							
				Bus mode: The interface bus mode is determined by BM[1:0] and D[7:6] by the following relationship:									
			BM[1:0]	D[7:6]									
			11	Data	6800)/8-bit							
BM0		1	10	Data	8080)/8-bit							
BM1	I	1	01	11	2-wir	re I ² C							
			00	10		v/ 8-bit token ventional)							
			00	11		v/ 8-bit token a-Compact)							
CS0 / A2 CS1 / A3 Chip Select. Chip is selected when CS1="H" and CS0 = "L". When the dis not selected, D[7:0] will be high impedance. In I ² C mode, these two pins indicate the I ² C bus address' bit 2 and bit 3													
					•								
RST	I	1	Since UC1	nen RST="L", all control registers are re-initialized by their default states. Ice UC1617w has built-in Power-ON Reset and Software Reset Inmand, RST pin is not required for proper chip operation.									
					n included on- T is not used,		no need for external RC in to V _{DD} .						
CD	I	1		ısed. Conn	ect CD to V _{SS}		operation. In I ² C mode, CD d.						
ID.			ID pin is fo	r productio	n control.								
ID0 ID1	I	1 1			ffect the conte		when using the Get for "L".						
WDO		4	WR[1:0] co			eration of the h	nost interface. See section						
WR0 WR1	I	1 1	the 6800 m	node or the			whether the interface is in acc modes, these two pins						
			Bi-direction	nal bus for	both serial and	d parallel host	interfaces.						
			In serial m	odes, conr	nect D[0] to SC	K, D[3] to SD	A,						
				BM=1x (Parallel)	BM=01 (I ² C)	BM=00 (S8/S8uc)							
			D0	D0	SCK	SCK							
D0~D7	I/O	8	D1	D1	_	_							
וט~טע	I/O		D2 D3	D2 D3	SDA	- SDA							
			D3	D3	-	-							
			D5	D5	_	_							
			D6	D6	1	S8/S8uc							
			D7	D7	1	1							
			Connect u	nused pins	to V _{SS} .								

High-Voltage Mixed-Signal IC

Name	Name Type Pins Description											
	HIGH VOLTAGE LCD DRIVER OUTPUT											
SEG1 ~ SEG128	HV	128	SEG (page_c) driver outputs. Support up to 128 pixels. Leave unused drivers open-circuit.									
COM1 ~ COM128	HV	128	COM (row) driver outputs. Support up to 128 rows. Leave unused COM drivers open-circuit.									
			Misc. Pins									
V		4	Auxiliary V_{DD} . These pins are connected to the main V_{DD} bus on chip. They are provided to facilitate chip configurations in COG application.									
V _{DDX}		4	These pins should not be used to provide V_{DD} power to the chip. It is not necessary to connect V_{DDX} to main V_{DD} externally.									
			Test control. This pin has on-chip pull-up resistor. Leave it open during normal operation.									
TST4	I/HV	V 2	TST4 is also used as one of the high voltage programming power supply for MTP operation. For COG design with MTP options, please wire out TST4 with an ITO trace resistance 30 \sim 70 Ω .									
TST2	I/O	1	Test I/O pin. Leave these pins open during normal use.									

Note: Several control registers will specify "0 based index" for COM and SEG electrodes. In those situations, COM \underline{x} or SEG \underline{x} will correspond to index \underline{x} -1, and the value ranges for those index registers will be 0~127 for COM and 0~127 for SEG.

RECOMMENDED COG LAYOUT

Notes for V_{DD} with COG:

The typical operation condition of UC1617w, V_{DD} =1.8V, should be met under all operating conditions. Unless V_{DD} and $V_{DD2/3}$ ITO trances can each be controlled to be 20 Ω or lower; otherwise V_{DD} - $V_{DD2/3}$ separation can cause the actual on-chip V_{DD} to drop below 1.65V during high speed data-write condition. Therefore, for COG, V_{DD} - $V_{DD2/3}$ separation requires very careful ITO layout and very stringent testing before MP.

CONTROL REGISTERS

UC1617w contains registers which control the chip operation. These registers can be modified by commands. The following table is a summary of the control registers, their meanings and their default values. Commands supported by UC1617w will be described in the next two sections. First, a summary table, followed by a detailed instruction-by-instruction description.

Name: The Symbolic reference of the register.

Note that some symbol names refer to bits (flags) within another register.

Default: Numbers shown in Bold font are default values after Power-Up-Reset and System-Reset.

Name	Bits	Default	Description
SL	7	00H	Scroll Line. Scroll the displayed image up by SL rows. The valid SL value is between 0 (no scrolling) and (127– 2x(FLT+FLB)). Setting SL outside of this range causes undefined effect on the displayed image.
FLT FLB	4 4	0H 0H	Fixed Lines. The first FLTx2 lines and the last FLBx2 lines (relative to CEN) of each frame are fixed and are not affected by scrolling (SL).
			When FLT and/or FLB are non-zero, the screen is effectively separated into three regions: one scrollable, surrounded by two non-scrollable regions.
			When partial display mode is activated, the display of these 2xFLT and 2xFLB lines is also controlled by LC[0]. When LC[0]=1, the display will have three sections, 2xFLT on one side non-scrollable, 2XFLB on the other side also non-scrollable, and scrollable DST~DEN in the middle.
CR	5	00H	Return Page_C Address. Useful for cursor implementation.
CA	5	00H	Display Data RAM Page_C Address (Used in Host to Display Data RAM access)
RA	7	00H	Display Data RAM Row Address (Used in Host to Display Data RAM access)
BR	2	3H	Bias Ratio. The ratio between V _{LCD} and V _{BIAS} . 00b: 6 01b: 9 10b: 10 11b: 11
TC	2	0H	Temperature Compensation (per °C) 00b: -0.00% 01b: -0.10% 10b: -0.15% 11b: -0.20%
PM	8	4EH	Electronic Potentiometer to fine tune V _{BIAS} and V _{LCD}
PMO	6		PM offset. PMO[5] = 1: The effective PM value, PMV = PM – PMO[4:0] PMO[5] = 0: The effective PM value, PMV = PM + PMO[4:0]
PC	4	EH	Power Control.
			PC[1:0]: 00b: LCD: ≤ 6nF 01b: LCD: 6~9nF 10b: LCD: 9~13nF 11b: LCD: 13~18nF
			PC[3:2]: 00b: External V _{LCD} 11b: Internal V _{LCD} (9X pump, standard)
DC	4	8H	Display Control: DC[0]: PXV: Pixels Inverse. Bit-wise data inversion. (Default 0: OFF) DC[1]: APO: All Pixels ON (Default 0: OFF) DC[2]: Display ON/OFF (Default 0: OFF) DC[3]: Gray Shade and B/W mode 0b: B/W Mode 1b: 4-Shade Mode

Name	Bits	Default	Description										
AC	5	01H	Address Control:										
			AC[0]: WA: Automatic page_c/row Wrap Around (Default 1: ON) AC[1]: Auto-Increment order O: Page_C (CA) first 1: Row (RA) first AC[2]: RID: RA (Row Address) auto increment direction (L:+1 H:-1) AC[3]: CUM: Cursor update mode, (Default 0: OFF) when CUM=1, CA increase on write only, wrap around suspended AC[4]: Window Program Enable O: Disable 1: Enable										
77 77	10	008H	LCD Control:										
NIV	4	6H	N-line Inversion: NIV[1:0]: 00b: 9 lines 01b: 13 lines 10b: 17 lines 11b: 23 lines NIV[2]: 0b: no-XOR 1b: XOR NIV[3]: 0b: NIV Disabled 1b: NIV Enabled										
CEN DST DEN	7 7 7	7FH 00H 7FH	COM scanning end (last COM with full line cycle, 0 based index) Display start (first COM with active scan pulse, 0 based index) Display end (last COM with active scan pulse, 0 based index) Please maintain the following relationship: CEN = the actual number of pixel rows on the LCD - 1 CEN ≥ DEN ≥ DST+ 9										
WPC0	5	00H	Window program starting page_c address. Value range: 0 ~31.										
WPP0	7	00H	Window program starting row Address. Value range: 0~127.										
WPC1	5	1FH	Window program ending page_c address. Value range: 0~31.										
WPP1	7	7FH	Window program ending row Address. Value range: 0~127.										

Name	Bits	Default	Description							
MTPC	6	10H	MTP Programming Control:							
			MTPC[2:0] : MTP command 000 : Idle 001 : Read 010 : Erase 011 : Program 1xx : For UltraChip use only.							
			MTPC[3]: MTP Enable (auto clear after MTP command action done) MTPC[4]: Use/Ignore MTP value. 0: Ignore 1: Use MTPC[5]: For testing only. Set to 0 for normal operation.							
MTP	8	-	Multiple-Time Programming. MTP[5:0] for V _{LCD} fine tune MTP[7:6] for LCM manufacturer's configuration.							
MTPM	8	00H	MTP Write Mask. Bit =1: program, Bit=0: no action. MTPM[5:0] for PMO MTP[7:6] for MID							
APC [2:0]	_	N/A	Advanced Product Configuration. For UltraChip only. Do <u>NOT</u> use.							
			Status Register							
ОМ	2	-	Operating Modes (Read only) 00b: Reset 01b: (Not used) 10b: Sleep 11b: Normal							
MD	1	_	MTP option flag: 1 - MTP version, 0 - non-MTP version							
MS	1	_	MTP programming in-progress							
WS	1	_	MTP Command Succeeded							
ID	2	PIN	Access the connected status of ID pin.							

COMMAND SUMMARY

The following is a list of host commands supported by UC1617w

C/D: 0: Control, 1: Data W/R: 0: Write Cycle, 1: Read Cycle

Useful Data bits– Don't Care

	Command	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Action	Default
1	Write Data Byte	1	0	#	#	#	#	#	#	#	#	Write 1 byte	N/A
2	Read Data Byte	1	1	#	#	#	#	#	#	#	#	Read 1 byte	N/A
3	Get Status	0	1		MX er Produc	MY	WA		WS [5:0] ID	MD	MS ID	Get (Status, Ver, PMO, Product Code, PID, MID)	N/A
	Cat Daga C Address	0	0	0	0	0	#	#	#	#	#	. ,	0H
4	Set Page_C Address				L -	L.						Set CA[4:0]	
5	Set Temp. Compensation	0	0	0	0	1	0	0	1	#	#	Set TC[1:0]	00b
6	Set Panel Loading	0	0	0	0	1	0	1	0	#	#	Set PC[1:0]	10b
7	Set Pump Control	0	0	0	0	1	0	1	1	#	#	Set PC[3:2]	11b
8	Set Adv. Program Control (double-byte command)	0	0	0 #	0 #	1 #	1 #	0 #	0 #	R #	R #	Set APC[R][7:0], R = 0, 1 or 2	N/A
	Set Scroll Line LSB	0	0	0	1	0	0	#	#	#	#	Set SL[3:0]	0H
9	Set Scroll Line MSB	0	0	0	1	0	1	-	#	#	#	Set SL[6:4]	0H
	Set Row Address LSB	0	0	0	1	1	0	#	#	#	#	Set RA[3:0]	00H
10	Set Row Address MSB	0	0	0	1	1	1	-	#	#	#	Set RA[6:4]	00H
11	Set V _{BIAS} Potentiometer (double-byte command)	0	0	1 #	0 #	0 #	0 #	0 #	0 #	0 #	1 #	Set PM[7:0]	4EH
12	Set Partial Display Control	0	0	1	0	0	0	0	1	#	#	Set LC[9:8]	00b: Disable
13	Set RAM Address Control	0	0	1	0	0	0	1	#	#	#	Set AC[2:0]	001b
14	Set Fixed Lines	0	0	1 #	0 #	0 #	1 #	0 #	0 #	0 #	0 #	Set {FLT, FLB}	0
15	Set Line Rate	0	0	1	0	1	0	0	0	#	#	Set LC[4:3]	00b
16	Set All-Pixel-ON	0	0	1	0	1	0	0	1	0	#	Set DC[1]	0b
17	Set Inverse Display	0	0	1	0	1	0	0	1	1	#	Set DC[0]	0b
18	Set Display Enable	0	0	1	0	1	0	1	1	#	#	Set DC[3:2]	10b
19	Set LCD Mapping Control	0	0	1	1	0	0	0	#	#	#	Set LC[2:0]	000b
20	Set N-Line Inversion	0	0	1 -	1 -	0	0	1 #	0 #	0 #	0 #	Set NIV[3:0]	6H
21	Set LCD Gray Shade	0	0	1	1	0	1	0	#	#	#	Set LC[7:5]	001b
22	System Reset	0	0	1	1	1	0	0	0	1	0	System Reset	N/A
23	NOP	0	0	1	1	1	0	0	0	1	1	No operation	N/A
24	Set Test Control	0	0	1	1	1	0	0	1		T "	For testing only. Do not use.	N/A
	(double-byte command)	0	0	#	#	#	#	#	#	#	#		441 44
25	Set LCD Bias Ratio	0	0	1	1	1	0	1	0	#	#	Set BR[1:0]	11b: 11
26	Reset Cursor Update Mode	0	0	1	1	1	0	1	1	1	0	AC[3]=0, CA=CR	AC[3]=0
27	Set Cursor Update Mode	0	0	1	1	1	0	1	1	1	1	AC[3]=1, CR=CA	AC[3]=1
28	Set COM End	0	0	1 -	1 #	1 #	1 #	0 #	0 #	0 #	1 #	Set CEN[6:0]	127
29	Set Partial Display Start	0	0	1 -	1 #	1 #	1 #	0 #	0 #	1 #	0 #	Set DST[6:0]	0
30	Set Partial Display End	0	0	1 -	1 #	1 #	1 #	0 #	0 #	1 #	1 #	Set DEN[6:0]	127

High-Voltage Mixed-Signal IC

	Command	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Action		Default
31	Set Window Program Starting Page_C Address	0	0	1 -	1 -	1 -	1 #	0 #	1 #	0 #	0 #		Set WPC0	0
32	Set Window Programming Starting Row Address	0	0	1 -	1 #	1 #	1 #	0 #	1 #	0 #	1 #	Shared with	Set WPP0	0
33	Set Window Programming Ending Page_C Address	0	0 0	1 -	1 -	1 -	1 #	0 #	1 #	1 #	0 #	MTP commands	Set WPC1	31
34	Set Window Programming Ending Row Address	0 0	0	1 -	1 #	1 #	1 #	0 #	1 #	1 #	1 #		Set WPP1	127
35	Enable window program	0	0	1	1	1	1	1	0	0	#	Set AC	[4]	0: Disable
36	Set MTP Operation control	0	0	1 -	0 -	1 #	1 #	1 #	0 #	0 #	0 #	Set MTP0	Set MTPC[5:0]	
37	Set MTP Write Mask	0	0	1 #	0 #	1 #	1 #	1 #	0 #	0 #	1 #	Set MTPN	Л[7:0]	0
38	Set V _{MTP1} Potentiometer	0	0	1 #	1 #	1 #	1 #	0 #	1 #	0 #	0 #		Set MTP1	
39	Set V _{MTP2} Potentiometer	0	0	1 #	1 #	1 #	1 #	0 #	1 #	0 #	1 #	Shared with	Set MTP2	N/A
40	Set MTP Write Timer	0	0	1 #	1 #	1 #	1 #	0 #	1 #	1 #	0 #	Window Program commands	Set MTP3	
41	Set MTP Read Timer	0 0	0	1 #	1 #	1 #	1 #	0 #	1 #	1 #	1 #	ooidildo	Set MTP4	

Notes:

- Any bit patterns other than the commands listed above may result in undefined behavior.
- The interpretation of commands (37)~(41) depends on register MTPC[3].
- Commands (38)~(41) are shared with commands (31)~(34) and have exactly the same code. When MTPC[3]=0, commands (38)~(41) are interpreted as Window Programming commands. When MTPC[3]=1, they are the MTP Control commands.
- MTPM and PM are actually the same register. Only one of the commands (37 or 11) is valid at any time, and it is determined by MTPC[3].
- After MTP-ERASE or MTP-PROGRAM operation, before resuming normal operation, please always a) Remove TST4 power source,
 - b) Do a full V_{DD} ON-OFF-ON cycle.

COMMAND DESCRIPTION

(1) WRITE DATA TO DISPLAY MEMORY

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Write data	1	0		81	oits da	ata wi	rite to	SRA	М	

(2) READ DATA FROM DISPLAY MEMORY

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Read data	1	1		;	Bbits (data f	rom S	SRAM	l	

Write/Read Data Byte (command 1, 2) operation uses internal Row Address register (RA) and Page_C Address register (CA). Four rows of LCD pixel image are defined as one row in SRAM. Each page_c of pixel corresponds to one page_c of SRAM data. RA and CA registers can be programmed by issuing Set row Address and Set Page_C Address commands. If wrap-around (WA, AC[0]) is OFF (0), CA will stop increasing after reaching the CA boundary, and system programmers need to set the values of RA and CA explicitly. If WA is ON (1), when CA reaches end of page_c address, CA will be reset to 0 and RA will be increased or decreased, depending on the setting of Row Increment Direction (PID, AC[2]). When RA reaches the boundary of RAM (i.e. RA = 0 or 31), RA will be wrapped around to the other end of RAM and continue.

(3) GET STATUS

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
			1	MX	MY	WA	DE	WS	MD	MS
Get Status	0	1	V	er			PMC	[5:0]		
			Р	roduc	t Coc	le	P	ID	M	ID

Status 1 definitions:

MX: Status of register LC[1], mirror X.

MY: Status of register LC[2], mirror Y.

WA: Status of register AC[0]. Automatic page_c/row wrap around.

DE: Display enable flag. DE=1 when display is enabled

WS: MTP Command Succeeded

MD: MTP Option (1 - MTP version, 0 - non-MTP version)

MS: MTP action status

Status 2 definitions:

Ver. IC Version Code, 00 ~ 11.

PMO[5:0]: PM offset value

Status 3 definitions:

Product Code: 1010b(Ah)

PID[1:0]: Provide access to ID pins connection status

MID[1:0]: LCM manufacturer's configuration

If multiple Get Status commands are issued consecutively within one single CD 1\$0\$1 transaction, the Get Status command will return {Status1, Status2, Status3, Status1, Status2, Status3, Status1..} alternately.

(4) SET PAGE_C ADDRESS

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Page_C Address LSB CA[4:0]	0	0	0	0	0	CA4	CA3	CA2	CA1	CA0

Set SRAM page_c address for read/write access. Each CA corresponds to one individual SEG electrode.

CA value range: 0~31

row 0

row 2xFL-1

row 2xFL

row 127

High-Voltage Mixed-Signal IC

(5) SET TEMPERATURE COMPENSATION

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Temperature Comp. TC[1:0]	0	0	0	0	1	0	0	1	TC1	TC0

Set V_{BIAS} temperature compensation coefficient (%-per-degree-C)

Temperature compensation curve definition:

00b = -0.00%01b = -0.10%°C 10b = -0.15% °C 11b= -0.20%/°C

(6) SET PANEL LOADING

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Panel Loading PC[1:0]	0	0	0	0	1	0	1	0	PC1	PC0

Set PC[1:0] according to the capacitance loading of LCD panel.

Panel loading definition: 00b≤6nF 01b=6~9nF 10b=9~13nF 11b=13~18nF

(7) SET PUMP CONTROL

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Pump Control PC[3:2]	0	0	0	0	1	0	1	1	PC3	PC2

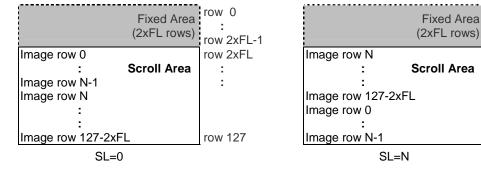
Set PC[3:2] to program the build-in charge pump stages.

Pump control definition:

00b=External V_{LCD} **11b= Internal V**_{LCD} (9X pump, standard)

(8) SET ADVANCED PROGRAM CONTROL

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set APC[R]	0	0	0	0	1	1	0	0	R	R
(Double-byte command)	0	0		Α	PC re	egiste	r para	amete	er	


For UltraChip only. Please do NOT use.

(9) SET SCROLL LINE

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Scroll Line LSB SL[3:0]	0	0	0	1	0	0	SL3	SL2	SL1	SL0
Set Scroll Line MSB SL[6:4]	0	0	0	1	0	1	-	SL6	SL5	SL4

Set the scroll line number.

Scroll line setting will scroll the displayed image up by SL rows. The valid value for SL is between 0 (no scrolling) and 127-2x(FLT+FLB) (full scrolling). FLT and FLB are the register values programmed by Set Fixed Lines command.

(10) SET ROW ADDRESS

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Row Address RA [3:0]	0	0	0	1	1	0	RA3	RA2	RA1	RA0
Set Row Address RA [6:4]	0	0	0	1	1	1	-	RA6	RA5	RA4

Set SRAM row Address for read/write access.

Possible value = 0~127

(11) SET VBIAS POTENTIOMETER

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set V _{BIAS} Potentiometer. PM [7:0]	0	0	1	0	0	0	0	0	0	1
(Double-byte command)	0	0	PM7	PM6	PM5	PM4	РМ3	PM2	PM1	PM0

Program V_{BIAS} Potentiometer (PM[7:0]). See section LCD VOLTAGE SETTING for more detail.

Effective range: 0 ~ 193

(12) SET PARTIAL DISPLAY CONTROL

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Partial Display Enable LC [9:8]	0	0	1	0	0	0	0	1	LC9	LC8

This command is used to enable partial display function.

LC[9:8]: **0xb: Disable Partial Display**, Mux-Rate = CEN+1 (DST, DEN not used.)

11b: Enable Partial Display, Mux-Rate = DEN-DST+1

(13) SET RAM ADDRESS CONTROL

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set AC [2:0]	0	0	1	0	0	0	1	AC2	AC1	AC0

Program registers AC[2:0] for RAM address control.

AC[0]: WA, Automatic page_c/row wrap around.

0: CA or RA (depends on AC[1]= 0 or 1) will stop increasing after reaching boundary

1: CA or RA (depends on AC[1]= 0 or 1) will restart, and RA or CA will increase by one.

AC[1]: Auto-Increment order

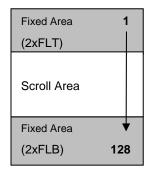
0: page_c (CA) increase (+1) first until CA reaches CA boundary, then RA will increase by (+/-1).

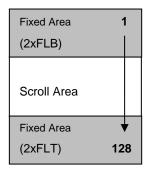
1 : row (RA) increase (+/-1) first until RA reach RA boundary, then CA will increase by (+1).

AC[2]: RID, Row Address (RA) auto increment direction (0/1 = +/-1)

When WA=1 and CA reaches CA boundary, PID controls whether row Address will be adjusted by +1 or -1.

AC[2:0] controls the auto-increment behavior of CA and RA. When Window Program is enabled (AC[4]=ON), see Command Description (31) \sim (35) for more details. When Window Program is disabled (AC[4]=OFF), the behavior of CA, RA auto-increment is the same as WPC[1:0] and WPP[1:0] values are the default values and AC[4]=ON.




(14) SET FIXED LINES

High-Voltage Mixed-Signal IC

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Fixed Lines {FLT,FLB}	0	0	1	0	0	1	0	0	0	0
(Double-byte command)	0	0		FLT	[3:0]			FLB	[3:0]	

The fixed line function is used to implement the partial scroll function by dividing the screen into Scroll and Fixed areas. The Set Fixed Lines command will define the fixed area, which will not be affected by the SL scroll function. The fixed area covers the top 2xFLT and bottom 2xFLB rows for mirror Y (MY) is 0, or covers the top 2xFLB and bottom 2xFLT rows for MY=1. One example of the visual effect on LCD is illustrated in the figure below.

MY = 0

MY = 1

When partial display mode is activated, the display of these 2x(FLT+FLB) lines is also controlled by LC[0]. Before turning on LC[0], please make sure

MY=0 DST ≥ FLTx2 MY=1 DST ≥ FLBx2

 $DEN \leq (CEN-FLBx2).$

DEN ≤ (CEN-FLTx2)

(15) SET LINE RATE

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Line Rate LC [4:3]	0	0	1	0	1	0	0	0	LC4	LC3

Program LC [4:3] for line rate setting (Line-Rate = Frame-Rate * Mux-Rate). The line rate is automatically scaled down by 2/3, 1/2, 1/3 and 1/4 at Mux-Rate = 85, 64, 43, and 32.

The followings are line rates at Mux Rate = $86\sim128$:

00b: 14.2 Klps 01b: 17.3 Klps 10b: 21.1 Klps 11b: 25.7 Klps

(Klps: Kilo-Line-per-second)

while the followings are line rates in On/Off mode:

00b: 5.7 Klps 01b: 7.0 Klps 10b: 8.5 Klps 11b: 10.4 Klps

(16) SET ALL PIXEL ON

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set All Pixel ON DC [1]	0	0	1	0	1	0	0	1	0	DC1

Set DC[1] to force all SEG drivers to output ON signals. This function has no effect on the existing data stored in display RAM.

(17) SET INVERSE DISPLAY

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Inverse Display DC [0]	0	0	1	0	1	0	0	1	1	DC0

Set DC[0] to force all SEG drivers to output the inverse of the data (bit-wise) stored in display RAM. This function has no effect on the existing data stored in display RAM.

(18) SET DISPLAY ENABLE

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Display Enable DC [3:2]	0	0	1	0	1	0	1	1	DC3	DC2

This command is for programming register DC[3:2].

When DC[2] is set to 0, the IC will put itself into Sleep mode. All drivers, voltage generation circuit, and timing circuit will be halted to conserve power. When any of the DC[2] bits is set to 1, UC1617w will first exit from Sleep Mode, restore the power and then turn on COM drivers and SEG drivers. There is no other explicit user action or timing sequence required to enter or exit the Sleep mode.

DC[3]: Gray Shade and B/W mode

0b: B/W Mode 1b: 4-Shade Mode

For B/W mode, use data format for 4-shade-mode and UC1617w will convert them for B/W mode automatically.

Note : When the internal DC-DC converter starts to operate and pump out current to V_{LCD} , there will be an in-rush pulse current between V_{DD2} and V_{SS2} initially. To avoid this current pulse from causing potential harmful noise, do \underline{NOT} issue any command or write any data to UC1617w for 5~10mS after setting DC[2] to 1.

(19) SET LCD MAPPING CONTROL

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set LCD Mapping Control LC [2:0]	0	0	1	1	0	0	0	MY	MX	LC0

This command is used for programming LC[2:0] for COM (row) mirror (MY), SEG (page_c) mirror (MX).

LC2 controls Mirror Y (MY): MY is implemented by reversing the mapping order between RAM and COM electrodes. The data stored in RAM is not affected by MY command. MY will have immediate effect on the display image.

LC1 controls Mirror X (MX): MX is implemented by selecting the CA or 31-CA as write/read (from host interface) display RAM page_c address so this function will only take effect after rewriting the RAM data.

LC0 controls whether the soft icon section (0~ 2xFL) is display or not during partial display mode.

(20) SET N-LINE INVERSION

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set N-Line Inversion NIV [5:0]	0	0	1	1	0	0	1	0	0	0
(Double-byte command)	0	0	-	•	-	-	NIV3	NIV2	NIV1	NIV0

This command is used for programming NIV[5:0] for N-Line Inversion:

©1999~2006

(21) SET LCD GRAY SHADE

High-Voltage Mixed-Signal IC

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set LCD Gray Shade LC[7:5]	0	0	1	1	0	1	0	LC7	LC6	LC5

This command sets gray scale register (LC[7:5]) to control the voltage RMS separation between the two gray shade levels (data "01" and data "10").

LC[7]: Selects Gray-shade level 1b: "10b"

LC[6:5]: Select Gray-shade

When LC[7] = 0b, LC[6:5] = 00b: 1 01b: 2 10b: 3 11b: 4 When LC[7] = 1b, LC[6:5] = 00b: 3 01b: 4 10b: 5 11b: 6

LC[7] (Gray-shade Level)	LC[6:5] (Gray-shade Level)	Gray-shade Intensity (0~36) Mapped
	00b (1)	9
0b (1)	01b (2)	12
02 (.)	10b (3)	15
	11b (4)	21
	00b (3)	15
1b (2)	01b (4)	21
10 (2)	10b (5)	24
	11b (6)	27

(22) SYSTEM RESET

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
System Reset	0	0	1	1	1	0	0	0	1	0

This command will activate the system reset. Control register values will be reset to their default values. Data stored in RAM will not be affected.

(23) NOP

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
No Operation	0	0	1	1	1	0	0	0	1	1

This command is used for "no operation".

(24) SET TEST CONTROL

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set TT	0	0	1	1	1	0	0	1	Т	T
(double-byte command)	0	0			Tes	ting p	aram	eter		

This command is used for UltraChip production testing. Please do not use.

(25) SET LCD BIAS RATIO

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Bias Ratio BR [1:0]	0	0	1	1	1	0	1	0	BR1	BR0

Bias ratio definition:

00b = 601b = 910b = 1011b = 11

(26) RESET CURSOR UPDATE MODE

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set AC[3]=0 CA=CR	0	0	1	1	1	0	1	1	1	0

This command is used to reset cursor update mode function.

(27) SET CURSOR UPDATE MODE

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set AC[3]=1 CR=CA	0	0	1	1	1	0	1	1	1	1

This command is used for set cursor update mode function. When cursor update mode sets, UC1617w will update register CR with the value of register CA. The page_c address CA will increase with write RAM data operation but the address wraps around will be suspended no matter what WA setting is. However, the page_c address will not increase in read RAM data operation.

The set cursor update mode can be used to implement "write after read RAM" function. The page_c address (CA) will be restored to the value, which is before the Set Cursor Update Mode command, when reset cursor update mode.

The purpose of this pair of commands and their features is to support "write after read" function for cursor implementation.

(28) SET COM END

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set CEN	0	0	1	1	1	1	0	0	0	1
(double-byte command)	0	0	-	C	EN [6:0] re	egiste	r para	amete	er

This command programs the ending COM electrode. CEN defines the number of used COM electrodes, and it should correspond to the number of pixel-rows in the LCD.

(29) SET DISPLAY START

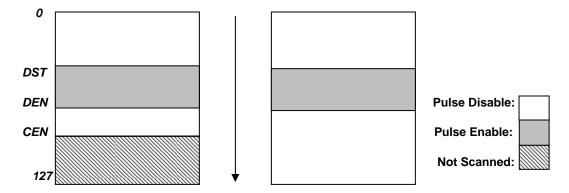
Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set DST	0	0	1	1	1	1	0	0	1	0
(double-byte command)	0	0	-	I	OST [6:0] re	egiste	r para	amete	r

This command programs the starting COM electrode, which has been assigned a full scanning period, and which will output an active COM scanning pulse.

(30) SET DISPLAY END

High-Voltage Mixed-Signal IC

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set DEN	0	0	1	1	1	1	0	0	1	1
(double-byte command)	0	0	-	L	DEN [6:0] re	egiste	r para	amete	er


This command programs the ending COM electrode, which has been assigned a full scanning period, and which will output an active COM scanning pulse.

CEN, DST DEN are 0-based index of COM electrodes. They control only the COM electrode activity, and do not affect the mapping of display RAM to each COM electrodes. The image displayed by each pixel row is therefore not affected by the setting of these three registers.

When LC[9:8]=11b, the Mux-Rate is narrowed down to DST-DEN+1 + LC[0]x(FLT+FLB)x2. When MUX rate is reduced, reduce the line rate accordingly to reduce power. Changing MUX rate also requires BR and V_{LCD} to be readjusted. When Mux-Rate is under 33, it is recommend to set BR=6.

For minimum power consumption, set LC[9:8]=11b, set (DST, DEN, FLT, FLB, CEN) to minimize MUX rate. use slowest line rate which satisfies the flicker requirement, use B/W mode, set PC[1:0]=00b, and use lowest BR and lowest V_{LCD} which satisfies the contrast requirement.

In either case, DST/DEN defines a small subsection of the display which will remain active while shutting down all the rest of the display to conserve energy.

(31) SET WINDOW PROGRAM STARTING PAGE_C ADDRESS

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set WPC0	0	0	1	1	1	1	0	1	0	0
(double-byte command)	0	0	,	,	,	И		[4:0] r rame	•	er

This command is to program the starting page_c address of RAM program window.

(32) SET WINDOW PROGRAM STARTING ROW ADDRESS

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set WPP0	0	0	1	1	1	1	0	1	0	1
(double-byte command)	0	0	-	И	/PP0[6:0] r	egiste	er par	amete	er

This command is to program the starting row Address of RAM program window.

(33) SET WINDOW PROGRAM ENDING PAGE_C ADDRESS

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set WPC1	0	0	1	1	1	1	0	1	1	0
(double-byte command)	0	0	-	-	-	И		[4:0] r rame	•	er

This command is to program the ending page_c address of RAM program window.

(34) SET WINDOW PROGRAM ENDING ROW ADDRESS

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set WPP1	0	0	1	1	1	1	0	1	1	1
(double-byte command)	0	0	-	И	/PP1[[6:0] r	egiste	er par	amete	er

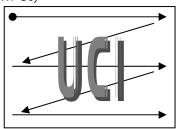
This command is to program the ending row Address of RAM program window.

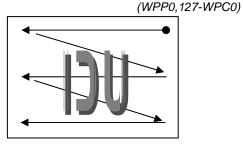
High-Voltage Mixed-Signal IC

(35) SET WINDOW PROGRAM ENABLE

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set Window Program Enable AC[4]	0	0	1	1	1	1	1	0	0	AC4

This command is to enable the Window Program Function. Window Program Enable should always be reset when changing the window program boundary and then set right before starting the new boundary program.

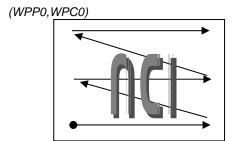

Window Program Function can be used to refresh the RAM data in a specified window of SRAM address. When window programming is enabled, the CA and RA increment and wrap around will be automatically adjusted, and therefore allow effective data update within the window.


The direction of Window Program will depend on the WA (AC[0]), PID (AC[2]), auto-increment order (AC[1]) and MX (LC[1]) register setting. WA decides whether the program RAM address advances to next row / page_c after reaching the specified window page_c / row boundary. PID controls the RAM address increasing from WPP0 toward WPP1 (PID=0) or reverse the direction (PID=1). Auto-increment order directs the RAM address increment vertically (AC[1]=1) or horizontally (AC[1]=0). MX results the RAM page_c address increasing from 127-WPC0 to 127-WPC1 (MX=1) or WPC0 to WPC1 (MX=0).

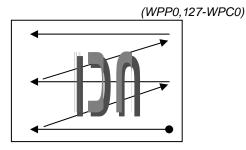
Auto-increment order = 0 MX=0 RID = 0

Auto-increment order = 0 MX=1 RID = 0

(WPP0, WPC0)



(WPP1.WPC1)


(WPP1.127-WPC1)

Auto-increment order = 0 MX=0 RID = 1

Auto-increment order = 0 MX=1 RID = 1

(WPP1,WPC1)

(WPP1,127-WPC1)

(36) SET MTP CONTROL

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set MTPC	0	0	1	0	1	1	1	0	0	0
(double-byte command)	0	0	-	-	М	TPC I	regist	er pai	amet	er

This command is for MTP operation control:

MTPC[2:0]: MTP command

000 : Idle 001: MTP Read 010 : MTP Erase 011: MTP Program

1xx : For UltraChip use only.

$$\label{eq:mtpc} \begin{split} & \text{MTPC[3]}: \text{MTP Enable (automatically cleared each time after MTP command is done)} \\ & \text{MTPC[4]}: \text{MTP value valid (ignore MTP value when L)} \\ & \text{MTPC[5]}: \text{For testing only. Set to 0 for normal operation.} \end{split}$$

High-Voltage Mixed-Signal IC

The following commands (37~41) are only valid when MTPC[3] =1:

DC[2] and MTPC[3] are mutually exclusive. Only one of these two control flags can be set to ON at any time. In other words, when DC[2] is ON, all MTP operations will be blocked, and, when MTP operation is active, set DC[2] to 1 will be blocked.

(37) SET MTP WRITE MASK

Action		W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set MTPM	0	0	1	0	1	1	1	0	0	1
(double-byte command)	0	0		MTP	PM[7:0)] reg	ister	paran	neter	

This command enables Write to each of the 7 individual MTP bits.

When MTPM[x]=1, the x-th bit of the MTP memory will be programmed to "1". MTPM[x]=0 means no write action for x-th bit. And the content of this bit will not change.

The amount of "programming current" increases with the number of 1's in MTPM. If the "programming current" appears to be too high for the LCM design (e.g. TST4 ITO trace is not wide enough to supply the current), use multiple write cycles and distribute the 1's evenly into these cycles.

MTPM[5:0]: Set PMO value MTPM[7:6]: Set MID value

This command is only valid when MTPC[3]=1.

(38) SET V_{MTP1} POTENTIOMETER

Action		W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set MTP1	0	0	1	1	1	1	0	1	0	0
(double-byte command)	0	0		Sh	ared	regist	ter pa	rame	ter	

This command is for fine tuning V_{MPT1} (use with BR=00) and is only valid when MTPC[3]=1.

(39) SET V_{MTP2} POTENTIOMETER

Action		W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set MTP2	0	0	1	1	1	1	0	1	0	1
(double-byte command)	0	0		Sh	ared	regist	er pa	rame	ter	

This command is for fine tuning V_{MTP2} (use with BR=10) and is only valid when MTPC[3]=1.

(40) SET MTP WRITE TIMER

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set MTP3	0	0	1	1	1	1	0	1	1	0
(double-byte command)	0	0		Sh	ared	regist	ter pa	rame	ter	

This command is only valid when MTPC[3]=1.

(41) SET MTP READ TIMER

Action	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0
Set MTP4	0	0	1	1	1	1	0	1	1	1
(double-byte command)		0	Shared register parameter							

This command is only valid when MTPC[3]=1.

LCD VOLTAGE SETTING

MULTIPLEX RATES

Multiplex Rate is completely software programmable in UC1617w via registers CEN, DST, DEN, and partial display control LC[9:8].

Combined with low power partial display mode and a low bias ratio of 6, UC1617w can support wide variety of display control options. For example, when a system goes into stand-by mode, a large portion of LCD screen can be turned off to conserve power.

BIAS RATIO SELECTION

Bias Ratio (BR) is defined as the ratio between V_{LCD} and V_{BIAS} , i.e.

 $BR = V_{LCD}/V_{BIAS}$, where $V_{BIAS} = V_{B1+} - V_{B1-} = V_{B0+} - V_{B0-}$.

The theoretical optimum *Bias Ratio* can be estimated by $\sqrt{Mux} + 1$. *BR* of value 15~20% lower/higher than the optimum value calculated above will not cause significant visible change in image quality.

Due to the nature of STN operation, an LCD designed for good gray-shade performance at high Mux Rate (e.g. MR=128), can generally perform very well as a black and white display, at lower Mux Rate. However, it is also true that such technique generally cannot maintain LCD's quality of gray shade performance, since the contrast of the LCD will increase as the Mux Rate decreases, and the shades near the two ends of the spectrum will start to loose visibility.

UC1617w supports four *BR* as listed below. BR can be selected by software program.

BR	0	1	2	3
Bias Ratio	6	9	10	11

Table 1: Bias Ratios

TEMPERATURE COMPENSATION

Four (4) different temperature compensation coefficients can be selected via software. The four coefficients are given below:

TC	0	1	2	3
% per °C	-0.00	-0.10	-0.15	-0.20

Table 2: Temperature Compensation

VICD GENERATION

 V_{LCD} may be supplied either by internal charge pump or by external power supply. The source of V_{LCD} is controlled by PC[3:2].

When V_{LCD} is generated internally, the voltage level of V_{LCD} is determined by three control registers: BR (Bias Ratio), PM (Potentiometer), and TC (Temperature Compensation), with the following relationship:

$$V_{LCD} = (C_{V0} + C_{PM} \times PM) \times (1 + (T - 25) \times C_T \%)$$

where

 C_{V0} and C_{PM} are two constants, whose value depends on the setting of BR register, as illustrated in the table on the next page,

PM is the numerical value of PM register,

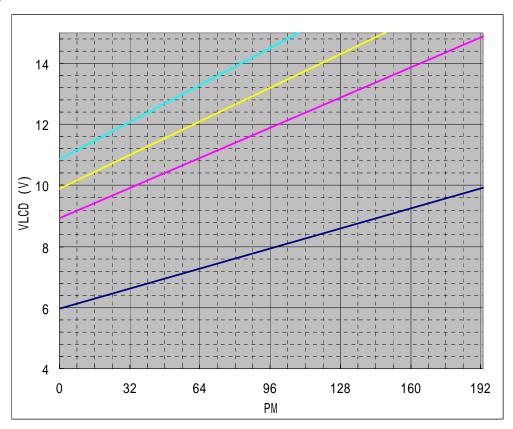
T is the ambient temperature in ${}^{\circ}C$, and

 C_T is the temperature compensation coefficient as selected by TC register.

V_{LCD} FINE TUNING

Gray shade LCD is sensitive to even a 1.5% mismatch between IC driving voltage and the V_{OP} of LCD. However, it is difficult for LCD makers to guarantee such high precision matching of parts from different venders. It is therefore necessary to adjust V_{LCD} to match the actual V_{OP} of the LCD.

For the best results, software or MTP based V_{LCD} adjustment is the recommended method for V_{LCD} fine tuning. System designers should always consider the contrast fine tuning requirement before finalizing on the LCM design.


LOAD DRIVING STRENGTH

The power supply circuit of UC1617w is designed to handle LCD panels with load capacitance up to ~15nF when $V_{DD2} = 2.7V$. 15nF is also the recommended limit for LCD panel size for COG applications. For larger LCD panels, use higher V_{DD} .

V_{LCD} QUICK REFERENCE

High-Voltage Mixed-Signal IC

 V_{LCD} Relationship to BR and PM at 25 $^{\circ}\text{C}$

BR	Cvo (V)	С _{РМ} (mV)	PM	VLCD (V)
6	5.957 20.56		0	5.96
O	5.957	20.00	193	9.93
9	8.917	30.87	0	8.92
9	0.917	30.67	193	14.87
10	9.900	34.33	0	9.9
10	9.900	34.33	149	15.01
11	11 10.882 37.81		0	10.88
11	10.882	37.01	109	15.00

Note:

- 1. For good product reliability, keep $V_{\text{LCD (max)}}$ under **15.0V** under all operating temperature.
- The integer values of BR above are for reference only and may have slight shift.

HI-V GENERATOR REFERENCE CIRCUIT

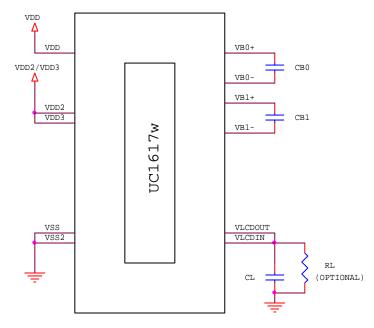


FIGURE 1: Reference circuit using internal Hi-V generator circuit

Note

• Sample component values: (The illustrated circuit and component values are for reference only. Please optimize for specific requirements of each application.)

 $C_B{:}~150 \sim 250x~LCD$ load capacitance or $2.2\mu F$ (5V), whichever is higher.

C_L: 330 nF (25V) is appropriate for most applications.

 R_L : 3.3~10M Ω to act as a draining circuit when V_{DD} is shut down abruptly.

LCD DISPLAY CONTROLS

CLOCK & TIMING GENERATOR

UC1617w contains a built-in system clock. All required components for the clock oscillator are built-in. No external parts are required.

Four different line rates are provided for system design flexibility. The line rate is controlled by register LC[4:3]. When Mux-Rate is above 86, frame rate is calculated as:

Frame Rate = Line-Rate / Mux-Rate.

When Mux-Rate is lowered to 85, 64, 43 and 32, line rate will be scaled down by 1.5, 2, 3 and 4 times automatically reduce power consumption.

Flicker-free frame rate is dependent on LC material and gray-shade modulation scheme. Choose lower frame rate for lower power, and choose higher frame rate to improve LCD contrast and minimize flicker.

When fast LC material with $(t_r + t_f) < 160$ mS is used, faster line rate may be required under 4-shade mode to maintain good contrast ratio at operating temperature >50°C.

DRIVER MODES

COM and SEG drivers can be in either Idle mode or Active mode, controlled by Display Enable flag (DC[2]). When COM drivers are in idle mode, their outputs are high-impedance (open circuit). When SEG drivers are in idle mode, their outputs are shorted to $V_{\rm SS}$.

DRIVER ARRANGEMENTS

The naming conventions are: COM(x), where $x=1\sim128$, refers to the COM driver for the x-th row of pixels on the LCD panel.

The mapping of COM(x) to LCD pixel rows fixed and it is not affected by SL, CST, CEN, DST, DEN, MX or MY settings.

DISPLAY CONTROLS

There are three groups of display control flags in the control register DC: Driver Enable (DE), All-Pixel-ON (APO) and Inverse (PXV). DE has the overriding effect over PXV and APO.

DRIVER ENABLE (DE)

Driver Enable is controlled by the value of DC[2] via Set Display Enable command. When DC[2] is set to OFF (logic "0"), both COM and SEG drivers will become idle and UC1617w will put itself into Sleep Mode to conserve power.

When DC[2] is set to ON, the DE flag will become "1", and UC1617w will first exit from Sleep Mode, restore the power (V_{LCD} , V_D etc.) and then turn on COM and SEG drivers.

ALL PIXELS ON (APO)

When set, this flag will force all SEG drivers to output ON signals, disregarding the data stored in the display buffer.

This flag has no effect when Display Enable is OFF and it has no effect on data stored in RAM.

INVERSE (PXV)

When this flag is set to ON, SEG drivers will output the inverse of the value it received from the display buffer RAM (bit-wise inversion). This flag has no impact on data stored in RAM.

PARTIAL SCROLL

Control register FL specifies a region of rows which are not affected by the SL register. Since SL register can be used to implement scroll function. The FL register can be used to implement fixed region when the other part of the display is scrolled by SL.

PARTIAL DISPLAY

UC1617w provides flexible control of Mux Rate and active display area. Please refer to Command Description (28) ~ (30) for more detail.

GRAY-SHADE MODULATION

UC1617w uses a proprietary line rate modulation scheme to generate 8 levels of gray shade. The relative levels of the gray shades can be programmed by setting register bit LC[7:5]. It controls the relative position of the light gray and dark gray shades. For detailed value, please refer to the register definition table.

ITO LAYOUT CONSIDERATIONS

Since the COM scanning pulses of UC1617w can be as short as 30µS, it is critical to control the RC delay of COM and SEG signal to minimize crosstalk and maintain good mass production consistency.

For COG applications, low resistance ITO glass will help reduce SEG signal RC decay, minimize V_{DD} , V_{SS} noise, and ensure sufficient V_{DD2} , V_{SS2} supply for on-chip DC-DC converter.

COM TRACE

Excessive RC decay of COM scanning pulse can cause fluctuation of contrast and increase the crosstalk of COM direction.

Please limit the worst case of COM signals RC delay (RC_{MAX}) as calculated below

$$(R_{ROW}/2.7 + R_{COM}) \times C_{ROW} < 1.8 \mu S$$

where

C_{ROW}: LCD loading capacitance of one row of pixels. It can be calculated by C_{LCD}/Mux-Rate, where C_{LCD} is the LCD panel capacitance.

R_{ROW}: ITO resistance over one row of pixels within the active area

R_{COM}: COM routing resistance from IC to the active area + COM driver output impedance.

(Use worst case values for all calculations)

In addition, please limit the min-max spread of RC decay to be:

$$|RC_{MAX} - RC_{MIN}| < 0.44 \mu S$$

so that the COM distortions on the top of the screen to the bottom of the screen are uniform.

SEG TRACE

Excessive RC decay of SEG signal can cause image dependent changes of medium gray shades and sharply increase the crosstalk of SEG direction.

To minimize crosstalk, please limit the worst case of SEG signal RC delay as calculated below.

$$(R_{COL}/2.7 + R_{SEG}) \times C_{COL} < 0.5 \mu S$$

where

 C_{COL} : LCD loading capacitance of one pixel page_c. It can be calculated by C_{LCD} /#_page_c, where C_{LCD} is the LCD panel capacitance.

R_{COL}: ITO resistance over one page_c of pixels within the active area

R_{SEG}: SEG routing resistance from IC to the active area + SEG driver output impedance.

(Use worst case values for all calculations)

SELECTING LIQUID CRYSTAL

The selection of LC material is crucial to achieve the optimum image quality of finished LCM.

When $(V_{90}-V_{10})/V_{10}$ is too high, image contrast will deteriorate, and images will look murky and dull.

When $(V_{90}-V_{10})/V_{10}$ is too small, image contrast will become too strong, visibility of shades will suffer, and crosstalk may increase sharply for medium shades.

For the best result, it is recommended the LC material has the following characteristics:

$$(V_{90}-V_{10})/V_{10} = (V_{ON}-V_{OFF})/V_{OFF} \times 0.72 \sim 0.80$$

where V_{90} and V_{10} are the LC characteristics, and V_{ON} and V_{OFF} are the ON and OFF V_{RMS} voltage produced by LCD driver IC at the specific Mux-rate.

Two examples are provided below:

Duty	Bias	V _{ON} /V _{OFF} -1	x0.80	x0.72
1/128	1/11	8.98%	7.2%	6.5%
1/128	1/10	8.79%	7.0%	6.3%

High-Voltage Mixed-Signal IC

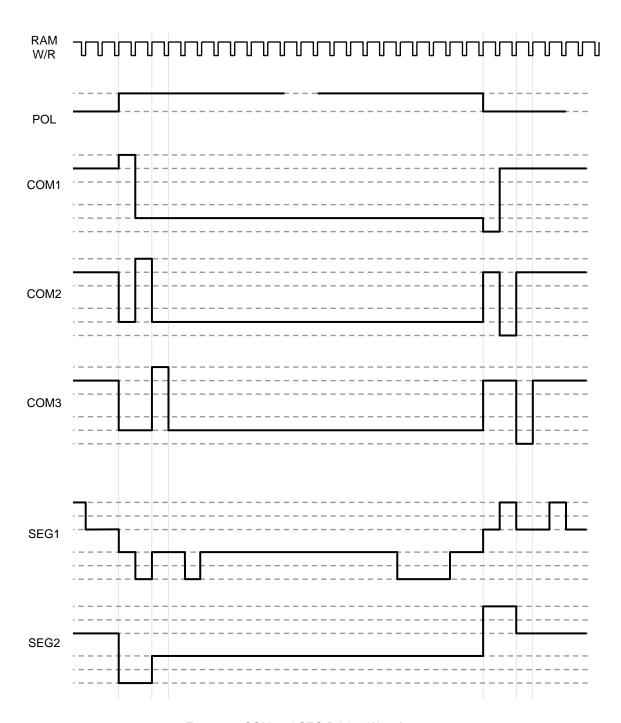


FIGURE 2: COM and SEG Driving Waveform

HOST INTERFACE

As summarized in the table below, UC1617w supports two parallel bus protocols in 8-bit bus width, and three serial bus protocols.

Designers can either use parallel bus to achieve high data transfer rate, or use serial bus to create compact LCD modules.

				Bus Type						
		8080	6800	S8 (4-wire)	S8uc (3-wire)	I ² C (2-wire)				
	Width 8-bit		8-bit	Serial						
	Access	Read	/Write	Write Only R/W						
	BM[1:0]	10	11	0	01					
Pins	D[7:6]	Data	Data	10	11	11				
	CS[1:0]		Chip	Select A[3:2]						
Data	CD		Contro	ol/Data		-				
≪	WR0	WR	R/W	0	0	0				
Control	WR1	RD	EN	0	0	0				
ပိ	D[5:4]	Data	Data	_						
	D[3:0]	Data	Data	D0=SCK, D3=SDA						

^{*} Connect unused control pins and data bus pins to V_{DD} or V_{SS}.

Table 3: Host interfaces Choices

PARALLEL INTERFACE

The timing relationship between UC1617w internal control signals, RD and WR, and their associated bus actions are shown in the figure below.

The Display RAM read interface is implemented as a two-stage pipe-line. This architecture requires that, every time memory address is modified, by either Set CA, or Set RA command, a dummy read cycle need to be performed before the actual data can propagate through the pipe-line and be read from data port D[7:0].

There is no pipeline in write interface of Display RAM. Data is transferred directly from bus buffer to internal RAM on the rising edges of write pulses.

8-BIT BUS OPERATION

UC1617w supports both 8-bit bus width. The bus width is determined by pin BM[1:0].

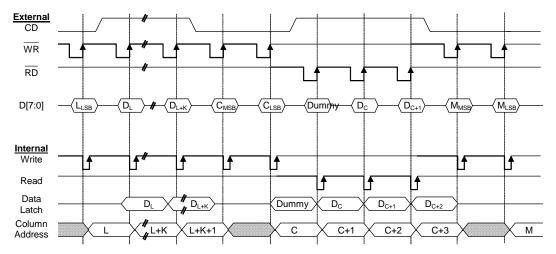


FIGURE 3: 8 bit Parallel Interface & Related Internal Signals

128x128 STN Controller-Driver

SERIAL INTERFACE

UC1617w supports three serial modes, one 4-wire SPI mode (S8), one compact 3/4-wire mode (S8uc) and one 2-wire mode (I²C). Bus interface mode is determined by the wiring of the BM[1:0] and D[7:6]. See table in last page for more detail.

S8 (4-WIRE) INTERFACE

Only write operations are supported in 4-wire serial mode. Pin CS[1:0] are used for chip select and bus cycle reset. Pin CD is used to determine the content of the data been transferred. During each write cycle, 8 bits of data, MSB first, are latched on eight rising SCK edges into an 8-bit data holder.

If CD=0, the data byte will be decoded as command. If CD=1, this 8-bit will be treated as data and transferred to proper address in the Display Data RAM on the rising edge of the last SCK pulse. Pin CD is examined when SCK is pulled low for the LSB (D0) of each token.

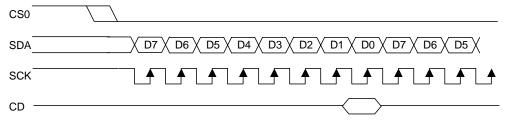


FIGURE 4.a: 4-wire Serial Interface (S8)

S8uc (3/4-wire) Interface

Only write operations are supported in this 3/4-wire serial mode. The data format is identical as S8. The CD pin transitions will reset the bus cycle in

this mode. So, if CS pins are hardwired to enable chip-select, the bus can work properly with only three signal pins.

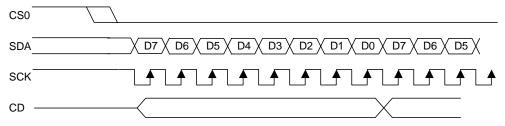
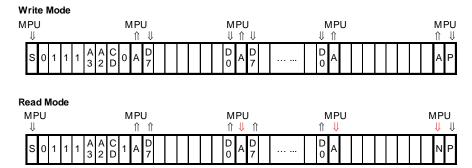


FIGURE 4.b: 3/4-wire Serial Interface (S8uc)

High-Voltage Mixed-Signal IC

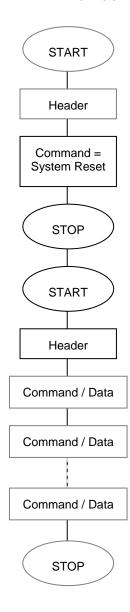

2-WIRE SERIAL INTERFACE (I2C)

When BM[1:0] is set to "LH" and D[7:6] is set to "HH", UC1617w is configured as an I²C bus signaling protocol compliant slave device. Please refer to I²C standard for details of the bus signaling protocol, and AC Characteristic section for timing parameters of UltraChip implementation.

In this mode, pins CS[1:0] become A[3:2] and is used to configure UC1617w's device address. Proper wiring to V_{DD} or V_{SS} is required for the IC to operate properly for I^2C mode.

Each UC1617w |²C interface sequence starts with a START condition (S) from the bus master, followed by a sequence header, containing a device address, the mode of transfer (CD, 0:Control, 1:Data), and the direction of the transfer (RW, 0:Write, 1:Read).

Since both WR and CD are expressed explicitly in the header byte, the control pins WR[1:0] and CD are not used in I^2C mode and should be connected to V_{SS} .


The direction (read or write) and content type (command or data) of the data bytes following each header byte are fixed for the sequence. To change the direction ($R\Leftrightarrow W$) or the content type ($C\Leftrightarrow D$), start a new sequence with a START (S) flag, followed by a new header.

After receiving the header, the UC1617w will send out an acknowledge signal (A). Then, depends on the setting of the header, the transmitting device (either the bus master or UC1617w) will start placing data bits on SDA, MSB to LSB, and the sequence will repeat until a STOP signal (P, in WRITE), or a Not Acknowledge (N, in READ mode) is sent by the bus master.

128x128 STN Controller-Driver

When using I²C serial mode, if the command of System Reset is to be written, the writing sequence must be finished (STOP) before succeeding data or commands start. The flow chart on the right shows a writing sequence with a "System Reset" command.

Note that, for data read (CD=1), the first byte of data transmitted will be dummy.

High-Voltage Mixed-Signal IC

HOST INTERFACE REFERENCE CIRCUIT

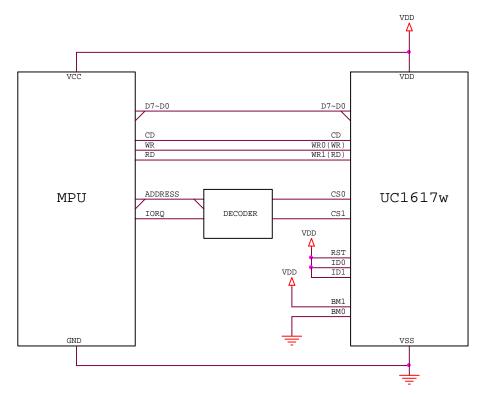


FIGURE 5: 8080/8bit parallel mode reference circuit

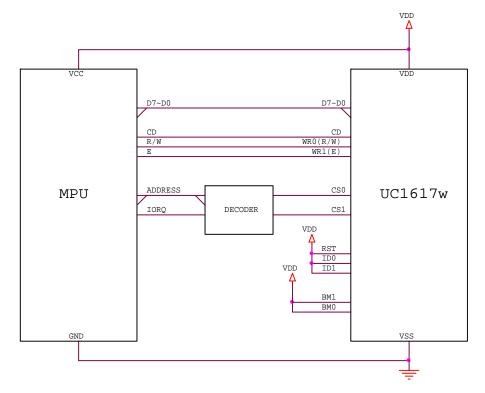


FIGURE 6: 6800/8bit parallel mode reference circuit

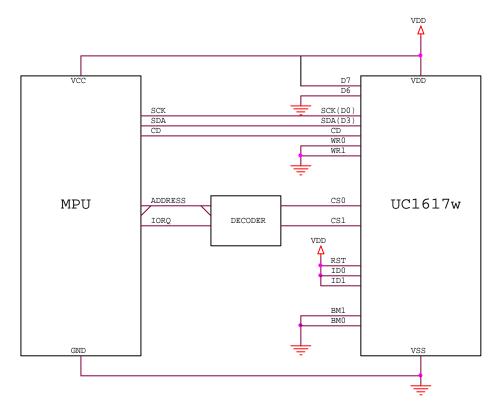


FIGURE 7: 4-Wires SPI (S8) serial mode reference circuit

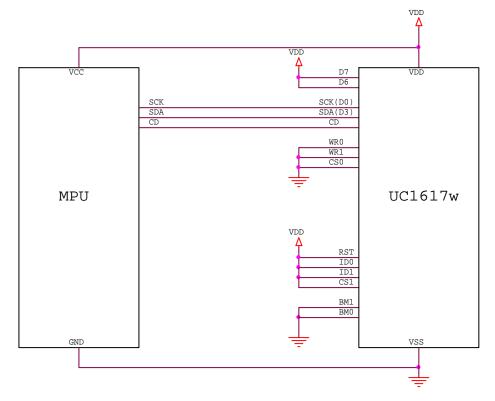


FIGURE 8: 3/4-Wires SPI (S8uc) serial mode reference circuit

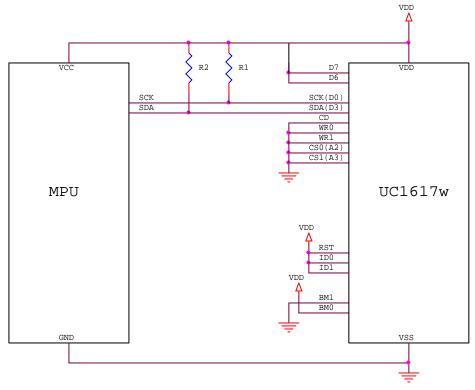


FIGURE 9: I²C serial mode reference circuit

Note

- The ID0 & ID1 pins are for production control. The connection will affect the content of D[3:2] of the 3rd byte of Get Status command. Connect to V_{DD} for "H" or V_{SS} for "L".
- RST pin is optional. When RST pin is not used, connect the pin to V_{DD}.
- When using I²C serial mode, CS1/0 are user configurable and affect A[3:2] of device address.
- R1, R2: $2k \sim 10k \Omega$, use lower resistor for bus speed up to 3.6MHz, use higher resistor for lower power.

DISPLAY DATA RAM

DATA ORGANIZATION

The input display data is stored to a dual port static RAM (RAM, for Display Data RAM) organized as 128x128x2.

After setting CA and RA, the subsequent data write cycles will store the data for the specified pixel to the proper memory location.

Please refer to the map in the following page between the relation of COM, SEG, SRAM, and various memory control registers.

DISPLAY DATA RAM ACCESS

The Display RAM is a special purpose dual port RAM which allows asynchronous access to both its page_c and row data. Thus, RAM can be independently accessed both for Host Interface and for display operations.

DISPLAY DATA RAM ADDRESSING

A Host Interface (HI) memory access operation starts with specifying Row Address (RA) and Page_C Address (CA) by issuing Set Row Address and Set Page_C Address commands.

If wrap-around (WA, AC[0]) is OFF (0), CA will stop increasing after reaching the end of row (127), and system programmers need to set the values of RA and CA explicitly.

If WA is ON (1), when CA reaches end of row, CA will be reset to 0 and RA will increase or decrease, depending on the setting of row Increment Direction (PID, AC[2]). When RA reaches the boundary of RAM (i.e. RA = 0 or 127), RA will be wrapped around to the other end of RAM and continue.

MX IMPLEMENTATION

Page_C Mirroring (MX) is implemented by selecting either (CA) or (31–CA) as the RAM page_c address. Changing MX affects the data written to the RAM.

Since MX has no effect of the data already stored in RAM, changing MX does not have immediate effect on the displayed pattern. To refresh the display, refresh the data stored in RAM after setting MX.

Row Mapping

COM electrode scanning orders are not affected by Start Line (SL), Fixed Line (FLT & FLB) or Mirror Y (MY, LC[3]). Visually, register SL having a non-zero value is equivalent to scrolling the LCD display up or down (depends on MY) by *SL* rows.

RAM ADDRESS GENERATION

The mapping of the data stored in the display SRAM and the scanning COM electrodes can be obtained by combining the fixed COM scanning sequence and the following RAM address generation formula.

When FLT & FLB=0, during the display operation, the RAM line address generation can be mathematically represented as following:

For the 1st line period of each field Line = SL

Otherwise

Line = Mod(Line+1, 128)

Where Mod is the modular operator, and *Line* is the bit slice line address of RAM to be outputted to SEG drivers. Line 0 corresponds to the first bit-slice of data in RAM.

The above *Line* generation formula produces the "loop around" effect as it effectively resets *Line* to 0 when *Line+1* reaches *128*. Effects such as row scrolling, row swapping can be emulated by changing SL dynamically.

MY IMPLEMENTATION

Row Mirroring (MY) is implemented by reversing the mapping order between COM electrodes and RAM, i.e. the mathematical address generation formula becomes:

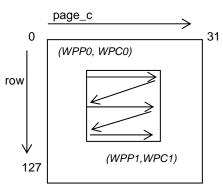
For the 1st line period of each field Line = Mod(SL + MUX-1, 128) where MUX = CEN + 1

Otherwise

Line = Mod(Line-1, 128)

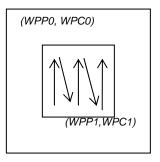
Visually, the effect of MY is equivalent to flipping the display upside down. The data stored in display RAM is not affected by MY.

High-Voltage Mixed-Signal IC


WINDOW PROGRAM

Window program is designed for data write in a specified window range of SRAM address. The procedure should start with window boundary registers setting (WPP0, WPP1, WPC0 and WPC1) and then enable AC[4]. After AC[4] sets, data can be written to SRAM within the window address range which is specified by (WPP0, WPC0) and (WPP1, WPC1). AC[4] should be cleared after any modification of window boundary registers and then set again in order to initialize another window program.

The data write direction will be determined by AC[2:0] and MX settings. When AC[0]=1, the data write can be consecutive within the range of the specified window. AC[1] will control the data write in either page_c or row direction. AC[2] will result the data write starting either from row WPP0 or WPP1. MX is for the initial page_c address either from WPC0 to WPC1 or from (MC-WPC0 to MC-WPC1).


Example1:

AC[2:0] = 001 MX=0

Example 2:

AC[2:0] = 111 MX = 0

	ià	0 /	/2	/ 4	9/	0/	/2	/ 4	9/	0 /	/2	/ 4	9/					
Line	Data	5	D3	D5	D7	10	D3	D5	ZQ	5	D3	' 9Q	70	1	MY	=0	MY	′=1
Adderss															SL=0	SL=16	SL=0	SL=16
00H															R1	R113	R128	R16
01H															R2	R114	R127	R15
02H			_												R3	R115	R126	R14
03H										-					R4	R116	R125	R13
04H 05H			-							-					R5 R6	R117	R124	R12 R11
06H								\vdash							R7	R118 R19	R123 R122	R10
07H													Н		R8	R120	R121	R9
08H													Н		R9	R121	R120	R8
09H															R10	R122	R119	R7
0AH															R11	R123	R118	R6
0BH															R12	R124	R117	R5
0CH															R13	R125	R116	R4
0DH															R14	R126	R115	R3
0EH															R15	R127	R114	R2
0FH								$ldsymbol{ldsymbol{ldsymbol{ldsymbol{eta}}}$							R16	R128	R113	R1
10H									_						R17	R1	R112	R128
11H		<u> </u>		-	\vdash	-		\vdash		1			Ш		R18	R2	R111	R127
12H		_	_	_	Щ	_		\vdash	_	-			Щ		R19	R3	R110	R126
13H		\vdash	_	-	\vdash		H	\vdash	-	\vdash		\vdash	\vdash		R20	R4	R109	R125
14H 15H															R21 R22	R5 R6	R108 R107	R124 R123
16H															R23	R7	R107	R123
17H								\vdash							R24	R8	R105	R121
18H															R25	R9	R104	R120
19H															R26	R10	R103	R119
1AH															R27	R11	R102	R118
1BH															R28	R12	R101	R117
		Pag	je_C	0		Pag	je_C	:1		Pag	je_C	31						
6CH															R109	R93	R20	R36
6DH															R110	R94	R19	R35
6EH															R111	R95	R18	R34
6FH															R112	R96	R17	R33
70H 71H													Н		R113	R97	R16	R32
71H 72H					\vdash										R114 R115	R98 R99	R15 R14	R31 R30
73H		\vdash	\vdash	 	H	_	Н	\vdash					Н		R116	R100	R13	R29
74H		Т			H			П					М		R117	R101	R12	R28
75H															R118	R102	R11	R27
76H															R119	R103	R10	R26
77H															R120	R104	R9	R25
78H															R121	R105	R8	R24
79H															R122	R106	R7	R23
7AH													Ш		R123	R107	R6	R22
7BH			_		Щ										R124	R108	R5	R21
7CH		<u> </u>								-			\vdash		R125	R109	R4	R20
7DH 7EH		_	_	<u> </u>	\vdash	_		\vdash	-				\vdash		R126 R127	R110 R111	R3 R2	R19 R18
7EH 7FH					H			\vdash					\vdash		R127	R111	R2 R1	R18
				_				_	_						20		128	128
×	0	C	C2	C3	C4	C5	90	C7	C8	C125	C126	C127	C128				MU	JX
×		8	7:	56	55	74	53	22	1,	1								
	~	C128	C127	C126	C125	C124	C123	C122	C121	C4	C3	C2	2					

Example: when MX=0, MY=0, SL=0, the corresponding data in SRAM as the pixels shown is:

Row1 Page_C0 ⇒ 11100100b Row2 Page_C0 ⇒ 10010011b

RESET & POWER MANAGEMENT

Types of Reset

UC1617w has two different types of Reset: Power-ON-Reset and System-Reset.

Power-ON-Reset is performed right after V_{DD} is connected to power. Power-On-Reset will first wait for about ~5mS, depending on the time required for V_{DD} to stabilize, and then trigger the System Reset.

System Reset can also be activated by software command or by connecting RST pin to ground.

In the following discussions, Reset means System Reset.

RESET STATUS

When UC1617w enters RESET sequence:

- Operation mode will be "Reset"
- All control registers are reset to default values.
 Refer to Control Registers for details of their default values.

OPERATION MODES

UC1617w has three operating modes (OM): Reset, Normal, Sleep.

Mode	Reset	Sleep	Normal
ОМ	00	10	11
Host Interface	Active	Active	Active
Clock	OFF	OFF	ON
LCD Drivers	OFF	OFF	ON
Charge Pump	OFF	OFF	ON
Draining Circuit	ON	ON	OFF

Table 4: Operating Modes

CHANGING OPERATION MODE

In addition to Power-ON-Reset, two commands will initiate OM transitions:

Set Display Enable, and System Reset.

When DC[2] is modified by *Set Display Enable*, OM will be updated automatically. There is no other action required to enter Sleep Mode.

OM changes are synchronized with the edges of UC1617w internal clock. To ensure consistent system states, wait at least 10μ S after Set Display Enable or System Reset commands.

Action	Mode	OM
Reset command RST_ pin pulled "L" Power ON reset	Reset	00
Set Driver Enable to "0"	Sleep	10
Set Driver Enable to "1"	Normal	11

Table 5: OM changes

Both Reset mode and Sleep mode drain the charges stored in the external capacitors C_{B0} , C_{B1} , and C_L . When entering Reset mode or Sleep mode, the display drivers will be disabled.

The difference between Sleep mode and Reset mode is that, Reset mode clears all control registers and restores them to default values, while Sleep mode retains all the control registers values set by the user.

It is recommended to use Sleep Mode for Display OFF operations as UC1617w consumes very little energy in Sleep mode (typically under $2\mu A$).

EXITING SLEEP MODE

UC1617w contains internal logic to check whether V_{LCD} and V_{BIAS} are ready before releasing COM and SEG drivers from their idle states. When exiting Sleep or Reset mode, COM and SEG drivers will not be activated until UC1617w internal voltage sources are restored to their proper values.

POWER-UP SEQUENCE

UC1617w power-up sequence is simplified by builtin "Power Ready" flags and the automatic invocation of System-Reset command after Power-ON-Reset.

System programmers are only required to wait 150 mS before the CPU starting to issue commands to UC1617w. No additional time sequences are required between enabling the charge pump, turning on the display drivers, writing to RAM or any other commands. However, while turning on V_{DD} , $V_{DD2/3}$ should be started not later than V_{DD} .

Delay allowance between V_{DD} and $V_{DD2/3}$ is illustrated as Figure 12.

Turn on the power Set RST Low Wait ≥ 1mS Set RST High Wait for MTP-Read ≥ 150 mS Set LCD Bias Ratio (BR) Set Potential Meter (PM) Set Display Enable

POWER-DOWN SEQUENCE

To prevent the charge stored in capacitors $C_{\text{BX+}}$, $C_{\text{BX-}}$, and C_{L} from damaging the LCD, when V_{DD} is switched off, use Reset mode to enable the built-in draining circuit and discharge these capacitors.

The draining resistor is 1K Ohm for both V_{LCD} and V_{B+} . It is recommended to wait $3 \times RC$ for V_{LCD} and $1.5 \times RC$ for V_{B+} . For example, if C_L is 330nF, then the draining time required for V_{LCD} is 0.5~1mS.

When internal V_{LCD} is not used, UC1617w will *NOT* drain V_{LCD} during RESET. System designers need to make sure external V_{LCD} source is properly drained off before turning off V_{DD} .

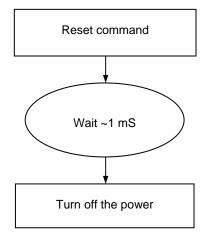


Figure 11: Reference Power-Down Sequence

Figure 10: Reference Power-Up Sequence

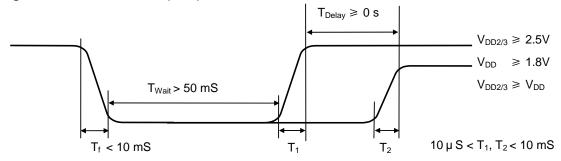


Figure 12: Delay allowance between V_{DD} and V_{DD23}

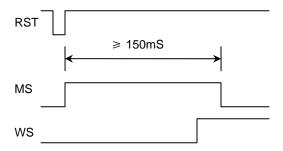
MULTI-TIME PROGRAM NV MEMORY

OVERVIEW

MTP feature is available for UC1617w such that 1LCM maker can record an PM offset value in non-volatile memory cells, which can then be used to adjust the effective V_{LCD} value, in order to achieve high level of consistency for LCM contrast across all shipments.

To accomplish this purpose, three operations are supported by UC1617w:

MTP-Erase, MTP-Program, MTP-Read.


MTP-Program requires an external power source supplied to the TST4 pin. MTP allows program at least 10 times and should be performed only by the LCM makers.

MTP-Read is facilitated by the internal DC-DC converter built-in on UC1617w, no external power source is required, and it is performed automatically after hardware RESET (power-ON or pin RESET).

OPERATION FOR THE SYSTEM USERS

For the MTP version of UC1617w, the content of the NV memory will be read automatically after the power-on and hardware pin RESET. There is no user intervention or external power source required. When set up properly, the V_{LCD} will be fine tuned to achieve high level of consistency for the LCM contrast.

The MTP-READ is a relatively slow process and the time required can vary quite a bit. For a successful MTP-READ operation, the MS and WS bits in the Read Status commands will exhibit the following waveforms.

As illustrated above, the {MS, WS} will go through a $\{0,0\}$ \Rightarrow $\{1,0\}$ \Rightarrow $\{1,1\}$ \Rightarrow $\{0,1\}$ transition. When the {MS, WS}= $\{0,1\}$ state is reached, it means the LCM is ready to be turned on.

Although user can use Read Status command in a polling loop to make sure {MS,WS}={0,1} before proceeding with the normal operation, however, it may be simpler to just issue Set Display Enable command every 0.5~2 second, repeatedly, together with other LCM optimization settings, such as BR, CEN, TC, etc.

The above "Periodical re-initializing" approach is also an effective safeguard against accidental display off events such as

- ESD strikes
- Mechanical shocks causing LCM connector to malfunction temporarily

HARDWARE VS. SOFTWARE RESET

The auto-MTP-READ is only performed for hardware RESET (power-ON and RST pin), but not for software RESET command. This enables the ICs to turn on display faster without the delay caused by MTP-Read.

It is recommended to use the software *RESET* for such operation control purpose and use hardware RESET only during the event of power up and power down.

OPERATION FOR THE LCM MAKERS

Always ERASE the MTP NV memory cells, before starting the Write process.

MTP OPERATION FOR LCM MAKERS

1. High voltage supply and timer setting

In MTP Program operation, two different high voltages are needed. In chip design, one high voltage is generated by internal charge pump (V_{LCD}), the other high voltage must be input from TST4 by external voltage source.

 V_{LCD} value is controlled by register MTP3 and MTP2. The default values of these two registers are appropriate for most applications.

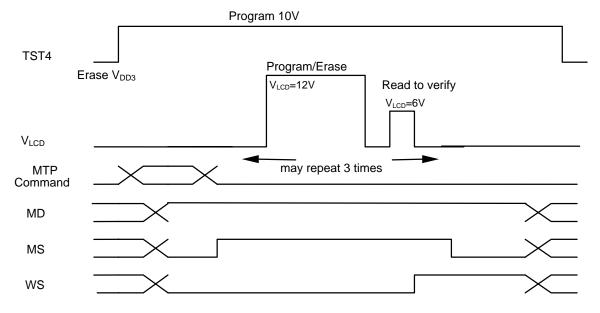
External TST4 power source is required for MTP Program operation. MTP Programming speed depends on the TST4 voltage. Considering the ITO trace resistance in COG modules, it is recommended to program the MTP cells one at a time, so that the required 10V at TST4 can be maintained with proper consistency.

No external power source is required for MTP Erase and Read operation. For these MTP operation, TST4 should be open, or connected to V_{DD3} .

	V _{LCD}	TST4 (external input)
Program	MTP3 : 3eh (12V)	10V (1mA per bit)
Erase	MTP3 : 3eh (12V)	Floating or V _{DD3}
Read	MTP2:02h (6V)	Floating or V _{DD3}

Note:

- 1. Do Erase before Program and Program one bit at a time.
- 2. When doing MTP Program or Erase, it's required to use V_{DD2/3} 3.0V.


2. Read MTP status bits

High-Voltage Mixed-Signal IC

With normal Get Status method (CD=0, W/R=1), MTP operation status can be monitored in the real time. There are 3 status bits (WS, MD, MS) in status register. MTP control circuit will read to verify if the operation (program, erase) success or not.

WS: If the operation succeeded, and current operation will be ended with WS=1. If it failed, last operation will be automatically retried two more times. If it fails 3 times, WS will be set to 0 and the operation is aborted.

MD is MTP ID, which is either 1 for MTP IC. No transition.

MTP status bits, TST4 & V_{LCD} Waveform

MTP CELL VALUE USAGE

There are 8 MTP cell bits. They are divided into two groups for different trimming purpose.

(1) MTP[5:0]: V_{LCD} Trim

When PMO[5]=1: PM with trim = PM - PMO[4:0] When PMO[5]=0: PM with trim = PM + PMO[4:0]

(2) MTP[7:6]: For LCM manufacturer's configuration.

MTP COMMAND SEQUENCE SAMPLE CODES

The following tables are examples of command sequence for MTP Program and Erase operations. These are only to demonstrate some "typical, generic" scenarios. Designers are encouraged to study related sections of the datasheet and find out what the best parameters and control sequences are for their specific design needs.

MTP operations (Erase, Program, Read) and Set Display ON is mutual exclusive. There is no harm done to the IC or the LCM if this is violated. However, the violating commands will be ignored.

Type Required: These items are required

 $\overline{\underline{C}}$ ustomized: These items are not necessary if customer parameters are the same as default $\underline{\underline{A}}$ dvanced: We recommend new users to skip these commands and use default values.

Optional: These commands depend on what users want to do.

C/D The type of the interface cycle. It can be either Command (0) or Data (1)

W/R The direction of dataflow of the cycle. It can be either Write (0) or Read (1).

(1) MTP Program Sample Code

Туре	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Chip Action	Comments
R	0	0	1	0	1	0	0	0	1	1	Set Line Rate	Set LC[4:3]=11b
R	0	0	1	1	1	1	0	1	0	0	Set V _{MTP1} Potentiometer	Set MTP V _{LCD}
R	0	0	0	0	0	0	0	0	0	0		MTP2: 02h(6V)
R	0	0	1	1	1	1	0	1	0	1	Set V _{MTP2} Potentiometer	Set MTP VLCD
R	0	0	0	0	1	1	1	0	1	0		MTP3: 3eh(12V)
R	0	0	1	1	1	1	0	1	1	0	Set MTP Write Timer	Set MTP Timer
R	0	0	0	0	0	0	0	1	1	1		MTP4: 23h(100mS)
R	0	0	1	1	1	1	0	1	1	1	Set MTP Read Timer	Set MTP Timer
R	0	0	0	0	0	0	0	0	1	0		MTP5: 04h(10mS)
R	0	0	1	0	1	1	1	0	0	1	Set MTP Write Mask	Set MTP Bit Mask
С	0	0	0	0	0	0	0	0	0	1	МТРМ	Ex: To program D0 to be 1, set MTPM to 00000001b*
R		_								-		Apply TST4 voltage
K	_	_			_	_	_			-		Program: 10V
R	0	0	1	0	1	1	1	0	0	0	Set MTP Control	Set MTPC[3]=1
R	0	0	1	•	0	0	1	0	1	1		Set MTPC[2:0]=011
R	0	1	-	-	-	-	-	WS	-	MS	Get Status & PM	Check MTP Status until MS=0 and WS=1
R												Remove TST4 voltage
R											V _{DD} =0V	Power OFF

^{*} It is recommended that users program one bit at a time.

High-Voltage Mixed-Signal IC

MTP Erase Sample Code (2)

Туре	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Chip action	Comments
R	0	0	1	0	1	0	0	0	1	1	Set Line Rate	Set LC[4:3]=11b
R	0	0	1	1	1	1	0	1	0	0	Set V _{MTP1} Potentiometer	Set MTP V _{LCD}
R	0	0	0	0	0	0	0	0	0	0		MTP2: 02h(6V)
R	0	0	1	1	1	1	0	1	0	1	Set V _{MTP2} Potentiometer	Set MTP V _{LCD}
R	0	0	0	0	1	1	1	0	1	0		MTP3: 3eh(12V)
R	0	0	1	1	1	1	0	1	1	0	Set MTP Write Timer	Set MTP Timer
R	0	0	0	0	0	0	0	1	1	1		MTP4: 23h(100mS)
R	0	0	1	1	1	1	0	1	1	1	Set MTP Read Timer	Set MTP Timer
R	0	0	0	0	0	0	0	0	1	0		MTP5: 04h(10mS)
R	0	0	1	0	1	1	1	0	0	1	Set MTP Write Mask	Set MTP Bit Mask
С	0	0	1	1	1	1	1	1	1	1	МТРМ	Ex: To erase D[7:0], set MTPM to 11111111b*
R	0	0	1	0	1	1	1	0	0	0	Set MTP Control	Set MTPC[3]=1
R	0	0	•	•	0	0	1	0	1	0		Set MTPC[2:0]=010
R	0	1	-	-	-	-	-	ws	-	MS	Get Status & PM	Check MTP Status
												until MS=0, WS=1
R											V_{DD} =0 V	Power OFF

^{*} It is recommended that users clear all the bits to be programmed.

SAMPLE POWER MANAGEMENT COMMAND SEQUENCES

The following tables are examples of command sequence for power-up, power-down and display ON/OFF operations. These are only to demonstrate some "typical, generic" scenarios. Designers are encouraged to study related sections of the datasheet and find out what the best parameters and control sequences are for their specific design needs.

C/D The type of the interface cycle. It can be either Command (0) or Data (1).

W/R The direction of dataflow of the cycle. It can be either Write (0) or Read (1).

Type Required: These items are required

<u>C</u>ustomized: These items are not necessary if customer parameters are the same as default Advanced: We recommend new users to skip these commands and use default values.

Optional: These commands depend on what users want to do.

Power-Up

Туре	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Chip action	Comments
R	-	-	-	ı	_	-	-	-	-	-	Turn on V_{DD} and $V_{DD2/3}$	Wait until V _{DD} , V _{DD2/3} are stable
R	-	_	ı	ı	-	-	-	-	-	-	Set RST pin Low	Wait 1mS after RST is Low
R	-	-	ı	ı	-	ı	1	ı	ı	1	Set RST pin High	
R	_	-	ı	1	-	1	1	-	ı	1	Automatic Power-ON Reset.	Wait 150mS after V _{DD} is ON
R	0	0	0	0	1	1	0	0	1	0 0	Set APC Command	Turn off SRAM power saving
С	0	0	0	0	1	0	0	1	#	#	Set Temp. Compensation	Set up LCD format specific
С	0	0	1	1	0	0	0	#	#	#	Set LCD Mapping	parameters, MX, MY, etc.
Α	0	0	1	0	1	0	0	0	#	#	Set Line Rate	Fine tune for power, flicker,
С	0	0	1	1	0	1	0	1	#	#	Set Gray Shade	contrast, and shading.
С	0	0	1	1	1	0	1	0	#	#	Set Bias Ratio	LCD apositio aparating
R	0	0	1 #	0 #	0 #	0 #	0 #	0 #	0 #	1 #	Set V _{BIAS} Potentiometer	LCD specific operating voltage setting
	1	0	#	#	#	#	#	#	#	#		
0											Write display RAM	Set up display image
	1	0	#	#	#	#	#	#	#	#		
R	0	0	1	0	1	0	1	1	1	1	Set Display Enable	

Power-Down

	Type	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Chip action	Comments
Ī	R	0	0	1	1	1	0	0	0	1	0	System Reset	
	R	1	_	-	-	-	-	-	1	_	_	Draining capacitor	Wait ~1mS before V _{DD} OFF

DISPLAY-OFF

Type	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Chip action	Comments
R	0	0	1	0	1	0	1	1	1	0	Set Display Disable	
С	1 1	0 0	# #	# #	# #	# #	# · · #	# #	# #	# #	Write display RAM	Set up display image (Image update is optional. Data in the RAM is retained through the SLEEP state.)
R	0	0	1	0	1	0	1	1	1	1	Set Display Enable	

ABSOLUTE MAXIMUM RATINGS

In accordance with IEC134, note 1 and 2.

Symbol	Parameter	Min.	Max.	Unit
V_{DD}	Logic Supply voltage	-0.3	+4.0	V
V_{DD2}	LCD Generator Supply voltage	-0.3	+4.0	V
V_{DD3}	Analog Circuit Supply voltage	-0.3	+4.0	V
$V_{DD2/3}$ - V_{DD}	Voltage difference between V _{DD} and V _{DD2/3}		1.6	V
V_{LCD}	LCD Generated voltage (-30°C ~ +80°C)	-0.3	+19.8	V
V _{IN}	Digital input signal	-0.4	V _{DD} + 0.5	V
T _{OPR}	Operating temperature range	-30	+85	°C
T _{STR}	Storage temperature	-55	+125	°C

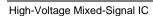
Notes

- 1. V_{DD} is based on $V_{SS} = 0V$
- 2. Stress beyond ranges listed above may cause permanent damages to the device.

SPECIFICATIONS

DC CHARACTERISTICS

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V_{DD}	Supply for digital circuit		1.65		3.45	V
$V_{DD2/3}$	Supply for bias & pump		2.5		3.45	V
V_{LCD}	Charge pump output	$V_{DD2/3} \ge 2.6V, 25^{\circ}C$		14	15	V
V _D	LCD data voltage	$V_{DD2/3} \ge 2.6V, 25^{\circ}C$	0.89		1.78	V
V _{IL}	Input logic LOW				$0.2V_{DD}$	V
V _{IH}	Input logic HIGH		0.8V _{DD}			V
V_{OL}	Output logic LOW				$0.2V_{DD}$	V
V _{OH}	Output logic HIGH		$0.8V_{DD}$			V
I₁∟	Input leakage current				1.5	μΑ
I _{SB}	Standby current	$V_{DD} = V_{DD2/3} = 3.3V,$ Temp = 85 °C			50	μА
C _{IN}	Input capacitance			5	10	pF
C _{OUT}	Output capacitance			5	10	pF
R _{0N(SEG)}	SEG output impedance	V _{LCD} = 15V		1.5	2.0	kΩ
R _{0N(COM)}	COM output impedance	V _{LCD} = 15V		1.5	2.0	kΩ
f _{LINE}	Average Line rate	LC[4:3] = 10b	-10%	21.1	+10%	kHz


POWER CONSUMPTION

 $V_{DD} = 2.7V$, Bias Ratio = 11, PM = 78,

Panel Loading (PC[1:0]) = 10b, Line Rate = 10b,

V_{LCD} = 14V, Mux Rate = 128, $C_L = 330nF$, OTP=00H, Bus mode = 6800, $C_B = 2.2\mu F$, All HV outputs are open circuit. Temperature = 25°C,

Display Pattern	Conditions	Typ. (μA)	Max. (μA)
All-OFF	Bus = idle	576	806
2-pixel checker	Bus = idle	704	986
-	Bus = idle (standby current)	-	5

AC CHARACTERISTICS

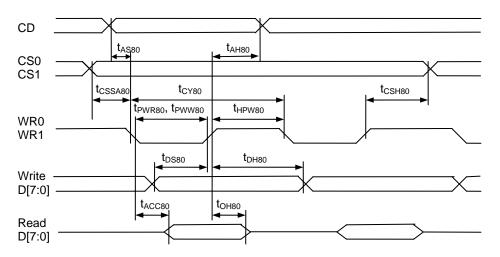


FIGURE 13: Parallel Bus Timing Characteristics (for 8080 MCU)

 $(2.5V \le V_{DD} < 3.3V, Ta = -30 \text{ to } +85^{\circ}C)$

Symbol	Signal	Description	Condition	Min.	Max.	Units
t _{AS80} t _{AH80}	CD	Address setup time Address hold time		0	ı	nS
t _{CY80}		System cycle time (read) (write)		170 130	1	nS
t _{PWR80}	WR1	Pulse width (read)		85	ı	nS
t _{PWW80}	WR0	Pulse width (write)		65	ı	nS
t _{HPW80}	WR0, WR1	High pulse width (read) (write)		85 65	1	nS
t _{DS80} t _{DH80}	D0~D7	Data setup time Data hold time		30 0	1	nS
t _{ACC80} t _{OH80}		Read access time Output disable time	C _L = 100pF	- 1 - 1	65 30	nS
tcssa80 t _{CSH80}	CS1/CS0	Chip select setup time Chip select hold time		5 5		nS

$(1.65V \le V_{DD} < 2.5V, Ta = -30 \text{ to } +85^{\circ}C)$

Symbol	Signal	Description	Condition	Min.	Max.	Units
t _{AS80} t _{AH80}	CD	Address setup time Address hold time		0 0	-	nS
t _{CY80}		System cycle time (read) (write)		320 270	-	nS
t _{PWR80}	WR1	Pulse width (read)		160	_	nS
t _{PWW80}	WR0	Pulse width (write)		135	-	nS
t _{HPW80}	WR0, WR1	High pulse width (read) (write)		160 135	-	nS
t _{DS80} t _{DH80}	D0~D7	Data setup time Data hold time		60 0	ı	nS
t _{ACC80} t _{OH80}		Read access time Output disable time	C _L = 100pF		120 60	nS
t _{CSSA80} t _{CSH80}	CS1/CS0	Chip select setup time Chip select hold time		10 10		nS

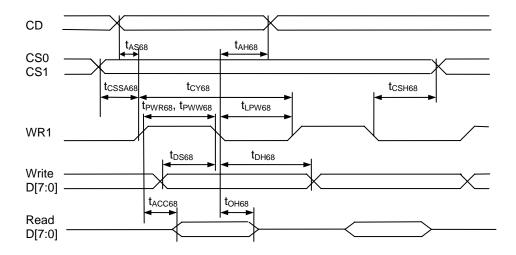


FIGURE 14: Parallel Bus Timing Characteristics (for 6800 MCU)

 $(2.5V \le V_{DD} < 3.3V, Ta = -30 \text{ to } +85^{\circ}C)$

Symbol	Signal	Description	Condition	Min.	Max.	Units
t _{AS68} t _{AH68}	CD	Address setup time Address hold time		0	ı	nS
t _{CY68}		System cycle time (read) (write)		170 130	1	nS
t _{PWR68}	WR1	Pulse width (read)		85	-	nS
t _{PWW68}		Pulse width (write)		65	-	nS
t _{LPW68}		Low pulse width (read) (write)		85 65	1	nS
t _{DS68} t _{DH68}	D0~D7	Data setup time Data hold time		30 0	ı	nS
t _{ACC68} t _{OH68}		Read access time Output disable time	C _L = 100pF	-	70 30	nS
tcssa68 t _{csh68}	CS1/CS0	Chip select setup time Chip select hold time		5 5		nS

$(1.65V \le V_{DD} < 2.5V, Ta = -30 \text{ to } +85^{\circ}C)$

Symbol	Signal	Description	Condition	Min.	Max.	Units
t _{AS68} t _{AH68}	CD	Address setup time Address hold time		0 0	-	nS
t _{CY68}		System cycle time (read) (write)		320 270	-	nS
t _{PWR68}	WR1	Pulse width (read)		160	_	nS
t _{PWW68}		Pulse width (write)		135	-	nS
t _{LPW68}		Low pulse width (read) (write)		160 135	_	nS
t _{DS68}	D0~D7	Data setup time Data hold time		60 0	_	nS
t _{ACC68} t _{OH68}		Read access time Output disable time	C _L = 100pF	-	120 60	nS
tcssa68 t _{csh68}	CS1/CS0	Chip select setup time Chip select hold time		10 10		nS

High-Voltage Mixed-Signal IC

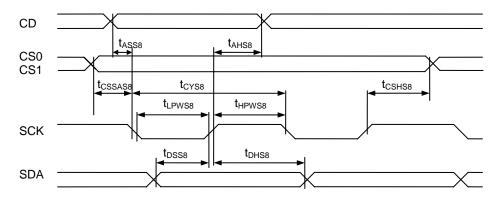


FIGURE 15: Serial Bus Timing Characteristics (for S8 / S8uc)

$(2.5V \le V_{DD} < 3.3V, Ta = -30 \text{ to } +85^{\circ}C)$

Symbol	Signal	Description	Condition	Min.	Max.	Units
t _{ASS8}	CD	Address setup time		0	-	nS
t _{AHS8}	CD	Address hold time		0	-	nS
t _{CYS8}		System cycle time		40	-	nS
t _{LPWS8}	SCK	Low pulse width		20	-	nS
t _{HPWS8}		High pulse width		20	-	nS
t _{DSS8} t _{DHS8}	SDA	Data setup time		15 0	-	nS
tcssas8 t _{cshs8}	CS1/CS0	Chip select setup time Chip select hold time		5 5		nS

$(1.65V \le V_{DD} < 2.5V, Ta = -30 \text{ to } +85^{\circ}C)$

Symbol	Signal	Description	Condition	Min.	Max.	Units
t _{ASS8}	CD	Address setup time		0	1	nS
t _{AHS8}	CD	Address hold time		0	ı	nS
t _{CYS8}		System cycle time		75	ı	nS
t _{LPWS8}	SCK	Low pulse width		37	_	nS
t _{HPWS8}		High pulse width		37	_	nS
t _{DSS8} t _{DHS8}	SDA	Data setup time Data disable time		30 0	-	nS
tcssas8 t _{cshs8}	CS1/CS0	Chip select setup time Chip select hold time		10 10		nS

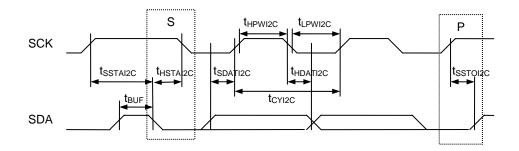


FIGURE 16: Serial bus timing characteristics (for I²C)

 $(2.5V \le V_{DD} < 3.3V, Ta = -30 \text{ to } +85^{\circ}C)$

Symbol	Signal	Description	Condition	Min.	Max.	Units
t _{CYI2C}		SCK cycle time (read) (write)	tr+tf ≤ 100nS	580 275	-	nS
t _{LPWI2C}	SCK	Low pulse width (read) (write)		290 165	ı	nS
t _{HPWI2C}		High pulse width (read) (write)		290 110	1	nS
tr, tf		Rise time and fall time		1	1	nS
t _{SSDAI2C}		Data setup time		28	ı	nS
t _{HDAI2C}		Data hold time		11	ı	nS
t _{SSTAI2C}	SCK	START Setup time		28	1	nS
t _{HSTAI2C}	SDA	START Hold time		28	ı	nS
t _{SSTOI2C}		STOP setup time		28	_	nS
T _{BUF}		Bus Free time between STOP and START condition		165	-	nS

 $(1.65V \le V_{DD} < 2.5V, Ta = -30 \text{ to } +85^{\circ}C)$

Symbol	Signal	Description	Condition	Min.	Max.	Units
t _{CYI2C}		SCK cycle time (read) (write)	tr+tf ≤ 100nS	750 330	-	nS
t _{LPWI2C}	SCK	Low pulse width (read) (write)		375 200	-	nS
t _{HPWI2C}		High pulse width (read) (write)		375 130	-	nS
tr, tf		Rise time and fall time		_	_	nS
tssdai2C		Data setup time		55	-	nS
t _{HDAI2C}		Data hold time		11	-	nS
t _{SSTAI2C}	SCK	START Setup time		28	-	nS
t _{HSTAI2C}	SDA	START Hold time		60	_	nS
tsstoi2C		STOP setup time		28	_	nS
T _{BUF}		Bus Free time between STOP and START condition		220		nS

FIGURE 17: Reset Characteristics

 $(1.65V \le V_{DD} < 3.3V, Ta = -30 \text{ to } +85^{\circ}C)$

Symbol	Signal	Description	Condition	Min.	Max.	Units
t _{RW}	RST	Reset low pulse width		3	_	μS
t _{RD}	RST, WR	Reset to WR pulse delay		10	_	mS

PHYSICAL DIMENSIONS

PAD COORDINATES

DIE SIZE:

 $8751.8 \times 1078.8 \pm 40 \,\mu\text{M}^2$

DIE THICKNESS:

 $0.4 \pm 0.02 \, \text{mm}$

BUMP HEIGHT:

17 μM

 $(H_{MAX}$ - $H_{MIN})$ within die < 2 μM

COM/SEG SIZE:

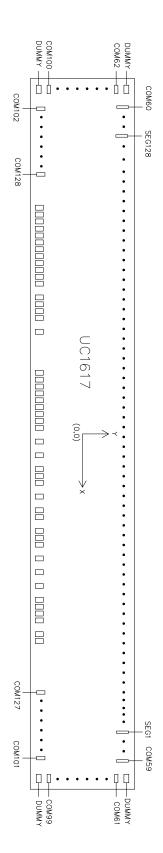
 $82 \times 29 \mu M^2$

MINIMUM BUMP PITCH:

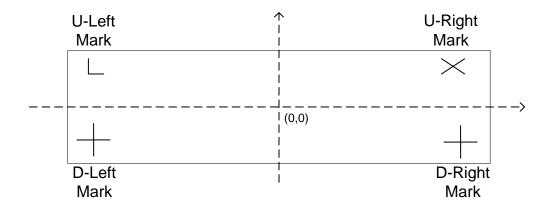
SEG: $45 \mu M (typ.)$ COM: $45 \mu M (typ.)$

BUMP GAP:

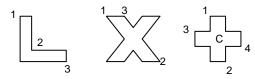
COM/SEG: 16 μ M (typ.)


14 μM (min.)

COORDINATE ORIGIN:


Chip center

PAD REFERENCE:


Pad center

ALIGNMENT MARK INFORMATION

SHAPE OF THE ALIGNMENT MARK:

Note:

Alignment mark is on Metal3 under Passivation.

The "x" and "+" marks are symmetric both horizontally and vertically.

COORDINATES:

	U-Lef	t Mark	U-Righ	nt Mark
	Х	Y	X	Υ
1	-4218.6	390.2	4192.7	390.2
2	-4206.9	373.3	4221.2	361.7
3	-4190.1	361.7	4200.2	390.2

	D-Lef	t Mark	D-Righ	t Mark
	X	Y	Х	Υ
1	-3575.3	-420.5	3550	-420.5
2	-3565.3	-470.5	3560	-470.5
3	-3586.3	-440.5	3530	-440.5
4	-3554.3	-450.5	3580	-450.5
С	-3570.3	-445.5	3555	-445.5

(The values of the x-coordinate and the y-coordinate in the table are after-rounded.)

TOP METAL AND PASSIVATION:

FOR MTP PROCESS CROSS-SECTION

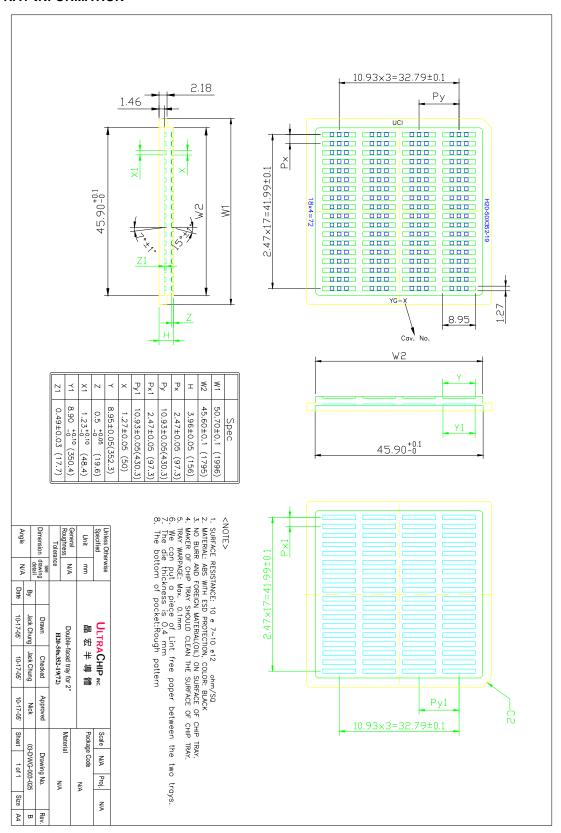
PAD COORDINATES

#	Pad	X	Υ	W	Н
1	DUMMY	-4287	471.5	82	29
2	COM62	-4287	426.5	82	29
3	COM64	-4287	381.5	82	29
4	COM66	-4287	336.5	82	29
5	COM68	-4287	291.5	82	29
6	COM70	-4287	246.5	82	29
7	COM72	-4287	201.5	82	29
8	COM74	-4287	156.5	82	29
9	COM76	-4287	111.5	82	29
10	COM78	-4287	66.5	82	29
11	COM80	-4287	21.5	82	29
12	COM82	-4287	-23.5	82	29
13	COM84	-4287	-68.5	82	29
14	COM86	-4287	-113.5	82	29
15	COM88	-4287	-158.5	82	29
16	COM90	-4287	-203.5	82	29
17	COM92	-4287	-248.5	82	29
18	COM94	-4287	-293.5	82	29
19	COM96	-4287	-338.5	82	29
20	COM98	-4287	-383.5	82	29
21	COM100	-4287	-428.5	82	29
22	DUMMY	-4287	-473.5	82	29
23	COM102	-4207.5	-450.5	29	82
24	COM104	-4162.5	-450.5	29	82
25	COM106	-4117.5	-450.5	29	82
26	COM108	-4072.5	-450.5	29	82
27	COM110	-4027.5	-450.5	29	82
28	COM112	-3982.5	-450.5	29	82
29	COM114	-3937.5	-450.5	29	82
30	COM116	-3892.5	-450.5	29	82
31	COM118	-3847.5	-450.5	29	82
32	COM120	-3802.5	-450.5	29	82
33	COM122	-3757.5	-450.5	29	82
34	COM124	-3712.5	-450.5	29	82
35	COM126	-3667.5	-450.5	29	82
36	COM128	-3622.5	-450.5	29	82
37	D0	-3509.3	-449.5	54	84
38	D1	-3256.3	-449.5	54	84
39	D2	-3186.3	-449.5	54	84
40	D3	-2933.3	-449.5	54	84
41	D4	-2863.3	-449.5	54	84
42	D5	-2610.3	-449.5	54	84
43	D6	-2540.3	-449.5	54	84
44	D7	-2287.3	-449.5	54	84
45	RST_	-2217.3	-449.5	54	84
46	CS0	-1964.3	-449.5	54	84
47	VDDX	-1894.3	-449.5	54	84
48	CS1	-1824.3	-449.5	54	84
49	CD	-1655.3	-449.5	54	84
50	WR0	-1402.3	-449.5	54	84
51	VDDX	-1332.3	-449.5	54	84
52	WR1	-1262.3	-449.5	54	84
53	TST4	-891.3	-449.5	54	84
54	TST4	-821.3	-449.5	54	84

#	Pad	X	Υ	W	Н
55	BM0	-652.3	-449.5	54	84
56	VDDX	-582.3	-449.5	54	84
57	BM1	-512.3	-449.5	54	84
58	TST2	-343.3	-449.5	54	84
59	ID0	-79.8	-449.5	54	84
60	VDDX	-9.8	-449.5	54	84
61	ID1	60.3	-449.5	54	84
62	VSS	229.3	-449.5	54	84
63	VSS	299.3	-449.5	54	84
64	VSS2	527.6	-449.5	54	84
65	VSS2	597.6	-449.5	54	84
66	VSS2	667.6	-449.5	54	84
67	VSS2	737.6	-449.5	54	84
68	VDD3	807.6	-449.5	54	84
69	VDD2	1079.5	-449.5	54	84
70	VDD2	1149.5	-449.5	54	84
71	VDD	1609.9	-449.5	54	84
72	VB0P	1679.9	-449.5	54	84
73	VB0P	1749.9	-449.5	54	84
74	VB0P	1819.9	-449.5	54	84
75	VB1P	2166.9	-449.5	54	84
76	VB1P	2236.9	-449.5	54	84
77	VB1P	2306.9	-449.5	54	84
78	VB1N	2376.9	-449.5	54	84
79	VB1N	2446.9	-449.5	54	84
80	VB1N	2516.9	-449.5	54	84
81	VB0N	2863.9	-449.5	54	84
82	VB0N	2933.9	-449.5	54	84
83	VB0N	3003.9	-449.5	54	84
84	VLCDIN	3219	-449.5	54	84
85	VLCDOUT	3289	-449.5	54	84
86	COM127	3622.5	-450.5	29	82
87	COM125	3667.5	-450.5	29	82
88	COM123	3712.5	-450.5	29	82
89	COM121	3757.5	-450.5	29	82
90	COM119	3802.5	-450.5	29	82
91	COM117	3847.5	-450.5	29	82
92	COM115	3892.5	-450.5	29	82
93	COM113	3937.5	-450.5	29	82
94	COM111	3982.5	-450.5	29	82
95	COM109	4027.5	-450.5	29	82
96	COM107	4072.5	-450.5	29	82
97	COM105	4117.5	-450.5	29	82
98	COM103	4162.5	-450.5	29	82
99	COM101	4207.5	-450.5	29	82
100	DUMMY	4287	-473.5	82	29
101	COM99	4287	-428.5	82	29
102	COM97	4287	-383.5	82	29
103	COM95	4287	-338.5	82	29
104	COM93	4287	-293.5	82	29
105	COM91	4287	-248.5	82	29
106	COM89	4287	-203.5	82	29
107	COM87	4287	-158.5	82	29
108	COM85	4287	-113.5	82	29

#	Pad	X	Υ	W	Н
109	COM83	4287	-68.5	82	29
110	COM81	4287	-23.5	82	29
111	COM79	4287	21.5	82	29
112	COM77	4287	66.5	82	29
113	COM75	4287	111.5	82	29
114	COM73	4287	156.5	82	29
115	COM71	4287	201.5	82	29
116	COM69	4287	246.5	82	29
117	COM67	4287	291.5	82	29
118	COM65	4287	336.5	82	29
119	COM63	4287	381.5	82	29
120	COM61	4287	426.5	82	29
121	DUMMY	4287	471.5	82	29
122	COM59	4207.5	450.5	29	82
123	COM57	4162.5	450.5	29	82
124	COM55	4117.5	450.5	29	82
125	COM53	4072.5	450.5	29	82
126	COM51	4027.5	450.5	29	82
127	COM49	3982.5	450.5	29	82
128	COM47	3937.5	450.5	29	82
129	COM45	3892.5	450.5	29	82
130	COM43	3847.5	450.5	29	82
131	COM41	3802.5	450.5	29	82
132	COM39	3757.5	450.5	29	82
133	COM37	3712.5	450.5	29	82
134	COM35	3667.5	450.5	29	82
135	COM33	3622.5	450.5	29	82
136	COM31	3577.5	450.5	29	82
137	COM29	3532.5	450.5	29	82
138	COM27	3487.5	450.5	29	82
139	COM25	3442.5	450.5	29	82
140	COM23	3397.5	450.5	29	82
141	COM21	3352.5	450.5	29	82
142	COM19	3307.5	450.5	29	82
143	COM17	3262.5	450.5	29	82
144	COM15	3217.5	450.5	29	82
145	COM13	3172.5	450.5	29	82
146	COM11	3127.5	450.5	29	82
147	COM9	3082.5	450.5	29	82
148	COM7	3037.5	450.5	29	82
149	COM5	2992.5	450.5	29	82
150	COM3	2947.5	450.5	29	82
151	COM1	2902.5	450.5	29	82
152	SEG1	2857.5	450.5	29	82
153	SEG2	2812.5	450.5	29	82
154	SEG3	2767.5	450.5	29	82
155	SEG4	2722.5	450.5	29	82
156	SEG5	2677.5	450.5	29	82
157	SEG6	2632.5	450.5	29	82
158	SEG7	2587.5	450.5	29	82
159	SEG8	2542.5	450.5	29	82
160	SEG9	2497.5	450.5	29	82
161	SEG10	2452.5	450.5	29	82
162	SEG11	2407.5	450.5	29	82
163	SEG12	2362.5	450.5	29	82

#	Pad	Х	Υ	W	Н
164	SEG13	2317.5	450.5	29	82
165	SEG14	2272.5	450.5	29	82
166	SEG15	2227.5	450.5	29	82
167	SEG16	2182.5	450.5	29	82
168	SEG17	2137.5	450.5	29	82
169	SEG18	2092.5	450.5	29	82
170	SEG19	2047.5	450.5	29	82
171	SEG20	2002.5	450.5	29	82
172	SEG21	1957.5	450.5	29	82
173	SEG22	1912.5	450.5	29	82
174	SEG23	1867.5	450.5	29	82
175	SEG24	1822.5	450.5	29	82
176	SEG25	1777.5	450.5	29	82
177	SEG26	1732.5	450.5	29	82
178	SEG27	1687.5	450.5	29	82
179	SEG28	1642.5	450.5	29	82
180	SEG29	1597.5	450.5	29	82
181	SEG30	1552.5	450.5	29	82
182	SEG31	1507.5	450.5	29	82
183	SEG31	1462.5	450.5	29	82
184		1417.5	450.5		
	SEG33			29	82
185	SEG34	1372.5	450.5	29	82
186 187	SEG35	1327.5	450.5	29	82
	SEG36	1282.5	450.5	29	82
188	SEG37	1237.5	450.5	29	82
189	SEG38	1192.5	450.5	29	82
190	SEG39	1147.5	450.5	29	82
191	SEG40	1102.5	450.5	29	82
192	SEG41	1057.5	450.5	29	82
193	SEG42	1012.5	450.5	29	82
194	SEG43	967.5	450.5	29	82
195	SEG44	922.5	450.5	29	82
196	SEG45	877.5	450.5	29	82
197	SEG46	832.5	450.5	29	82
198	SEG47	787.5	450.5	29	82
199	SEG48	742.5	450.5	29	82
200	SEG49	697.5	450.5	29	82
201	SEG50	652.5	450.5	29	82
202	SEG51	607.5	450.5	29	82
203	SEG52	562.5	450.5	29	82
204	SEG53	517.5	450.5	29	82
205	SEG54	472.5	450.5	29	82
206	SEG55	427.5	450.5	29	82
207	SEG56	382.5	450.5	29	82
208	SEG57	337.5	450.5	29	82
209	SEG58	292.5	450.5	29	82
210	SEG59	247.5	450.5	29	82
211	SEG60	202.5	450.5	29	82
212	SEG61	157.5	450.5	29	82
213	SEG62	112.5	450.5	29	82
214	SEG63	67.5	450.5	29	82
215	SEG64	22.5	450.5	29	82
216	SEG65	-22.5	450.5	29	82
217	SEG66	-67.5	450.5	29	82
218	SEG67	-112.5	450.5	29	82


#	Pad	Х	Υ	W	Н
219	SEG68	-157.5	450.5	29	82
220	SEG69	-202.5	450.5	29	82
221	SEG70	-247.5	450.5	29	82
222	SEG71	-292.5	450.5	29	82
223	SEG72	-337.5	450.5	29	82
223	SEG72 SEG73			29	82
-		-382.5	450.5		
225	SEG74	-427.5	450.5	29	82
226	SEG75	-472.5	450.5	29	82
227	SEG76	-517.5	450.5	29	82
228	SEG77	-562.5	450.5	29	82
229	SEG78	-607.5	450.5	29	82
230	SEG79	-652.5	450.5	29	82
231	SEG80	-697.5	450.5	29	82
232	SEG81	-742.5	450.5	29	82
233	SEG82	-787.5	450.5	29	82
234	SEG83	-832.5	450.5	29	82
235	SEG84	-877.5	450.5	29	82
236	SEG85	-922.5	450.5	29	82
237	SEG86	-967.5	450.5	29	82
238	SEG87	-1012.5	450.5	29	82
239	SEG88	-1057.5	450.5	29	82
240	SEG89	-1102.5	450.5	29	82
241	SEG90	-1147.5	450.5	29	82
242	SEG91	-1192.5	450.5	29	82
243	SEG92	-1237.5	450.5	29	82
244	SEG93	-1282.5	450.5	29	82
245	SEG94	-1327.5	450.5	29	82
246	SEG95	-1372.5	450.5	29	82
247	SEG96	-1417.5	450.5	29	82
248	SEG97	-1462.5	450.5	29	82
249	SEG98	-1507.5	450.5	29	82
250	SEG99	-1552.5	450.5	29	82
251	SEG100	-1597.5	450.5	29	82
252	SEG101	-1642.5	450.5	29	82
253	SEG102	-1687.5	450.5	29	82
254	SEG103	-1732.5	450.5	29	82
255	SEG104	-1777.5	450.5	29	82
256	SEG105	-1822.5	450.5	29	82
257	SEG106	-1867.5	450.5	29	82
258	SEG107	-1912.5	450.5	29	82
259	SEG108	-1957.5	450.5	29	82
260	SEG109	-2002.5	450.5	29	82
261	SEG110	-2047.5	450.5	29	82
262	SEG111	-2092.5	450.5	29	82
263	SEG112	-2137.5	450.5	29	82
264	SEG113	-2182.5	450.5	29	82
265	SEG114	-2102.5	450.5	29	82
266	SEG115	-2272.5	450.5	29	82
	SEG116				
267		-2317.5	450.5	29	82
268	SEG117	-2362.5	450.5	29	82
269	SEG118	-2407.5	450.5	29	82
270	SEG119	-2452.5	450.5	29	82
271	SEG120	-2497.5	450.5	29	82
272	SEG121	-2542.5	450.5	29	82
273	SEG122	-2587.5	450.5	29	82

#	Pad	Х	Υ	W	Н
274	SEG123	-2632.5	450.5	29	82
275	SEG124	-2677.5	450.5	29	82
276	SEG125	-2722.5	450.5	29	82
277	SEG126	-2767.5	450.5	29	82
278	SEG127	-2812.5	450.5	29	82
279	SEG128	-2857.5	450.5	29	82
280	COM2	-2902.5	450.5	29	82
281	COM4	-2947.5	450.5	29	82
282	COM6	-2992.5	450.5	29	82
283	COM8	-3037.5	450.5	29	82
284	COM10	-3082.5	450.5	29	82
285	COM12	-3127.5	450.5	29	82
286	COM14	-3172.5	450.5	29	82
287	COM16	-3217.5	450.5	29	82
288	COM18	-3262.5	450.5	29	82
289	COM20	-3307.5	450.5	29	82
290	COM22	-3352.5	450.5	29	82
291	COM24	-3397.5	450.5	29	82
292	COM26	-3442.5	450.5	29	82
293	COM28	-3487.5	450.5	29	82
294	COM30	-3532.5	450.5	29	82
295	COM32	-3577.5	450.5	29	82
296	COM34	-3622.5	450.5	29	82
297	COM36	-3667.5	450.5	29	82
298	COM38	-3712.5	450.5	29	82
299	COM40	-3757.5	450.5	29	82
300	COM42	-3802.5	450.5	29	82
301	COM44	-3847.5	450.5	29	82
302	COM46	-3892.5	450.5	29	82
303	COM48	-3937.5	450.5	29	82
304	COM50	-3982.5	450.5	29	82
305	COM52	-4027.5	450.5	29	82
306	COM54	-4072.5	450.5	29	82
307	COM56	-4117.5	450.5	29	82
308	COM58	-4162.5	450.5	29	82
309	COM60	-4207.5	450.5	29	82

(The values of the x-coordinate and the y-coordinate in the table are after rounded.)

High-Voltage Mixed-Signal IC

TRAY INFORMATION

REVISION HISTORY

Revision	Contents	Date of Rev.
0.6	(First Release)	Oct. 31, 2005
0.7	(1) The content related to "LC[9:8] = 10b" is removed. (Section "Control Register" – LC entry, page 9; "Command Description" – (12) Set Partial Display Control, page 15; "Command Description" – (30) Set Display End, page 20)	Nov. 11, 2005
	(2) Die size is corrected: 8701.8 x 1028.8 → 8751 x 1078 μM ² (Section "Physical Dimensions", page 59)	
	(1) A typo is corrected:LRM (Line rate modulation) → FRM (Frame rate modulation)(Section "Introduction", page 1)	
	(2) V _{DD} (analog) range: 2.5V~3.3V → 2.6V~3.3V (Section "Feature Highlights", page 1)	
	(3) The V _{LCD} formula is updated. (Section "V _{LCD} Quick Reference", page 26)	
0.8	(4) The recommendation values are adjusted: Program: MTP3: 3ah → 3eh Erase: MTP3: 3ah → 3eh Read: MTP2: 00h → 02h (Section "MTP Operation for LCM Makers", page 45; "MTP Program Sample Code", page 47; "MTP Erase Sample Code", page 48)	Dec. 29, 2005
	(5) In the figure, for Program, V _{LCD} =11~12V → 12V (Section "MTP Operation for LCM Makers", page 46)	
	(6) V _{LCD} (Max.): 18.0V → 19.8V (Section "Absolute Maximum Ratings", page 50)	
	(7) V_{DD} (Max.): 3.3V \rightarrow 3.45V $V_{DD2/3}$ (Max.): 3.3V \rightarrow 3.45V f_{LINE} (Typ.): 14.2V \rightarrow 21.1V while Condition LC[4:3]=00b \rightarrow 10b (Section "Specifications" – DC Characteristics, page 51)	
	(8) The Power Consuming data are updated. (Section "Specifications" – Power Consumption, page 51)	
	(9) Most of the AC timings are updated.(Section "AC Characteristics, Pp 52~57)	
	 (1) In the Note paragraph, "use lower resistor for bus speed up to 4 MHz → 3.6 MHz (Section "Host Interface" – Host Interface Reference Circuit", page 38) 	
1.0	(2) A note on V _{DD2/3} is added. (Section "MTP Operation for LCM Makers", page 45)	Jan. 19, 2006
	(3) The AC timings of I ² C mode are adjusted. (Section "AC Characteristics, page 57)	
	(4) More pad information are provided. (Section "Physical Dimension", page 59)	
1.1	(1) One more command line is inserted into the Power Up table. (Section "MTP Operation for LCM Makers" – Sample Power Management Command Sequences, page 49)	Feb. 21, 2006

Revision	Contents	Date of Rev.
	(1) The Gray-shade table is refined. (Section "Command Description" – (21), page 18)	
	(2) Register names are modified: MTP2, MTP3, MTP4, MTP5 → MTP1, MTP2, MTP3, MTP4 (Section "Command Description" – (38)~(41), page 24)	
1.11	(3) The I ² C drawing is corrected by connecting R ₃ to SDA, too, besides to SCK. (Section "Host Interface" – Host Interface Reference Circuit, page 38)	Apr. 10, 2006
	(4) In Figure 12, Delay Allowance between V _{DD} & V _{DD2/3} , V _{DD} : 1.65V → 1.8V (Section "Reset & Power Management", page 43)	-
	(5) A standby current entry, I _{SB} , is added. (Section "Specification" - DC Characteristics, page 51)	-
	 (1) The recommended C_B is adjusted: 2.2μF/2V → 2.2μF/5V (Section "Pin Description", page 4; "Hi-V Generator Reference Circuit", page 27) 	
	(2) For V _{LCD} fine tuning, the content is updated. (Section "V _{LCD} Voltage Setting", page 25)	
1.2	(3) For S8uc interface, the description is updated. (Section "Host Interface" – Serial Interface, page 33)	Aug. 28, 2006
1.2	 (4) Figure 9, the drawing for I²C, is updated. (5) The Note paragraph is updated. (Section "Host Interface Reference Circuit", page 38) 	Aug. 20, 2000
	(6) One paragraph on MTP-READ is removed. (Section "MTP NV Memory", page 44)	
	(7) External input for Program, TST4, is adjusted: 8.5V → 10V(Section "MTP Operation for LCM Makers", Pp 45~47)	
	(1) A typo on NIV[1:0] is corrected: 10b → 11b (Section "Command Description" – (20) Set N-Line Inversion, page 17)	
	(2) The drawings are updated due to naming correction: "1617" → "1617w". (Section "Hi-V Generator Reference Circuit", page 27; "Host Interface Reference Circuit", Pp 36 ~ 38)	
1.21	(3) All figures of "auto-increment order=1" are removed. (Section "Command Description" – (35) Set Window Program Enable, page 21)	Nov. 2, 2006
	(4) The drawing for Non-MTP is replaced with one for MTP. (Section "Alignment Mark Information", - Top Metal and Passivation, page 60)	