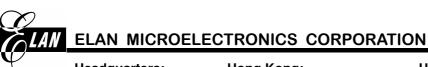
EKTF5701 15-Bit Microcontroller

Product Specification

ELAN MICROELECTRONICS CORP. April 2011

Trademark Acknowledgments: IBM is a registered trademark and PS/2 is a trademark of IBM. Windows is a trademark of Microsoft Corporation. ELAN and ELAN logo *Class* are trademarks of ELAN Microelectronics Corporation.

Copyright © 2011 by ELAN Microelectronics Corporation **All Rights Reserved**


Printed in Taiwan

The contents of this specification are subject to change without further notice. ELAN Microelectronics assumes no responsibility concerning the accuracy, adequacy, or completeness of this specification. ELAN Microelectronics makes no commitment to update, or to keep current the information and material contained in this specification. Such information and material may change to conform to each confirmed order.

In no event shall ELAN Microelectronics be made responsible for any claims attributed to errors, omissions, or other inaccuracies in the information or material contained in this specification. ELAN Microelectronics shall not be liable for direct, indirect, special incidental, or consequential damages arising from the use of such information or material.

The software (if any) described in this specification is furnished under a license or nondisclosure agreement, and may be used or copied only in accordance with the terms of such agreement.

ELAN Microelectronics products are not intended for use in life support appliances, devices, or systems. Use of ELAN Microelectronics product in such applications is not supported and is prohibited. NO PART OF THIS SPECIFICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS WITHOUT THE EXPRESSED WRITTEN PERMISSION OF ELAN MICROELECTRONICS.

Headquarters:

No. 12, Innovation 1st Road Hsinchu Science Park Hsinchu, TAIWAN 30076 Tel: +886 3 563-9977 Fax: +886 3 563-9966 webmaster@emc.com.tw http://www.emc.com.tw

Korea:

ELAN Korea Electronics Company, Ltd.

301 Dong-A Building 632 Kojan-Dong, Namdong-ku Incheon City, KOREA Tel: +82 32 814-7730 Fax: +82 32 813-7730

Hong Kong:

ELAN (HK) Microelectronics Corporation, Ltd. Flat A, 19F., World Tech Centre

95 How Ming Street, Kwun Tong Kowloon, HONG KONG Tel: +852 2723-3376 Fax: +852 2723-7780

Shenzhen:

ELAN Microelectronics Shenzhen, Ltd.

3F, SSMEC Bldg., Gaoxin S. Ave. I Shenzhen Hi-tech Industrial Park (South Area), Shenzhen CHINA 518057 Tel: +86 755 2601-0565 Fax: +86 755 2601-0500 elan-sz@elanic.com.cn

USA:

ELAN Information Technology Group (U.S.A.) PO Box 601 Cupertino, CA 95015 U.S.A. Tel: +1 408 366-8225 Fax: +1 408 366-8225

Shanghai:

ELAN Microelectronics Shanghai, Ltd.

Rm101, #3 Lane 289, Bisheng Rd., Zhangjiang Hi-Tech Park Pudong New Area, Shanghai, CHINA 201204 Tel: +86 21 5080-3866 Fax: +86 21 5080-0273 elan-sh@elanic.com.cn

Contents

1	Gen	General Description1						
2	Feat	ures		1				
3	Pin /	Assianr	nent	2				
-	3.1 Package: QFN 24 & QFN 24A2							
4	Pin l	Descrip	tions	3				
	4.1		701 Kernel Pin					
	4.2		ound Pin Functions Priority					
5		•	Block Diagram					
			-					
6			escription					
	6.1	•	ional Registers					
		6.1.1	R0: IAR (Indirect Addressing Register)					
		6.1.2	R1: BSR (Bank Selection Control Register)					
		6.1.3	R2: PCL (Program Counter Low)					
		6.1.4	R3: SR (Status Register)					
		6.1.5	R4: RSR (RAM Select Register)					
		6.1.6 6.1.7	Bank0 R5 ~ R8: (Port 5 ~ Port 8)					
		6.1.8	Bank0 R9 ~ RA: (Reserved) Bank0 RB~RD: (IOCR5 ~ IOCR7)					
		6.1.9	Banko RE: OMCR (Operating Mode Control Register)					
			Banko RF: EIESCR (External Interrupt Edge Select Control Register)					
			Banko R10: WUCR1 (Wake-up Control Register 1)					
			Banko R11: WUCR2 (Wake-up Control Register 2)					
			Bank0 R12: WUCR3 (Wake-up Control Register 3)					
			Banko R13: (Reserved)					
			Bank0 R14: SFR1 (Status Flag Register 1)					
			Bank0 R15: (Reserved)					
			Bank0 R16: SFR3 (Status Flag Register 3)					
			Bank0 R17: SFR4 (Status Flag Register 4)					
			Bank0 R18~R1A: (Reserved)					
			Bank0 R1B: IMR1 (Interrupt Mask Register 1)					
			Bank0 R1C: (Reserved)					
			Bank0 R1D: IMR3 (Interrupt Mask Register 3)					
			Bank0 R1E: IMR4 (Interrupt Mask Register 4)					
			Bank0 R1F~R20: (Reserved)					
			Bank0 R21: WDTCR (Watch Dog Timer Control Register)					
			Bank0 R22: TCCCR (TCC Control Register)					
			Bank0 R23: TCCD (TCC Data Register)					

6.1.28	Bank0 R24 ~ R2F: (Reserved)	.23
	Bank0 R30: I2CCR1 (I ² C Status and Control Register 1)	
6.1.30	Bank0 R31: I2CCR2 (I ² C Status and Control Register 2)	.25
	Bank0 R32: I2CSA (I ² C Slave Address Register)	
6.1.32	Bank0 R33: I2CDB (I ² C Data Buffer Register)	.26
	Bank0 R34: I2CDAL (I ² C Device Address Register)	
6.1.34	Bank0 R35: I2CDAH (I ² C Device Address Register)	.26
6.1.35	Bank0 R36: SPICR (SPI Control Register)	.27
6.1.36	Bank0 R37: SPIS (SPI Status Register)	.28
6.1.37	Bank0 R38: SPIR (SPI Read Buffer Register)	.28
6.1.38	Bank0 R39: SPIW (SPI Write Buffer Register)	.29
6.1.39	Bank0 R3A ~ R4F: (Reserved)	.29
6.1.40	Bank1 R5: IOCR8	.29
6.1.41	Bank1 R6 ~ R7: (Reserved)	.29
6.1.42	Bank1 R8: P5PHCR (Port 5 Pull-high Control Register)	.29
6.1.43	Bank1 R9: P6PHCR (Port 6 Pull-high Control Register)	.30
6.1.44	Bank1 RA: P78PHCR (Port 7~8 Pull-high Control Register)	.30
6.1.45	Bank1 RB: P5PLCR (Port 5 Pull-low Control Register)	.30
6.1.46	Bank1 RC: P6PLCR (Port 6 Pull-low Control Register)	.31
6.1.47	Bank1 RD: P78PLCR (Port 7~8 Pull-low Control Register)	.31
6.1.48	Bank1 RE: P5HDSCR (Port 5 High Drive/Sink Control Register)	.31
6.1.49	Bank1 RF: P6HDSCR (Port 6 High Drive/Sink Control Register)	.32
6.1.50	Bank1 R10: P78HDSCR (Port 7~8 High Drive/Sink Control Register)	.32
6.1.51	Bank1 R11: P5ODCR (Port 5 Open-Drained Control Register)	.32
6.1.52	Bank1 R12: P6ODCR (Port 6 Open-Drained Control Register)	.32
6.1.53	Bank1 R13: P78ODCR (Port 7~8 Open-Drained Control Register)	.33
6.1.54	Bank1 R14 ~ R15: (Reserved)	.33
6.1.55	Bank1 R16: PWMSCR (PWM Source Clock Control Register)	.33
6.1.56	Bank1 R17: PWM1CR (PWM1 Control Register)	.33
6.1.57	Bank1 R18: PRD1L (Low Byte of PWM1 Period)	.34
6.1.58	Bank1 R19: PRD1H (High Byte of PWM1 Period)	.34
6.1.59	Bank1 R1A: DT1L (Low Byte of PMW1 Duty)	.35
6.1.60	Bank1 R1B: DT1H (High Byte of PMW1 Duty)	.35
6.1.61	Bank1 R1C: TMR1L (Low Byte of Timer1)	.35
6.1.62	Bank1 R1D: TMR1H (High Byte of Timer 1)	.35
6.1.63	Bank1 R1E: PWM2CR (PWM2 Control Register)	.35
6.1.64	Bank1 R1F: PRD2L (Low Byte of PWM2 Period)	.36
6.1.65	Bank1 R20: PRD2H (High Byte of PWM2 Period)	.36
6.1.66	Bank1 R21: DT2L (Low Byte of PMW2 Duty)	.37
6.1.67	Bank1 R22: DT2H (High Byte of PMW2 Duty)	.37
6.1.68	Bank1 R23: TMR2L (Low Byte of Timer 2)	.37
6.1.69	Bank1 R24: TMR2H (High Byte of Timer 2)	.37
6.1.70	Bank1 R25 ~ R44: (Reserved)	.37
6.1.71	Bank1 R45: TBPTL (Table Point Low Register)	.37

	6.1.72	Bank1 R46: TBPTH (Table Point High Register)	38
	6.1.73	Bank1 R47: STKMON (Stack Point)	38
	6.1.74	Bank1 R48: PCH (Program Counter High)	38
	6.1.75	Bank1 R49: (Reserved)	38
	6.1.76	Bank1 R4A: COBS1 (Code Option Bit Selection Register 1)	39
	6.1.77	Bank1 R4B: COBS2 (Code Option Bit Selection Register2)	39
		Bank1 R4C: COBS3 (Code Option Bit Selection Register 3)	
		Bank1 R4D ~ R4F: (Reserved)	
	6.1.80	Bank2 R21: DACR (DAC Control Register)	43
		Bank2 R22: DACD0 (Digital to Analog Converter Data Buffer 0)	
		Bank2 R23: DACD1 (Digital to Analog Converter Data Buffer 1)	
		Bank2 R25 ~ R4F: (Reserved)	
	6.1.84	R50~R7F, Bank0~3 R80~RFF	43
6.2	TCC/V	VDT & Prescaler	44
6.3	I/O Po	rts	45
	6.3.1	Usage of Port 5~8 Input Change Wake-up/Interrupt Function	47
6.4	RESE	T and Wake-up	48
	6.4.1	Summary of Wake-up and Interrupt Modes Operation	49
	6.4.2	The Status of RST, T, and P of Status Register	51
	6.4.3	Summary of Register Initial Values after Reset	52
6.5	Interru	pt	62
6.6	Dual S	Set of PWM (Pulse Width Modulation)	64
	6.6.1 C	Dverview	64
	6.6.2	Control Register	65
	6.6.3	Increment Timer Counter (TMRX: TMR1H/TMR1L, TMR2H/TMR2L)	65
	6.6.4	PWM Time Period (PRDX: PRD1L/H, PRD1L/H)	66
	6.6.5	PWM Duty Cycle (DTX: DT1H/DT1L, DT2H/DT2L)	66
	6.6.6	PWM Programming Process/Steps	67
6.7	SPI (S	erial Peripheral Interface)	67
	6.7.1	Overview & Features	68
	6.7.2	SPI Function Description	69
	6.7.3	SPI Signal & Pin Description	71
	6.7.4	SPI Mode Timing	72
6.8	l ² C Fu	nction	73
	6.8.1	7-Bit Slave Address	75
	6.8.2	10-Bit Slave Address	76
	6.8.3	Master Mode	79
	6.8.4	Slave Mode I ² C Transmit	79
6.9	Oscilla	itor	80
	6.9.1	Oscillator Modes	80
	6.9.2	Internal RC Oscillator Mode	
6.10	Power	-On Considerations	
		al Power-On Reset Circuit	

	6.12 Residue-Voltage Protection	.83
	6.13 Code Option	.84
	6.13.1 Code Option Register (Word 0)	84
	6.13.2 Code Option Register (Word 1)	85
	6.13.3 Code Option Register (Word 2)	88
	6.13.4 Code Option Register (Word 3)	89
	6.13.5 Code Option Register (Word D)	90
	6.14 Instruction Set	.90
7	Absolute Maximum Ratings	.93
8	DC Electrical Characteristic	.93
9	AC Electrical Characteristic	.95

APPENDIX

А	Package Type	.96
В	Package Information	.97
	B.1 eKTF5701QN24	.97
	B.2 eKTF5701QN24A	.98

Specification Revision History

Version	Revision Description	Date
1.0	Initial Release Version	2011/04/09

General Description

eKTF5701 is a 15-bit microprocessor designed and developed with low-power and high-speed CMOS technology. It is equipped with 8K*15-bits programmable ROM and is equipped with One-Line or Two-Line type touch sensors. The capacitive touchpad sensor uses plastic or glass substrate as cover.

The system controller converts fingertip position data into button presses, depending on finger location and human interface context. The ELAN eKTR5700 can be used to develop user program for this microcontroller and several other ELAN FLASH types ICs.

2 **Features**

CPU Configuration:

- 8K×15 bits on-chip ROM
- 1072x8 bits on-chip registers (SRAM)
- 8-level stacks for subroutine nesting
- Typically 5uA during Sleep mode
- 2 programmable Level Voltage Reset (LVR): 3.0V, 2.7V
- Four CPU operating modes (Normal, Sleep, Green, & Idle)

I/O Port Configuration:

- 4 bidirectional I/O ports
- 4 programmable pin change wake-up ports: P5, P6, P7, P8
- 4 programmable pull-down I/O ports: P5, P6, P7, P8
- 4 programmable pull-high I/O ports: P5, P6, P7, P8
- 4 programmable open-drain I/O ports: P5, P6, P7. P8
- 4 programmable high-sink/drive I/O ports: P5, P6, P7, P8

Operating Voltage Range:

2.5V~3.6V at -40°C~85°C (industrial)

■ Operating Frequency Range (base on 2 clocks): ■ Package Types:

· Main Oscillator:

IRC mode - DC ~ 16MHz at 2.5V

Internal	Drift Rate							
RC Frequency	Temperature (-40 ℃+85 ℃)	Voltage (2.5V~3.6V)	Process	Total				
4MHz	±2%	±1%	±1%	±4%				
8MHz	±2%	±1%	±1%	±4%				
12MHz	±2%	±1%	±1%	±4%				
16MHz	±2%	±1%	±1%	±4%				

 Sub Oscillator: IRC mode: 16k/64k

Peripheral Configuration:

- 8-bit real time clock (TCC) with selective signal sources (Fm/Fs)
- 2-channel Digital-to-Analog Converter for 256 steps
- Two 16-bit timers (TMR1/TMR2) with PWM function
- Serial transmitter/receiver interface (SPI): 3-wire synchronous communication
- I²C function with 7/10-bit address & 8 bit data transmit/receive mode
- Power-down (Sleep) mode
- High EFT immunity (4KV)

11 Available Interrupts:

- TCC overflow interrupt
- · Input-port status change interrupt (wake up from Sleep mode)
- External interrupt
- Two timer interrupts
- I²C transfer/receive interrupt
- SPI interrupt

- 24 QFN 4x4x0.8mm: eKTF5701QN24
- 24 QFN 4x4x0.9mm: eKTF5701QN24A

NOTE

These are Green Products which do not contain hazardous substances.

■ 99.9% single instruction cycle commands

3 Pin Assignment

3.1 Package: QFN 24 & QFN 24A

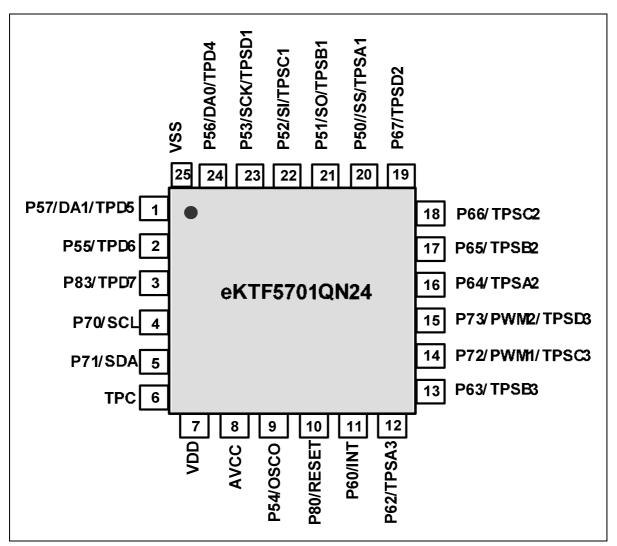


Figure 3-1 QFN-24 & QFN-24A Pin Assignment

4 Pin Descriptions

4.1 eKTF5701 Kernel Pin

Name	Function	Input Type	Output Type	Description	
P50/ /SS/	P50	ST	CMOS	Bi-directional I/O ports. All pins can be pulled-down and pulled-high internally by software. They can also be set to open-drain and enable high sink/drive modes by software.	
TPSA1	/SS	ST	-	SPI Slave mode enable. (/SS)	
	TPSA1	AN	AN	Touchpad Two-Line & One-Line type sensor pins	
P51/ SO/	P51	ST	CMOS	Bi-directional I/O ports. All pins can be pulled-down and pulled-high internally by software control. They can also be set to open drain and enable high sink/drive modes by software.	
TPSB1	SO	-	CMOS	SPI serial data output (SO)	
	TPSB1	AN	AN	Touchpad Two-Line & One-Line type sensor pins	
P52/ SI/	P52	ST	CMOS	Bi-directional I/O ports. All pins can be pulled-down and pulled-high internally by software control. They can also be set to open drain and enable high sink/drive modes by software.	
TPSC1	SI	ST	-	SPI serial data input (SI)	
	TPSC1	AN	AN	Touchpad Two-Line & One-Line type sensor pins	
P53/ SCK/	P53	ST	CMOS	Bi-directional I/O ports. All pins can be pulled-down and pulled-high internally by software control. They can also be set to open drain and enable high sink/drive modes by software.	
TPSD1	SCK	ST	CMOS	SPI serial clock input/output (SCK).	
	TPSD1	AN	AN	Touchpad Two-Line & One-Line type sensor pins	
P54/ OSCO	P54	ST	CMOS	Bi-directional I/O ports. All pins can be pulled-down and pulled-high internally by software control. They can also be set to open drain and enable high sink/drive modes by software.	
	OSCO	-	CMOS	Clock output of internal RC oscillaor.	
P55/	P55	ST	CMOS	Bi-directional I/O ports. All pins can be pulled-down and pulled-high internally by software control. They can also be set to open drain and enable high sink/drive modes by software.	
TPD6	TPD6	-	AN CMOS	Touchpad Two-Line type driver pin.	
P56/DA0/	P56	ST	CMOS	Bi-directional I/O ports. All pins can be pulled-down and pulled-high internally by software control. They can also be set to open drain and enable high sink/drive modes by software.	
TPD4	DA0	-	AN	Digital to Analog Converter (DAC)	
	TPD4	-	AN CMOS	Touchpad Two-Line type driver pin.	

eKTF5701 15-Bit Microcontroller

(Continuation)				Ŧ
Name	Function	Input Type	Output Type	Description
P57/DA1/	P57	ST	CMOS	Bi-directional I/O ports. All pins can be pulled-down and pulled-high internally by software control. They can also be set to open drain and enable high sink/drive modes by software.
TPD5	DA1	-	AN	Digital to Analog Converter (DAC)
	TPD5	-	AN CMOS	Touchpad Two-Line type driver pin.
P60/ INT	P60	ST	CMOS	Bi-directional I/O ports. All pins can be pulled-down and pulled-high internally by software control. They can also be set to open drain and enable high sink/drive modes by software.
	INT	ST	-	External interrupt pin triggered by falling or rising edge (set by EIESCR).
P62/ TPSA3	P62	ST	CMOS	Bi-directional I/O ports. All pins can be pulled-down and pulled-high internally by software control. They can also be set to open drain and enable high sink/drive modes by software.
	TPSA3	AN	AN	Touchpad Two-Line & One-Line type sensor pins
P63/ TPSB3	P63	ST	CMOS	Bi-directional I/O ports. All pins can be pulled-down and pulled-high internally by software control. They can also be set to open drain and enable high sink/drive modes by software.
	TPSB3	AN	AN	Touchpad Two-Line & One-Line type sensor pins
P64/ TPSA2	P64	ST	CMOS	Bi-directional I/O ports. All pins can be pulled-down and pulled-high internally by software control. They can also be set to open drain and enable high sink/drive modes by software.
	TPSA2	AN	AN	Touchpad Two-Line & One-Line type sensor pins
P65/ TPSB2	P65	ST	CMOS	Bi-directional I/O ports. All pins can be pulled-down and pulled-high internally by software control. They can also be set to open drain and enable high sink/drive modes by software.
	TPSB2	AN	AN	Touchpad Two-Line type Sensor pins & One-line type pin.
P66/ TPSC2	P66	ST	CMOS	Bi-directional I/O ports. All pins can be pulled-down and pulled-high internally by software control. They can also be set to open drain and enable high sink/drive modes by software.
	TPSC2	AN	AN	Touchpad Two-Line & One-Line type sensor pins
P67/ TPSD2	P67	ST	CMOS	Bi-directional I/O ports. All pins can be pulled-down and pulled-high internally by software control. They can also be set to open drain and enable high sink/drive modes by software.
	TPSD2	AN	AN	Touchpad Two-Line & One-Line type sensor pins
P70/ SCL	P70	ST	CMOS	Bi-directional I/O ports. All can be pulled-down and pulled-high internally by software control. They also can be open drain and enable high sink/drive mode by software control.
	SCL	ST	CMOS	I ² C serial clock input/output (SCL) ¹

¹ Slave Address 0x77 is reserved for WTR use.

(Continuation)					
Name	Function	Input Type	Output Type	Description	
P71/ SDA	P71	ST	CMOS	Bi-directional I/O ports. All pins can be pulled-down and pulled-high internally by software control. They can also be set to open drain and enable high sink/drive modes by software.	
	SDA	ST	CMOS	I ² C serial data input/output (SDA) ²	
P72/ PWM1/	P72	ST	CMOS	Bi-directional I/O ports. All pins can be pulled-down and pulled-high internally by software control. They can also be set to open drain and enable high sink/drive modes by software.	
TPSC3	PWM1	-	CMOS	Pulse width modulation 1 outputs.	
	TPSC3	AN	AN	Touchpad Two-Line & One-Line type sensor pins	
P73/ PWM2/	P73	ST	CMOS	Bi-directional I/O ports. All pins can be pulled-down and pulled-high internally by software control. They can also be set to open drain and enable high sink/drive modes by software.	
TPSD3	PWM2	-	CMOS	Pulse width modulation 2 outputs.	
	TPSD3	AN	AN	Touchpad Two-Line & One-Line type sensor pins	
P80/	P80	ST	CMOS	Bi-directional I/O ports. All pins can be pulled-down and pulled-high internally by software control. They can also be set to open drain and enable high sink/drive modes by software.	
RESET	RESET	ST	-	Schmitt trigger input pin. If this pin remains logic low, the controller is reset. Internal pull-high reset pin.	
P83/ TPD7	P83	ST	CMOS	Bi-directional I/O ports. All pins can be pulled-down and pulled-high internally by software control. They can also be set to open drain and enable high sink/drive modes by software.	
TPD7	TPD7	-	AN CMOS	Touchpad Two-Line type driver pin.	
VDD VDD Power - Power supply pin		Power supply pin			
VSS	VSS	Power	-	Ground	
TPC	TPC	AN	-	Touchpad capacitor or connect to VDD ³	
AVCC	AVCC	AN	-	Analog VDD ⁴	

4.2 Compound Pin Functions Priority

■ Priority of Pin P50/SS/TPSA1:

Pin Priority						
1 st	2 nd	3 rd				
TPSA1	/SS	P50				

² Slave Address 0x77 is reserved for WTR use.

³ TPC external capacitor 1µf, stable time is 300µs.

⁴ AVCC external capacitor is 2µf.

■ Priority of Pin P51/SO/TPSB1:

Pin Priority							
1 st	2 nd	3 rd					
TPSB1	SO	P51					

■ Priority of Pin P52/SI/TPSC1:

Pin Priority		
1 st	2 nd	3 rd
TPSC1	SI	P52

■ Priority of Pin P53/SCK/TPSD1:

Pin Priority		
1st	2 nd	3 rd
TPSD1	SCK	P53

■ Priority of Pin P54/OSCO:

Pin Priority	
1 st	2 nd
OSCO	P54

■ Priority of Pin P55/TPD6:

Pin Priority	
1 st	2 nd
TPD6	P55

■ Priority of Pin P56/DA0/TPD4:

Pin Priority	
1 st	2 nd
TPD4 & DA0	P56

■ Priority of Pin P57/DA1/TPD5:

Pin Priority	
1 st	2 nd
TPD5 & DA1	P57

■ Priority of Pin P60/INT:

Pin Priority	
1 st	2 nd
INT	P60

■ Priority of Pin P62/TPSA3:

Pin Priority	
1 st	2 nd
TPSA3	P62

■ Priority of Pin P63/TPSB3:

Pin Priority	
1 st	2 nd
TPSB3	P63

■ Priority of Pin P64/TPSA2:

Pin Priority	
1 st	2 nd
TPSA2	P64

■ Priority of Pin P65/TPSB2:

Pin Priority	
1 st	2 nd
TPSB2	P65

■ Priority of Pin P66/TPSC2:

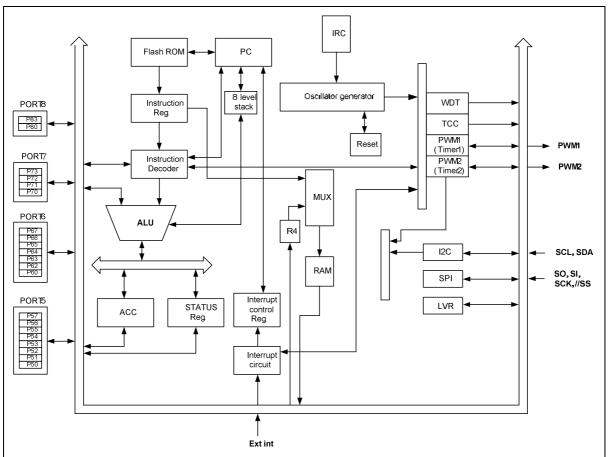
Pin Priority	
1 st	2 nd
TPSC2	P66

■ Priority of Pin P67/TPSD2:

Pin Priority			
1 st	2 nd		
TPSD2	P67		

■ Priority of Pin P72/PWM1/TPSC3:

	Pin Priority				
1 st 2 nd 3 rd					
TPSC3	PWM1	P72			


■ Priority of Pin P73/PWM2/TPSD3:

Pin Priority					
1 st 2 nd 3 rd					
TPSD3	PWM2	P73			

■ Priority of Pin P83/TPD7:

Pin Priority			
1 st	2 nd		
TPD7	P83		

5 Functional Block Diagram

Figure 5-1 eKTF5701 Functional Block Diagram

6 Function Description

6.1 Operational Registers

6.1.1 R0: IAR (Indirect Addressing Register)

R0 is not a physically implemented register. Its major function is to perform as an indirect addressing pointer. Any instruction using R0 as a pointer actually accesses data pointed by the RAM Select Register (R4).

6.1.2	R1: BSR	(Bank Selection	Control	Register)
-------	---------	-----------------	---------	-----------

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	SBS1	SBS0	-	GBS2	GBS1	GBS0
-	-	R/W	R/W	0	R/W	R/W	R/W

Bits 7~6: Not used. Set to "0" all the time.

Bit 5~4 (SBS1~SBS0): Special register bank select bit. It is used to select Bank 0/1/2 of Special Register R5~R4F.

SBS1	SBS0	Special Register Bank
0	0	0
0	1	1
1	0	2
1	1	Х

- Bits 3: Not used. Set to "0" all the time.
- Bit 2~0 (GBS2~GBS0): General register bank select bit. It is used to select Bank 0~7 of General Register R80~RFF.

GBS2	GBS1	GBS0	RAM Bank
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

6.1.3 R2: PCL (Program Counter Low)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
R/W							

Bits 7~0 (PC7~PC0): The low byte of program counter.

- Depending on the device type, R2 and hardware stack are 15-bits wide. The structure is depicted in Figure 6-1 below.
- Generating 8K×15 bits on-chip Flash ROM addresses to the relative programming instruction codes. One program page is 4096 words long.
- R2 is set as all "0"s when under RESET condition.
- "JMP" instruction allows direct loading of the lower 12 program counter bits. Thus, "JMP" allows PC to go to any location within a page.

- "CALL" instruction loads the lower 12 bits of the PC, and the present PC value will add 1 and is pushed into the stack. Thus, the subroutine entry address can be located anywhere within a page.
- "LJMP" instruction allows direct loading of the lower 13 program counter bits. Therefore, "LJMP" allows PC to jump to any location within 8K (2¹³).
- "LCALL" instruction loads the lower 13 bits of the PC, and then PC+1 is pushed into the stack. Thus, the subroutine entry address can be located anywhere within 8K (2¹³).
- "RET" ("RETL k", "RETI") instruction loads the program counter with the contents of the top-level stack.
- "ADD R2, A" allows a relative address to be added to the current PC, and the ninth and above bits of the PC will increase progressively.
- "MOV R2, A" allows to load an address from the "A" register to the lower 8 bits of the PC, and the ninth and above bits of the PC won't be changed.
- Any instruction, except "ADD R2,A" that is written to R2 (e.g., "MOV R2, A", "BC R2, 6","INC R2", etc.) will cause the ninth bit and the above bits (A8~A12) of the PC to remain unchanged.
- All instructions are single instruction cycle (Fsys/2) except "LCALL", "CALL", "LJMP", and "JMP" instructions. The "LCALL" and "LJMP" instructions need two instructions cycle.

eKTF5701 15-Bit Microcontroller

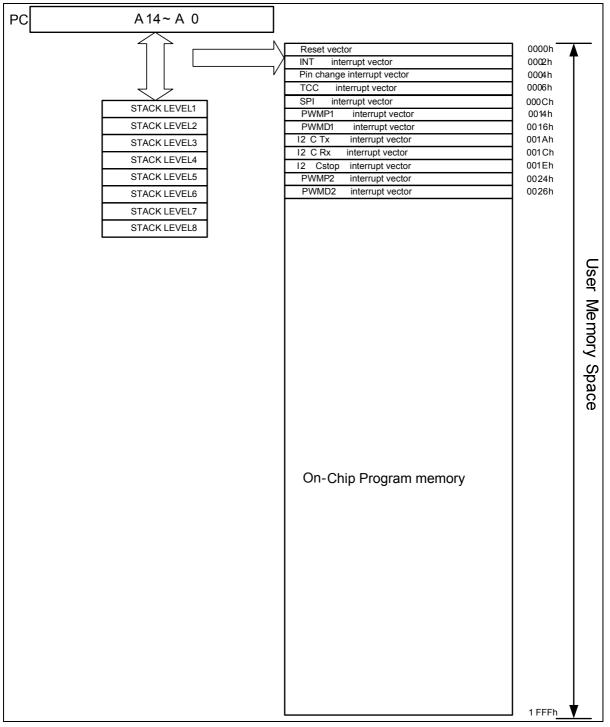


Figure 6-1 eKTF5701 Program Counter Organization

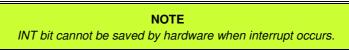
·							
Address	BANK 0	BANK 1	BANK 2				
0X00		IAR (Indirect Addressing Reg.)					
0X01	BSR (Bank Selection Control Reg.)						
0X02		PCL (Program Counter Low)					
0X03		SR (Status Reg.)					
0X04		RSR (RAM Selection Reg.)					
0X05	Port 5	IOCR8	Unused				
0X06	Port 6	Unused	Unused				
0X07	Port 7	Unused	Unused				
0X08	Port 8	P5PHCR	Unused				
0X09	Unused	P6PHCR	Unused				
0X0A	Unused	P78PHCR	Unused				
0x0B	IOCR5	P5PLCR	Unused				
0X0C	IOCR6	P6PLCR	Unused				
0X0D	IOCR7	P78PLCR	Unused				
0X0E	OMCR (Operating Mode Control Reg.)	P5HDSCR	Unused				
0X0F	EIESCR (External Interrupt Edge Selection Control Reg.)	P6HDSCR	Unused				
0X10	WUCR1	P78HDSCR	Unused				
0X11	WUCR2	P5ODCR	Unused				
0X12	WUCR3	P6ODCR	Unused				
0X13	Unused	P78ODCR	Unused				
0X14	SFR1 (Status Flag Reg. 1)	Unused	Unused				
0X15	Unused	Unused	Unused				
0X16	SFR3 (Status Flag Reg. 3)	PWMSCR	Unused				
0X17	SFR4 (Status Flag Reg. 4)	PWM1CR	Unused				
0X18	Unused	PRD1L	Unused				
0X19	Unused	PRD1H	Unused				
0X1A	Unused	DT1L	Unused				
0X1B	IMR1 (Interrupt Mask Reg. 1)	DT1H	Unused				
0X1C	Unused	TMR1L	Unused				
0X1D	IMR3 (Interrupt Mask Reg. 3)	TMR1H	Unused				
0X1E	IMR4 (Interrupt Mask Reg. 4)	PWM2CR	Unused				
0X1F	Unused	PRD2L	Unused				
0X20	Unused	PRD2H	Unused				
0X21	WDTCR	DT2L	DACR				

Data Memory Configuration

Product Specification (V1.0) 04.09.2011 (This specification is subject to change without further notice)

	(Continuation)			
0X22	TCCCR	DT2H	DACD0	
0X23	TCCD	TMR2L	DACD1	
0X24	Unused	TMR2H	Unused	
0X25	Unused	Unused	Unused	
0X26	Unused	Unused	Unused	
0X27	Unused	Unused	Unused	
0X28	Unused	Unused	Unused	
0X29	Unused	Unused	Unused	
0X2A	Unused	Unused	Unused	
0x2B	Unused	Unused	Unused	
0X2C	Unused	Unused	Unused	
0X2D	Unused	Unused	Unused	
0X2E	Unused	Unused	Unused	
0X2F	Unused	Unused	Unused	
0X30	I2CCR1	Unused	Unused	
0X31	I2CCR2	Unused	Unused	
0X32	I2CSA	Unused	Unused	
0X33	I2CDB	Unused	Unused	
0X34	I2CDAL	Unused	Unused	
0X35	I2CDAH	Unused	Unused	
0X36	SPICR	Unused	Unused	
0X37	SPIS	Unused	Unused	
0X38	SPIR	Unused	Unused	
0X39	SPIW	Unused	Unused	
0X3A	Unused	Unused	Unused	
0x3B	Unused	Unused	Unused	
0X3C	Unused	Unused	Unused	
0X3D	Unused	Unused	Unused	
0X3E	Unused	Unused	Unused	
0X3F	Unused	Unused	Unused	
0X40	Unused	Unused	Unused	
0X41	Unused	Unused	Unused	
0X42	Unused	Unused	Unused	
0X43	Unused	Unused	Unused	
0X44	Unused	Unused	Unused	
0X45	Unused	TBPTL	Unused	

	(Contii	nuation)						
0X46		Unused		TBF	РΤΗ		Unused	
0X47		Unused		STK	MON		Unused	
0X48		Unused		PC	СН		Unused	
0X49		Unused		Unu	ised		Unused	
0X4A		Unused		CO	BS1		Unused	
0x4B		Unused		CO	BS2		Unused	
0X4C		Unused		CO	BS3		Unused	
0X4D		Unused		ICE N	MON.		Unused	
0X4E		Unused		ICE A	DDR.		Unused	
0X4F		Unused		ICE [ΔΑΤΑ		Unused	
0X50								
0X51								
:			GEN	ERAL PURF	OSE REGIS	STER		
:								
0X7F								
0X80								
0X81								
:	0	-	N	ო	4	വ	و	~
:	Bank 0	Bank 1	Bank 2	Bank 3	Bank 4	Bank 5	Bank 6	Bank 7
:							Ш	
0XFE								
0XFF								


6.1.4 R3: SR (Status Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INT	-	-	Т	Р	Z	DC	С
F	-	-	R/W	R/W	R/W	R/W	R/W

Bit 7 (INT): Interrupt enable flag

0: Interrupt masked by DISI or hardware interrupt

1: Interrupt enabled by ENI/RETI instructions

Bits 6~5: Not used. Set to "0" all the time.

Bit 4 (T): Time-out bit. Set to "1" with the "SLEP" and "WDTC" commands, or during power up. Reset to "0" by WDT time-out.

Bit 3 (P): Power down bit. Set to "1" during power on or by a "WDTC" command. Reset to "0" by a "SLEP" command.

- Bit 2 (Z): Zero flag. Set to "1" if the result of an arithmetic or logic operation is zero.
- Bit 1 (DC): Auxiliary carry flag
- Bit 0 (C): Carry flag

6.1.5 R4: RSR (RAM Select Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RSR7	RSR6	RSR5	RSR4	RSR3	RSR2	RSR1	RSR0
R/W							

- **Bit 7~0 (RSR7~RSR0):** These bits are used to select registers (Address 00 ~ FF) in the indirect address mode. For more details, refer to the table on Data Memory Configuration in Section 6.1.3, *R2: PCL (Program Counter Low)*.
- 6.1.6 Bank0 R5 ~ R8: (Port 5 ~ Port 8)

R5, R6, R7, and R8 are I/O data registers.

6.1.7 Bank0 R9 ~ RA: (Reserved)

6.1.8 Bank0 RB~RD: (IOCR5 ~ IOCR7)

These registers are used to control I/O port direction. They are both readable and writable.

0: Set the relative I/O pin as output

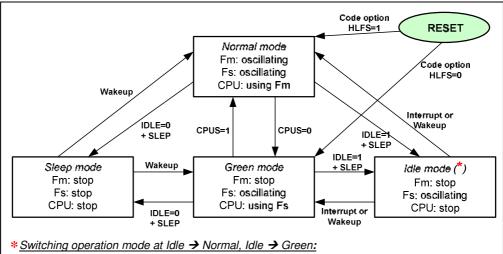
1: Set the relative I/O pin into high impedance

6.1.9 Bank0 RE: OMCR (Operating Mode Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CPUS	IDLE	-	-	-	-	RCM1	RCM0
R/W	R/W	-	-	-	-	R/W	R/W

Bit 7 (CPUS): CPU Oscillator Source Select

0: Fs: sub-oscillator


1: Fm: main-oscillator (default)

When CPUS = 0, the CPU oscillator selects the sub-oscillator while the main oscillator is stopped.

Bit 6 (IDLE): Idle Mode Enable Bit. This bit decides which mode (see figure below) to use with the SLEP instruction.

0: "IDLE = **0**" + SLEP instruction \rightarrow Sleep mode

1: "IDLE = 1" + SLEP instruction \rightarrow Idle mode (default)

If the clock source of timer is **Fs**, the timer/counter will continue to count during Idle mode. When a match condition of the timer/counter occurs during Idle mode, the interrupt flag of timer/counter is activated. However, the MCU will jump to interrupt vector when the corresponding interrupt is enabled.

Figure 6-2 CPU Operation Mode

Oscillation Characteristics

CPU Mode Switch	Waiting Time before CPU Resumes Working
Sleep → Normal	WSTO + 8/32 clocks (main frequency)
Idle → Normal	WSTO + 8/32 clocks (main frequency)
Green → Normal	WSTO + 8/32 clocks (main frequency)
Sleep → Green	WSTO + 8 clocks (sub frequency)
ldle → Green	WSTO + 8 clocks (sub frequency)
Normal → Normal	8 clocks (main frequency)
<u>-</u>	WCTO Maiting time for Chart to Oscillation

WSTO: Waiting time for Start-to-Oscillation

Bit 5~2 : Not used. Set to "0" all the time.

Bits 1~0 (RCM1~RCM0): Internal RC mode selection bits

*RCM1	*RCM0	Frequency (MHz)
0	0	12
0	1	8
1	0	16
1	1	4

6.1.10 Bank0 RF: EIESCR

(External Interrupt Edge Select Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	-	EIES	-	-
-	-	-	-	-	R/W	-	-

Bits 7~3: Not used. Set to "0" all the time.

Bit 2 (EIES): External interrupt edge select bit 0: Falling edge interrupt 1: Rising edge interrupt

Bits 1~0: Not used. Set to "0" all the time.

6.1.11 Bank0 R10: WUCR1 (Wake-up Control Register 1)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	-	INTWK	-	-
-	-	-	-	-	R/W	-	-

Bits 7~3: Not used. Set to "0" all the time.

Bit 2 (INTWK): External Interrupt (INT pin) Wake-up Function Enable Bit

0: Disable External Interrupt wake-up

1: Enable External Interrupt wake-up

When the External Interrupt status change is used to enter interrupt vector or to wake-up IC from Sleep/Idle mode, the INTWK bits must be set to "Enable".

Bits 1~0: Not used. Set to "0" all the time.

6.1.12 Bank0 R11: WUCR2 (Wake-up Control Register 2)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	SPIWK	I2CWK	-	-
-	-	-	-	RR/W	R/W	-	-

Bit 7~4: Not used. Set to "0" all the time.

- Bit 3 (SPIWK): SPI wake-up enable bit. Applicable when SPI works in Slave mode.
 - **0:** Disable SPI wake-up.
 - 1: Enable SPI wake-up.
- **Bit 2 (I2CWK):** I²C wake-up enable bit. Applicable when I²C works in Slave mode. **0:** Disable

1: Enable

NOTE When $\stackrel{2}{\Gamma}C$ is in Slave mode, it cannot communicate with MCU in Green mode. At the same time the SCL in on hold and kept at low level when MCU is in Green mode. SCL is released when MCU switches to Normal mode.

Bits 1~0: Not used. Set to "0" all the time.

6.1.13 Bank0 R12: WUCR3 (Wake-up Control Register 3)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ICWKP8	ICWKP7	ICWKP6	ICWKP5	-	-	-	-
R/W	R/W	R/W	R/W	-	-	-	-

Bits 7~4 (ICWKP8~ICWKP5): Pin change Wake-up enable for Ports 8/7/6/5.

0: Disable wake up function

1: Enable wake up function

Bits 3~0: Not used. Set to "0" all the time.

Wake-up		Sleep	Mode	Idle I	Idle Mode		Green Mode		Normal Mode	
Signal	Signal	DISI	ENI	DISI	ENI	DISI	ENI	DISI	ENI	
	ICWKPx = 0, PxICIE = 0 Wake-up is invalid.					Interrupt is invalid.				
Pin	ICWKPx = 0, PxICIE = 1	Wake-up is invalid.				Next Instruction	Interrupt + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	
Change INT	$\begin{aligned} \text{ICWKPx} &= 1, \\ \text{PxICIE} &= 0 \end{aligned}$	Wake-up + Next Instruction				Interrupt is invalid.				
	ICWKPx = 1, PxICIE = 1	Wake-up + Next Instruction	Wake-up + Interrupt Vector	Wake-up + Next Instruction	Wake-up + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector	

NOTE

When MCU wakes up from Sleep or Idle modes, the ICSF must be equal to **1**. If ICSF equals **0**, it means the pin status doesn't change or the pin change ICIE is disabled. Hence the MCU cannot wake-up.

6.1.14 Bank0 R13: (Reserved)

6.1.15 Bank0 R14: SFR1 (Status Flag Register 1)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	-	EXSF	-	TCSF
-	-	-	-	-	F	-	F

Each corresponding status flag is set to "1" when interrupt condition is triggered.

- Bits 7~3,1: Not used. Set to "0" all the time.
- Bit 2 (EXSF): External interrupt status flag
- Bit 0 (TCSF): TCC overflow status flag. Set when TCC overflows. Reset by software.

NOTE If a function is enabled, the corresponding status flag would be active regardless of whether the interrupt mask is enabled or not.

6.1.16 Bank0 R15: (Reserved)

6.1.17 Bank0 R16: SFR3 (Status Flag Register 3)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	PWM2PSF	PWM2DSF	PWM1PSF	PWM1DSF
-	-	-	-	F	F	F	F

Bits 7~4: Not used. Set to "0" all the time.

Bit 3 (PWM2PSF): Status flag of period-matching for PWM2 (Pulse Width Modulation). Set when a selected period is reached. Reset by software.

- **Bit 2 (PWM2DSF):** Status flag of duty-matching for PWM2 (Pulse Width Modulation). Set when a selected duty is reached. Reset by software.
- **Bit 1 (PWM1PSF):** Status flag of period-matching for PWM1 (Pulse Width Modulation). Set when a selected period is reached. Reset by software.
- **Bit 0 (PWM1DSF):** Status flag of duty-matching for PWM1 (Pulse Width Modulation). Set when a selected duty is reached. Reset by software.

NOTE

If a function is enabled, the corresponding status flag would be active whether the interrupt mask is enabled or not.

6.1.18 Bank0 R17: SFR4 (Status Flag Register 4)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P8ICSF	P7ICSF	P6ICSF	P5ICSF	SPISF	I2CSTPSF	I2CRSF	I2CTSF
F	F	F	F	F	F	F	F

Bit 7~4 (P8ICSF~P5ICSF): Port 5~8 input status change status flag. Set when Port 5~8 input changes. Reset by software.

- Bit 3 (SPISF): SPI mode status flag. Flag is cleared by software.
- **Bit 2 (I2CSTPSF):** I²C stop status flag. Set when I²C stop signal occurs.
- **Bit 1 (I2CRSF):** I^2C receive status flag. Set when I^2C receives 1 byte data and responds ACK signal. Reset by firmware or I^2C disable.
- **Bit 0 (I2CTSF):** I²C transmit status flag. Set when I²C transmits 1 byte data and receive handshake signal (ACK or NACK). Reset by firmware or I²C disable

NOTE If a function is enabled, the corresponding status flag will be active regardless whether the interrupt mask is enabled or not.

6.1.19 Bank0 R18~R1A: (Reserved)

6.1.20 Bank0 R1B: IMR1 (Interrupt Mask Register 1)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	-	EXIE	-	TCIE
-	-	-	-	-	R/W	-	R/W

Bits 7~3,1: Not used. Set to "0" all the time.

Bit 2 (EXIE): EXSF interrupt enable and /INT function enable bit

0: P60/INT is P60 pin. EXSF is always equal 0.

1: Enable EXSF interrupt and P60/INT is /INT pin

Bit 0 (TCIE): TCSF interrupt enable bit.

- 0: Disable TCSF interrupt
- 1: Enable TCSF interrupt

NOTE

If the interrupt mask and instruction "ENI" are enabled, the program counter will jump into corresponding interrupt vector when the corresponding status flag is set.

6.1.21 Bank0 R1C: (Reserved)

6.1.22 Bank0 R1D: IMR3 (Interrupt Mask Register 3)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	PWM2PIE	PWM2DIE	PWM1PIE	PWM1DIE
-	-	-	-	R/W	R/W	R/W	R/W

Bits 7~4: Not used. Set to "0" all the time.

Bit 3 (PWM2PIE): PWM2PSF interrupt enable bit

0: Disable period-matching of PWM2 interrupt

1: Enable period-matching of PWM2 interrupt

Bit 2 (PWM2DIE): PWM2DSF interrupt enable bit

0: Disable duty-matching of PWM2 interrupt

1: Enable duty-matching of PWM2 interrupt

- Bit 1 (PWM1PIE): PWM1PSF interrupt enable bit
 - **0:** Disable period-matching of PWM1 interrupt
 - 1: Enable period-matching of PWM1 interrupt

Bit 0 (PWM1DIE): PWM1DSF interrupt enable bit

0: Disable duty-matching of PWM1 interrupt

1: Enable duty-matching of PWM1 interrupt

NOTE

If the interrupt mask and instruction "ENI" ar enabled, the program counter will jump into corresponding interrupt vector when the corresponding status flag is set.

6.1.23 Bank0 R1E: IMR4 (Interrupt Mask Register 4)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P8ICIE	P7ICIE	P6ICIE	P5ICIE	SPIIE	I2CSTPIE	I2CRIE	I2CTIE
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit 7~4 (P8ICIE~P5ICIE): PxICSF interrupt enable bit

0: Disable PxICSF interrupt

1: Enable PxICSF interrupt

Bit 3 (SPIIE): Interrupt enable bit

0: Disable SPSF interrupt

1: Enable SPSF interrupt

Bit 2 (I2CSTPIE): I²C stop interrupt enable bit.

0: Disable interrupt

1: Enable interrupt

Bit 1 (I2CRIE): I²C Interface Rx interrupt enable bit 0: Disable interrupt 1: Enable interrupt

Bit 0 (I2CTIE): I²C Interface Tx interrupt enable bit **0:** Disable interrupt

1: Enable interrupt

NOTE

If the interrupt mask and instruction "ENI" are enabled, the program counter will jump into corresponding interrupt vector when the corresponding status flag is set.

6.1.24 Bank0 R1F~R20: (Reserved)

6.1.25 Bank0 R21: WDTCR (Watch Dog Timer Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
WDTE	-	-	-	PSWE	WPSR2	WPSR1	WPSR0
R/W	-	-	-	R/W	R/W	R/W	R/W

Bit 7 (WDTE): Watchdog Timer enable bit. WDTE is both readable and writable. 0: Disable WDT 1: Enable WDT

- Bits 6~4: Not used. Set to "0" all the time.
- Bit 3 (PSWE):Prescaler enable bit for WDT0: Prescaler disable bit. WDT rate is 1:1.
 - 1: Prescaler enable bit. WDT rate is set at bits 2~0.

Bit 2~0 (WPSR2~WPSR0): WDT Prescaler bits

WPSR2	WPSR1	WPSR0	WDT Rate
0	0	0	1:2
0	0	1	1:4
0	1	0	1:8
0	1	1	1:16
1	0	0	1:32
1	0	1	1:64
1	1	0	1:128
1	1	1	1:256

6.1.26 Bank0 R22: TCCCR (TCC Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	TCCS	-	-	PSTE	TPSR2	TPSR1	TPSR0
0	R/W	0	0	R/W	R/W	R/W	R/W

Bits 7: Not used. Set to "0" all the time.

0: Fs (sub clock)

1: Fm (main clock)

- Bits 5~4: Not used. Set to "0" all the time.
- Bit 3 (PSTE): Prescaler enable bit for TCC

0: Prescaler disable bit. TCC rate is 1:1.

1: Prescaler enable bit. TCC rate is set at Bit 2 ~ Bit 0.

Bits 2~0 (TPSR2~TPSR0): TCC Prescaler Bits

TPSR2	TPSR1	TPSR0	TCC Rate
0	0	0	1:2
0	0	1	1:4
0	1	0	1:8
0	1	1	1:16
1	0	0	1:32
1	0	1	1:64
1	1	0	1:128
1	1	1	1:256

6.1.27 Bank0 R23: TCCD (TCC Data Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TCC7	TCC6	TCC5	TCC4	TCC3	TCC2	TCC1	TCC0
R/W							

Bits 7~0 (TCC7~TCC0): TCC data

Counter is increased by the instruction cycle clock. Writable and readable as any other registers.

6.1.28 Bank0 R24 ~ R2F: (Reserved)

Bit 6 (TCCS): TCC Clock Source select bit

6.1.29 Bank0 R30: I2CCR1 (I²C Status and Control Register 1)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Strobe/Pend	IMS	ISS	STOP	SAR_EMPTY	ACK	FULL	EMPTY
R/W	R/W	R/W	R/W	R	R	R	R

Bit 7 (Strobe/Pend)	In Master mode, it is used as strobe signal to control I ² C circuit in sending SCL clock. Automatically resets after receiving or transmitting handshake signal (ACK or NACK). In Slave mode, it is used as pending signal. You should clear it after writing data into Tx buffer or taking data from Rx buffer to inform Slave I ² C circuit to release SCL signal.
Bit 6 (IMS):	I ² C Master/Slave mode select bit 0: Slave(Default) 1: Master
Bit 5 (ISS):	I ² C C Fast/Standard mode select bit (if Fm is 4MHz and I2CTS1~0<0,0>) 0: Standard mode (100K bit/s) 1: Fast mode (400K bit/s)
Bit 4 (STOP):	In Master mode, if STOP=1 and R/nW=1, then MCU must return nACK signal to Slave device before sending STOP signal. If STOP=1 and R/nW=0, then MCU sends STOP signal after receiving an ACK signal. MCU resets when it sends STOP signal to Slave device. In Slave mode, if STOP=1 and R/nW=0 then MCU must return nACK signal to Master device.
Bit 3 (SAR_EMPTY)	: Set when MCU transmits 1 byte data from I ² C Slave Address Register and receive ACK (or nACK) signal. Reset when MCU writes 1 byte data to I ² C Slave Address Register.
Bit 2 (ACK):	The ACK condition bit is set to 1 by hardware when the device responds acknowledge (ACK). Resets when the device responds not-acknowledge (nACK) signal
Bit 1 (FULL):	Set by hardware when I ² C Receive Buffer register is full. Reset by hardware when MCU reads data from I ² C Receive Buffer register.
Bit 0 (EMPTY):	Set by hardware when I ² C Transmit Buffer register is empty and ACK (or nACK) signal is received. Reset by hardware when MCU writes new data into I ² C Transmit Buffer register.

6.1.30 Bank0 R31: I2CCR2 (\hat{l}^2 C Status and Control Register 2)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
I2CBF	GCEN	-	BBF	I2CTS1	I2CTS0	-	I2CEN
R	R/W	-	R	R/W	R/W	-	R/W

Bit 7 (I2CBF): I²C Busy Flag Bit

- **0:** Clear to "**0**" under Slave mode if the received STOP signal or I²C Slave Address does not match
- 1: Set when I²C communicate with Master in Slave mode

NOTE Set when START signal occurs. Clear when $\hat{f}C$ is disabled or STOP signal ocurs for Slave mode.

- Bit 6 (GCEN): I²C General Call Function Enable bit
 - 0: Disable General Call Function
 - 1: Enable General Call Function
- Bit 5: Not used. Set to "0" all the time.
- **Bit 4 (BBF):** Busy Flag Bit. I²C detection is busy in Master mode. Read only.

NOTE Set when START signal occurs. Clear when STOP signal ocurs for Master mode.

Bits 3~2 (I2CTS1~I2CTS0): I²C Transmit Clock select bits. When using different operating frequency (Fm), these bits must be set correctly in order for the SCL clock to be consistent with the Standard/Fast mode.

- 120 01 11 Bitt								
I2CTS1	I2CTS0	SCL CLK	Operating Fm (MHz)					
0	0	Fm/10	4					
0	1	Fm/20	8					
1	0	Fm/30	12					
1	1	Fm/40	16					

• I2CCR1 Bit5 = 1, Fast mode:

• I2CCR1 Bit5 = 0, Standard mode:

I2CTS1	I2CTS0	SCL CLK	Operating Fm (MHz)
0	0	Fm/40	4
0	1	Fm/80	8
1	0	Fm/120	12
1	1	Fm/160	16

Bit 1: No used. Set to "0" all the time.

Bit 0 (I2CEN): I²C Enable bit

0: Disable I²C mode **1:** Enable I²C mode (default)

6.1.31 Bank0 R32: I2CSA (I²C Slave Address Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SA6	SA5	SA4	SA3	SA2	SA1	SA0	IRW
R/W							

Bits 7~1 (SA6~SA0): When the MCU is used as Master device for I²C application, these bits are the Slave Device Address register.

Bit 0 (IRW): When the MCU is used as Master device for I²C application, this bit is Read/Write transaction control bit.

- 0: Write
- 1: Read

6.1.32 Bank0 R33: I2CDB (I²C Data Buffer Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
R/W							

Bits 7~0 (DB7~DB0): I²C Receive/Transmit Data Buffer

6.1.33 Bank0 R34: I2CDAL (I²C Device Address Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DA7	DA6	DA5	DA4	DA3	DA2	DA1	DA0
R/W							

Bits 7~0 (DA7~DA0): When the MCU is used as Slave device for I²C application, this register stores the MCU address. It is used to identify the data on the I²C bus to extract the message delivered to the MCU.

NOTE	
Slave Address 0x77 is reserved for WTR use.	

6.1.34 Bank0 R35: I2CDAH (I²C Device Address Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	-	-	DA9	DA8
-	-	-	-	-	-	R/W	R/W

Bits 7~2: Not used. Set to "0" all the time.

Bits 1~0 (DA9~DA8): Device Address bits

6.1.35	Bank0 R36: SPICR (SPI Control Register)	
--------	---	--

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CES	SPIE	SRO	SSE	SDOC	SBRS2	SBRS1	SBRS0
R/W							

Bit 7 (CES): Clock Edge Select bit

- **0:** Data shift-out on rising edge, and shift-in on falling edge. Data is on hold during low-level.
- **1:** Data shift-out on falling edge, and shift-in on rising edge. Data is on hold during high-level.

Bit 6 (SPIE): SPI Enable bit

- 0: Disable SPI mode
- 1: Enable SPI mode
- Bit 5 (SRO): SPI Read Overflow bit
 - 0: No overflow
 - 1: A new data is received while the previous data is still being held in the SPIR register. Under this condition, the data in SPIS register is destroyed. To avoid setting this bit, you should read the SPIR register although only the transmission is implemented. This can only occur in Slave mode.

Bit 4 (SSE): SPI Shift Enable bit

- **0:** Reset as soon as the shift is completed, and the next byte is read to shift.
- 1: Start to shift, and remain at "1" while the current byte is still being transmitted.
- Bit 3 (SDOC): SDO Output Status Control bit
 - **0:** After serial data output, the SDO remains high
 - 1: After serial data output, the SDO remains low
- Bits 2~0 (SBRS2~SBRS0): SPI Baud Rate Select bits

SBRS2	SBRS1	SBRS0	Mode	SPI Baud Rate
0	0	0	Master	Fosc/2
0	0	1	Master	Fosc/4
0	1	0	Master	Fosc/8
0	1	1	Master	Fosc/16
1	0	0	Master	Fosc/32
1	0	1	Master	Fosc/64
1	1	0	Slave	/SS enable
1	1	1	Slave	/SS disable

6.1.36 Bank0 R37: SPIS (SPI Status Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DORD	TD1	TD0	0	OD3	OD4	0	RBF
R/W	R/W	R/W	-	R/W	R/W	-	R

Bit 7 (DORD): Data shift type control bit

0: Shift left (MSB first)

1: Shift right (LSB first)

Bits 6~5 (TD1~TD0): SDO status output delay time options (Normal mode only).

When the CPU oscillator source uses Fs, it will result to 1 CLK delay time

NOTE TD1~TD0 bits are applicable only to Normal mode \rightarrow Normal mode. If under Sleep mode \rightarrow Normal mode condition, then Wake-up time is "Warm up time + 1CLK".

TD1	TD0	Delay Time
0	0	8 CLK
0	1	16 CLK
1	0	24 CLK
1	1	32 CLK

- Bit 4: Not used. Set to "0" all the time.
- Bit 3 (OD3): Open drain control bit 0: Open drain disable for SDO
 - 1: Open drain enable for SDO
- Bit 2 (OD4): Open drain control bit

0: Open drain disable for SCK

1: Open drain enable for SCK

Bit 1: Not used. Set to "0" all the time.

Bit 0 (RBF): Read Buffer Full flag

0: Receiving not completed, and SPIR has not fully exchanged data.1: Receiving completed, and SPIR has fully exchanged data.

6.1.37 Bank0 R38: SPIR (SPI Read Buffer Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SRB7	SRB6	SRB5	SRB4	SRB3	SRB2	SRB1	SRB0
R	R	R	R	R	R	R	R

Bits 7~0 (SRB7~SRB0): SPI Read Data Buffer

6.1.38 Bank0 R39: SPIW (SPI Write Buffer Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SWB7	SWB6	SWB5	SWB4	SWB3	SWB2	SWB1	SWB0
R/W							

Bits 7~0 (SWB7~SWB0): SPI Write Data Buffer

6.1.39 Bank0 R3A ~ R4F: (Reserved)

6.1.40 Bank1 R5: IOCR8

These registers are used to control I/O port direction. They are both readable and writable.

1: Put the relative I/O pin into high impedance

0: Put the relative I/O pin as output

6.1.41 Bank1 R6 ~ R7: (Reserved)

6.1.42 Bank1 R8: P5PHCR (Port 5 Pull-high Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PH57	PH56	PH55	PH54	PH53	PH52	PH51	PH50
R/W							

Bit 7 (PH57): Control bit used to enable the pull high of P57 pin

0: Enable internal pull-high

1: Disable internal pull-high

Bit 6 (PH56): Control bit used to enable the pull high of P56 pin

Bit 5 (PH55): Control bit used to enable the pull high of P55 pin

Bit 4 (PH54): Control bit used to enable the pull high of P54 pin

Bit 3 (PH53): Control bit used to enable the pull high of P53 pin

Bit 2 (PH52): Control bit used to enable the pull high of P52 pin

Bit 1 (PH51): Control bit used to enable the pull high of P51 pin

Bit 0 (PH50): Control bit used to enable the pull high of P50 pin

6.1.43 Ban	k1 R9: P6PHCR	(Port 6	Pull-high	Control	Register)
------------	---------------	---------	-----------	---------	-----------

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PH67	PH66	PH65	PH64	PH63	PH62	-	PH60
R/W	R/W	R/W	R/W	R/W	R/W	0	R/W

Bit 7 (PH67): Control bit used to enable the pull high of P67 pin

Bit 6 (PH66): Control bit used to enable the pull high of P66 pin

Bit 5 (PH65): Control bit used to enable the pull high of P65 pin

Bit 4 (PH64): Control bit used to enable the pull high of P64 pin

Bit 3 (PH63): Control bit used to enable the pull high of P63 pin

Bit 2 (PH62): Control bit used to enable the pull high of P62 pin

Bit 1: Not used. Set to "0" all the time.

Bit 0 (PH60): Control bit used to enable the pull high of P60 pin

6.1.44 Bank1 RA: P78PHCR (Port 7~8 Pull-high Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	-	P8LPH	-	P7LPH
-	-	-	-	-	R/W	0	R/W

Bits 7~3, 1: Not used. Set to "0" all the time.

Bit 2 (P8LPH): Control bit used to enable the pull high of Port83 pin

Bit 0 (P7LPH): Control bit used to enable the pull high of Port7 low nibble pin

6.1.45 Bank1 RB: P5PLCR (Port 5 Pull-low Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PL57	PL56	PL55	PL54	PL53	PL52	PL51	PL50
R/W							

Bit 7 (PL57): Control bit used to enable the pull low of P57 pin 0: Enable internal pull-low 1: Disable internal pull-low

Bit 6 (PL56): Control bit used to enable the pull low of P56 pin

Bit 5 (PL55): Control bit used to enable the pull low of P55 pin

Bit 4 (PL54): Control bit used to enable the pull low of P54 pin

Bit 3 (PL53): Control bit used to enable the pull low of P53 pin

- Bit 2 (PL52): Control bit used to enable the pull low of P52 pin
- Bit 1 (PL51): Control bit used to enable the pull low of P51 pin

Bit 0 (PL50): Control bit used to enable the pull low of P50 pin

6.1.46 Bank1 RC: P6PLCR (Port 6 Pull-low Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PL67	PL66	PL65	PL64	PL63	PL62	-	PL60
R/W	R/W	R/W	R/W	R/W	R/W	0	R/W

Bit 7 (PL67): Control bit used to enable the pull low of P67 pin

Bit 6 (PL66): Control bit used to enable the pull low of P66 pin

Bit 5 (PL65): Control bit used to enable the pull low of P65 pin

Bit 4 (PL64): Control bit used to enable the pull low of P64 pin

Bit 3 (PL63): Control bit used to enable the pull low of P63 pin

Bit 2 (PL62): Control bit used to enable the pull low of P62 pin

Bit 1: Not used. Set to "0" all the time.

Bit 0 (PL60): Control bit used to enable the pull low of P60 pin

6.1.47 Bank1 RD: P78PLCR (Port 7~8 Pull-low Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	-	P8LPL	-	P7LPL
-	-	-	-	-	R/W	0	R/W

Bits 7~3, 1: Not used. Set to "0" all the time.

Bit 2 (P8LPH): Control bit used to enable the pull low of Port8 low nibble pin

Bit 0 (P7LPH): Control bit used to enable the pull low of Port7 low nibble pin

6.1.48 Bank1 RE: P5HDSCR (Port 5 High Drive/Sink Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
H57	H56	H55	H54	H53	H52	H51	H50
R/W							

Bits 7~0 (H57~H50): P57~P50 high drive/sink current control bits

0: Enable high drive/sink

1: Disable high drive/sink

6.1.49 Bank1 RF: P6HDSCR

(Port 6 High Drive/Sink Control Register)

В	it 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Н	167	H66	H65	H64	H63	H62	-	H60
R	R/W	R/W	R/W	R/W	R/W	R/W	0	R/W

Bits 7~2, 0 (H67~H62,H60): P67~P62,P60 high drive/sink current control bits

0: Enable high drive/sink

1: Disable high drive/sink

Bit 1: Not used. Set to "0" all the time.

6.1.50 Bank1 R10: P78HDSCR (Port 7~8 High Drive/Sink Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	-	P8LHDS	-	P7LHDS
-	-	-	-	-	R/W	0	R/W

Bits 7~3, 1: Not used. Set to "0" all the time.

Bit 2 (P8LHDS): Control bit used to enable high drive/sink of Port83 pin

Bit 0 (P7LHDS): Control bit used to enable high drive/sink of Port7 low nibble pin

6.1.51 Bank1 R11: P5ODCR

(Port 5 Open-Drained Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OD57	OD56	OD55	OD54	OD53	OD52	OD51	OD50
R/W							

Bits 7~0 (OD57~OD50): Open-Drain control bits

0: Disable open-drain function

1: Enable open-drain function

6.1.52 Bank1 R12: P6ODCR (Port 6 Open-Drained Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OD67	OD66	OD65	OD64	OD63	OD62	-	OD60
R/W	R/W	R/W	R/W	R/W	R/W	0	R/W

Bits 7~2, 0 (OD67~OD62,OD60): Open-Drain control bits

0: Disable open-drain function

1: Enable open-drain function

Bit 1: Not used. Set to "0" all the time.

6.1.53 Bank1 R13: P78ODCR

(Port 7~8 Open-Drained Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	-	P8LOD	-	P7LOD
-	-	-	-	-	R/W	0	R/W

Bits 7~3, 1: Not used. Set to "0" all the time.

Bit 2 (P8LOD): Control bit used to enable open-drain of Port83 pin

0: Disable open-drain function

1: Enable open-drain function

Bit 0 (P7LOD): Control bit used to enable open-drain of Port7 low nibble pin

6.1.54 Bank1 R14 ~ R15: (Reserved)

6.1.55 Bank1 R16: PWMSCR (PWM Source Clock Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	-	-	PWM2S	PWM1S
-	-	-	-	-	-	R/W	R/W

Bits 7~2: Not used. Set to "0" all the time.

Bit 1 (PWM2S): Clock selection for PWM2 timer

0: Fs (default)

1: Fm

Bit 0 (PWM1S): Clock selection for PWM1 timer

0: Fs (default)

1: Fm

6.1.56 Bank1 R17: PWM1CR (PWM1 Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWM1E	-	-	-	T1EN	T1P2	T1P1	T1P0
R/W	-	-	-	R/W	R/W	R/W	R/W

Bit 7 (PWM1E): PWM1 enable bit

0: Disable (default)

1: Enable. The compound pin is used as PWM1 pin

Bits 6~4: Not used. Set to "0" all the time.

Bit 3 (T1EN): TMR1 enable bit. All PWM functions are valid only when this bit is set.

NOTE

When the PWM waveform is on, a time delay of 2.5 PWM clock will occur before PWM output starts.

0: TMR1 is off (default value)

1: TMR1 is on

PWMXEN	TXEN	Function Description
0	0	Not used as PWM function, I/O pin, or as any other pin function.
0	1	Timer function, I/O pin, or other pin function
1	0	PWM function, the waveform is kept at low level.
1	1	PWM function, normal PWM output waveform

Bits 2~0 (T1P2~T1P0):TMR1 clock prescale option bits

T1P2	T1P1	T1P0	Prescale
0	0	0	1:1 (default)
0	0	1	1:2
0	1	0	1:4
0	1	1	1:8
1	0	0	1:16
1	0	1	1:64
1	1	0	1:128
1	1	1	1:256

6.1.57 Bank1 R18: PRD1L (Low Byte of PWM1 Period)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PRD1[7]	PRD1[6]	PRD1[5]	PRD1[4]	PRD1[3]	PRD1[2]	PRD1[1]	PRD1[0]
R/W							

Bits 7~0 (PRD1[7~0]): The contents of the register are the low byte of the PWM1 period.

NOTE If the PWM1 duty/period needs to reload, the PRD1L register must be updated.

6.1.58 Bank1 R19: PRD1H (High Byte of PWM1 Period)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PRD1[F]	PRD1[E]	PRD1[D]	PRD1[C]	PRD1[B]	PRD1[A]	PRD1[9]	PRD1[8]
R/W							

Bits 7~0 (PRD1[F~8]): The contents of the register are the high byte of the PWM1 period

			- (-•			-97	
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DT1[7]	DT1[6]	DT1[5]	DT1[4]	DT1[3]	DT1[2]	DT1[1]	DT1[0]
R/W							

6.1.59 Bank1 R1A: DT1L (Low Byte of PMW1 Duty)

Bits 7~0 (DT1[7~0]): The contents of the register are the low byte of the PWM1 duty.

6.1.60 Bank1 R1B: DT1H (High Byte of PMW1 Duty)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DT1[F]	DT1[E]	DT1[D]	DT1[C]	DT1[B]	DT1[A]	DT1[9]	DT1[8]
R/W							

Bits 7~0 (DT1[F~8]): The contents of the register are the high byte of the PWM1 duty.

6.1.61 Bank1 R1C: TMR1L (Low Byte of Timer1)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TMR1[7]	TMR1[6]	TMR1[5]	TMR1[4]	TMR1[3]	TMR1[2]	TMR1[1]	TMR1[0]
R	R	R	R	R	R	R	R

Bits 7~0 (TMR1[7~0]): The contents of the register are the low byte of the PWM1 timer which is counting. These bits are read-only.

6.1.62 Bank1 R1D: TMR1H (High Byte of Timer 1)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TMR1[F]	TMR1[E]	TMR1[D]	TMR1[C]	TMR1[B]	TMR1[A]	TMR1[9]	TMR1[8]
R	R	R	R	R	R	R	R

Bits 7~0 (TMR1[F~8]): The contents of the register are the high byte of the PWM1 timer which is counting. These bits are read-only.

6.1.63 Bank1 R1E: PWM2CR (PWM2 Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWM2E	-	-	-	T2EN	T2P2	T2P1	T2P0
R/W	-	-	-	R/W	R/W	R/W	R/W

Bit 7 (PWM2E): PWM2 enable bit

0: Disable (default)

1: Enable. The compound pin is used as PWM2 pin

Bits 6~4: Not used. Set to "0" all the time.

Bit 3 (T2EN): TMR2 enable bit. All PWM functions are valid only after this bit is set.

NOTE When the PWM waveform is on output, a time delay of 1 instruction cycle will occur.

- 0: TMR2 is off (default value)
- 1: TMR2 is on

Bits 2~0 (T2P2~T2P0): TMR2 clock prescale option bits

T2P2	T2P1	T2P0	Prescale	
0	0	0	1:1 (default)	
0	0	1 1:2		
0	1	0	1:4	
0	1	1	1:8	
1	0	0	1:16	
1	0	1	1:64	
1	1	0	1:128	
1	1	1	1:256	

6.1.64 Bank1 R1F: PRD2L (Low Byte of PWM2 Period)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PRD2[7]	PRD2[6]	PRD2[5]	PRD2[4]	PRD2[3]	PRD2[2]	PRD2[1]	PRD2[0]
R/W							

Bits 7~0 (PRD2[7~0]): The contents of the register are the low byte of the PWM2 period.

NOTE If the PWM2 duty/period needs to reload, the PRD2L register must be updated.

6.1.65 Bank1 R20: PRD2H (High Byte of PWM2 Period)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PRD2[F]	PRD2[E]	PRD2[D]	PRD2[C]	PRD2[B]	PRD2[A]	PRD2[9]	PRD2[8]
R/W							

Bits 7~0 (PRD2[F~8]): The contents of the register are the high byte of the PWM2 period.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
DT2[7]	DT2[6]	DT2[5]	DT2[4]	DT2[3]	DT2[2]	DT2[1]	DT2[0]			
R/W										

6.1.66 Bank1 R21: DT2L (Low Byte of PMW2 Duty)

Bits 7~0 (DT2[7~0]): The contents of the register are the low byte of the PWM2 duty.

6.1.67 Bank1 R22: DT2H (High Byte of PMW2 Duty)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DT2[F]	DT2[E]	DT2[D]	DT2[C]	DT2[B]	DT2[A]	DT2[9]	DT2[8]
R/W							

Bits 7~0 (DT2[F~8]): The contents of the register are the high byte of the PWM2 duty.

6.1.68 Bank1 R23: TMR2L (Low Byte of Timer 2)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TMR2[7]	TMR2[6]	TMR2[5]	TMR2[4]	TMR2[3]	TMR2[2]	TMR2[1]	TMR2[0]
R	R	R	R	R	R	R	R

Bits 7~0 (TMR2[7~0]): The contents of the register are the low byte of the PWM2 timer which is counting. These bits are read-only.

6.1.69 Bank1 R24: TMR2H (High Byte of Timer 2)

Bit 7	Bit 6 Bit 5		Bit 4 Bit 3		Bit 2	Bit 1	Bit 0
TMR2[F]	TMR2[E]	TMR2[D]	TMR2[C]	TMR2[B]	TMR2[A]	TMR2[9]	TMR2[8]
R	R	R	R	R	R	R	R

Bits 7~0 (TMR2[F~8]): The contents of the register are the high byte of the PWM2 timer which is counting. These bits are read-only

6.1.70 Bank1 R25 ~ R44: (Reserved)

6.1.71 Bank1 R45: TBPTL (Table Point Low Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TB7	TB6	TB5	TB4	TB3	TB2	TB1	TB0
R/W							

Bits 7~0 (TB7~TB0): Table point address Bits 7~0.

6.1.72 Bank1 R46: TBPTH (Table Point High Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
HLB	RDS	-	TB12	TB11	TB10	TB9	TB8
R/W	R/W	0	R/W	R/W	R/W	R/W	R/W

Bit 7 (HLB): Obtain MLB or LSB at machine code of ROM or Data area.

RDS	HLB	Read to Register Data Value Description				
0	0	Read byte value is Bit7 ~ Bit0 from machine code.				
0	1	Read byte value is– Highest bit fixed at " 0 " and Bit14 ~ Bit8 from machine code.				
1	0	Read byte value is Bit7 ~ Bit0 from Data area.				
1	1 1 Read byte value is Bit15~Bit8 from Data area.					

Bit 6 (RDS): ROM / Data select bit, read machine code information area select. 0: ROM (default)

1: Data area (data Address 000~17F)

Bit 5: Not used. Set to "0" all the time.

Bits 4~0 (TB13~TB8): Table point Address Bits 13~8.

6.1.73 Bank1 R47: STKMON (Stack Point)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
STOF	-	-	-	-	STL2	STL1	STL0
R	-	-	-	-	R	R	R

Bit 7(STOF): Stack pointer overflow indicator bit. Read only.

Bits 2~0(STL2~0): Stack pointer number. Read only.

6.1.74 Bank1 R48: PCH (Program Counter High)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	PC12	PC11	PC10	PC9	PC8
-	-	-	R/W	R/W	R/W	R/W	R/W

Bit 7~5: Not used. Set to "0" all the time.

Bits 4~0 (PC13~PC8): The low byte of program counter

6.1.75 Bank1 R49: (Reserved)

6.1.76 Bank1 R4A: COBS1 (Code Option Bit Selection Register 1)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
HLFS	RESETEN	ENWDT	NRHL	NRE	-	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit 7(HLFS): Mode selection bit after reset occurs

0: CPU is selected as Green mode when a reset occurs

1: CPU is selected as Normal mode when a reset occurs (default)

- Bit 6 (RESETEN): P80//RESET pin selection bit
 - 0: Enable, /RESET pin
 - 1: Disable, P80 pin
- Bit 5 (ENWDT): WDT enable bit
 - 0: Enable
 - 1: Disable
- Bit 4 (NRHL): Noise rejection high/low pulses defining bit. INT pin is falling edge trigger.

0: Pulses equal to 8/Fsys is regarded as signal

1: Pulses equal to 32/Fsys is regarded as signal

Bit 3 (NRE): Noise Rejection Enable Bit

0: Disable noise rejection

1: Enable noise rejection (note that in Green, Idle, and Sleep modes, the noise rejection circuit is always disabled.)

Bit 2~0: Not used. Set to "1" all the time.

NOTE

When the MCU powers on, it latches the code option setting values first. Then, the values in code option words are decided whether to link them with the corresponding control registers (Bank1 R4A~4C) in accordance with COBS setting (**1** or **0**). If COBS equals "**0**", the initial values in the control registers Bank1 R4A~4C are the same with the values in code option words. They can be modified later to any other values as you wish.

6.1.77 Bank1 R4B: COBS2 (Code Option Bit Selection Register2)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	C5	C4	C3	C2	C1	C0
-	-	R/W	R/W	R/W	R/W	R/W	R/W

Bit 7~6: Not used. Set to "0" all the time.

	Т	rimmir	ng Cod	le		Clock Period	Frequency
CA[5]	CA[4]	CA[3]	CA[2]	CA[1]	CA[0]		пециенсу
0	0	0	0	0	0	Period*(1+32%)	F*(1-24.2%)
0	0	0	0	0	1	Period*(1+31%)	F*(1-23.7%)
0	0	0	0	1	0	Period*(1+30%)	F*(1-23.1%)
0	0	0	0	1	1	Period*(1+29%)	F*(1-22.5%)
0	0	0	1	0	0	Period*(1+28%)	F*(1-21.9%)
0	0	0	1	0	1	Period*(1+27%)	F*(1-21.3%)
0	0	0	1	1	0	Period*(1+26%)	F*(1-20.6%)
0	0	0	1	1	1	Period*(1+25%)	F*(1-20%)
0	0	1	0	0	0	Period*(1+24%)	F*(1-19.4%)
0	0	1	0	0	1	Period*(1+23%)	F*(1-18.7%)
0	0	1	0	1	0	Period*(1+22%)	F*(1-18%)
0	0	1	0	1	1	Period*(1+21%)	F*(1-17.4%)
0	0	1	1	0	0	Period*(1+20%)	F*(1-16.7%)
0	0	1	1	0	1	Period*(1+19%)	F*(1-16%)
0	0	1	1	1	0	Period*(1+18%)	F*(1-15.3%)
0	0	1	1	1	1	Period*(1+17%)	F*(1-14.5%)
0	1	0	0	0	0	Period*(1+16%)	F*(1-13.8%)
0	1	0	0	0	1	Period*(1+15%)	F*(1-13%)
0	1	0	0	1	0	Period*(1+14%)	F*(1-12.3%)
0	1	0	0	1	1	Period*(1+13%)	F*(1-11.5%)
0	1	0	1	0	0	Period*(1+12%)	F*(1-10.7%)
0	1	0	1	0	1	Period*(1+11%)	F*(1-9.9%)
0	1	0	1	1	0	Period*(1+10%)	F*(1-9.1%)
0	1	0	1	1	1	Period*(1+9%)	F*(1-8.33%)
0	1	1	0	0	0	Period*(1+8%)	F*(1-7.4%)
0	1	1	0	0	1	Period*(1+7%)	F*(1-6.5%)
0	1	1	0	1	0	Period*(1+6%)	F*(1-5.7%)
0	1	1	0	1	1	Period*(1+5%)	F*(1-4.8%)
0	1	1	1	0	0	Period*(1+4%)	F*(1-3.8%)
0	1	1	1	0	1	Period*(1+3%)	F*(1-2.97%)
0	1	1	1	1	0	Period*(1+2%)	F*(1-2%)
0	1	1	1	1	1	Period*(1+1%)	F*(1-1%)
1	1	1	1	1	1	Period (default)	F (default)
1	1	1	1	1	0	Period*(1-1%)	F*(1+1%)

	Т	rimmir	ng Cod	le			-
CA[5]	CA[4]	CA[3]	CA[2]	CA[1]	CA[0]	Clock Period	Frequency
1	1	1	1	0	1	Period*(1-2%)	F*(1+2%)
1	1	1	1	0	0	Period*(1-3%)	F*(1+3.1%)
1	1	1	0	1	1	Period*(1-4%)	F*(1+4.2%)
1	1	1	0	1	0	Period*(1-5%)	F*(1+5.3%)
1	1	1	0	0	1	Period*(1-6%)	F*(1+6.4%)
1	1	1	0	0	0	Period*(1-7%)	F*(1+7.5%)
1	1	0	1	1	1	Period*(1-8%)	F*(1+8.7%)
1	1	0	1	1	0	Period*(1-9%)	F*(1+9.9%)
1	1	0	1	0	1	Period*(1-10%)	F*(1+11.1%)
1	1	0	1	0	0	Period*(1-11%)	F*(1+12.3%)
1	1	0	0	1	1	Period*(1-12%)	F*(1+13.6%)
1	1	0	0	1	0	Period*(1-13%)	F*(1+14.9%)
1	1	0	0	0	1	Period*(1-14%)	F*(1+16.3%)
1	1	0	0	0	0	Period*(1-15%)	F*(1+17.6%)
1	0	1	1	1	1	Period*(1-16%)	F*(1+19%)
1	0	1	1	1	0	Period*(1-17%)	F*(1+20.5%)
1	0	1	1	0	1	Period*(1-18%)	F*(1+22%)
1	0	1	1	0	0	Period*(1-19%)	F*(1+23.5%)
1	0	1	0	1	1	Period*(1-20%)	F*(1+25%)
1	0	1	0	1	0	Period*(1-21%)	F*(1+26.6%)
1	0	1	0	0	1	Period*(1-22%)	F*(1+28.2%)
1	0	1	0	0	0	Period*(1-23%)	F*(1+29.9%)
1	0	0	1	1	1	Period*(1-24%)	F*(1+31.6%)
1	0	0	1	1	0	Period*(1-25%)	F*(1+33.3%)
1	0	0	1	0	1	Period*(1-26%)	F*(1+35.1%)
1	0	0	1	0	0	Period*(1-27%)	F*(1+37%)
1	0	0	0	1	1	Period*(1-28%)	F*(1+38.9%)
1	0	0	0	1	0	Period*(1-29%)	F*(1+40.8%)
1	0	0	0	0	1	Period*(1-30%)	F*(1+42.9%)
1	0	0	0	0	0	Period*(1-31%)	F*(1+44.9%)

NOTE

- 1. Frequency values shown are theoretical and taken from an instance of a high frequency mode. Hence, they are shown for reference only. Definite values will depend on the actual calculation conditions.
- 2. The same method of calculation is also applicable to low frequency mode.

6.1.78 Bank1 R4C: COBS3 (Code Option Bit Selection Register 3)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	FSS	SC3	SC2	SC1	SC0
-	-	-	R/W	R/W	R/W	R/W	R/W

Bit 7~5: Not used. Set to "1" all the time.

Bits 4 (FSS):Sub-oscillator mode selection bits0: Fs is 64KHz1: Fs is 16KHz

Bits 3~0 (SC3~SC0): Trim bits of sub-frequency IRC

	Trimmir	ng Code		CLK Period	Frequency
CA[3]	CA[2]	CA[1]	CA[0]	OERTENDO	riequency
0	0	0	0	Period*(1+32%)	F*(1-24.24%)
0	0	0	1	Period*(1+28%)	F*(1-21.88%)
0	0	1	0	Period*(1+24%)	F*(1-19.35%)
0	0	1	1	Period*(1+20%)	F*(1-16.67%)
0	1	0	0	Period*(1+16%)	F*(1-13.79%)
0	1	0	1	Period*(1+12%)	F*(1-10.71%)
0	1	1	0	Period*(1+8%)	F*(1-7.41%)
0	1	1	1	Period*(1+4%)	F*(1-3.85%)
1	1	1	1	Period (default)	F (default)
1	1	1	0	Period*(1-4%)	F*(1+4.17%)
1	1	0	1	Period*(1-8%)	F*(1+8.70%)
1	1	0	0	Period*(1-12%)	F*(1+13.64%)
1	0	1	1	Period*(1-16%)	F*(1+19.05%)
1	0	1	0	Period*(1-20%)	F*(1+25.00%)
1	0	0	1	Period*(1-24%)	F*(1+31.58%)
1	0	0	0	Period*(1-28%)	F*(1+38.89%)

NOTE

When the MCU powers on, it latches the code option setting values first. Then, the values in code option words are decided whether to link them with the corresponding control registers (Bank1 R4A~4C) in accordance with COBS setting (1 or 0). If COBS equals "0", the initial values in the control registers Bank1 R4A~4C are the same with the values in code option words. They can be modified later to any other values as you wish.

6.1.79 Bank1 R4D ~ R4F: (Reserved)

6.1.80 Bank2 R21: DACR (DAC Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	-	-	DAE1	DAE0
-	-	-	-	-	-	R/W	R/W

Bits 7~2: Not used. Set to "0" all the time.

Bits 1 (DAE1): DAC enable bit of P57 pin 0: Disable DA1/P57 serving as I/O pin

1: Enable DA1/P57 serving as analog output pin

Bits 0 (DAE0): DAC enable bit of P56 pin

0: Disable DA0/P56 serving as I/O pin

1: Enable DA0/P56 serving as analog output pin

6.1.81 Bank2 R22: DACD0

(Digital to Analog Converter Data Buffer 0)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DAD0[7]	DAD0[6]	DAD0[5]	DAD0[4]	DAD0[3]	DAD0[2]	DAD0[1]	DAD0[0]
R/W							

Bits 7~0 (DAD0[7]~DAD0[0]): DA0 Data buffer

6.1.82 Bank2 R23: DACD1 (Digital to Analog Converter Data Buffer 1)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DAD1[7]	DAD1[6]	DAD1[5]	DAD1[4]	DAD1[3]	DAD1[2]	DAD1[1]	DAD1[0]
R/W							

Bits 7~0 (DAD1[7]~DAD1[0]): DA1 Data Buffer.

6.1.83 Bank2 R25 ~ R4F: (Reserved)

6.1.84 R50~R7F, Bank0~3 R80~RFF

These are all 8-bit general-purpose registers.

6.2 TCC/WDT & Prescaler

Two 8-bit counters are available as prescalers for the TCC and WDT respectively. The TPSR0~ TPSR2 bits of the TCCCR register (Bank0 R22) are used to determine the ratio of the TCC prescaler. Likewise, the WPSR0~WPSR2 bits of the WDTCR register (6.1.25 Bank0 R21) are used to determine the prescaler of WDT. The prescaler counter is cleared by the instructions each time they are written into TCC. The WDT and prescaler are cleared by the "WDTC" and "SLEP" instructions. Figure 6-3 below depicts the circuit diagram of TCC/WDT.

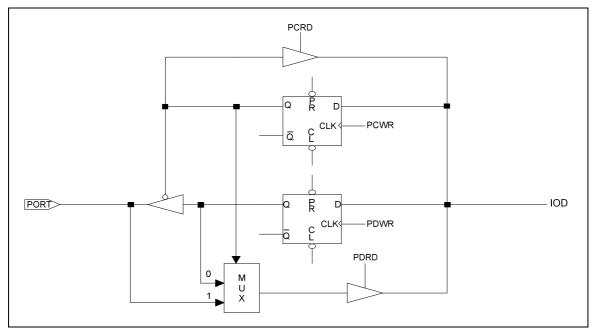
TCCD (6.1.27 Bank0 R23) is an 8-bit timer/counter. The TCC clock source is from internal clock only and TCC will increase by 1 at every instruction cycle (without prescaler). **The TCC will stop running when Sleep mode occurs.**

The watchdog timer is a free running on-chip RC oscillator. The WDT will keep on running even after the oscillator driver has been turned off (i.e., in Sleep mode). During Normal operation or sleep mode, a WDT time-out (if enabled) will cause the device to reset. The WDT can be enabled or disabled at any time during Normal mode by software programming (see WDTE bit of WDTCR (6.1.25 Bank0 R21) register). With no prescaler, the WDT time-out period is approximately 18 ms⁵ (one oscillator start-up timer period).



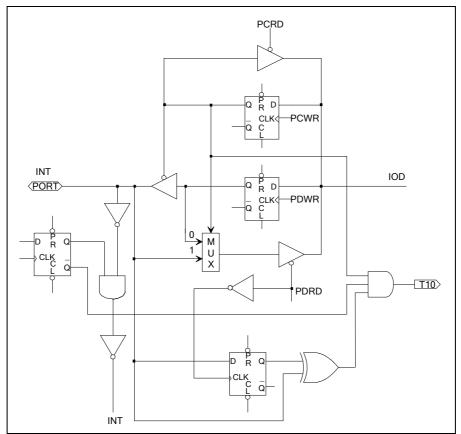
Figure 6-3 TCC and WDT Block Diagram

⁵ VDD=5V, WDT time-out period = $16.5ms \pm 8\%$.

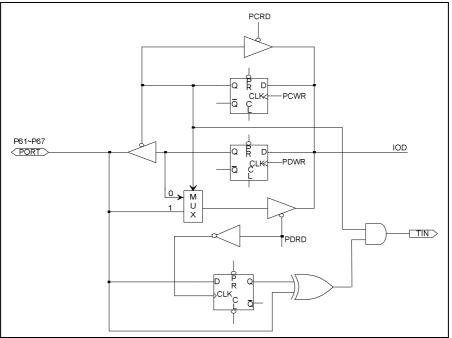

VDD=3V, WDT time-out period = $18ms \pm 8\%$.

6.3 I/O Ports

The I/O registers, Port 5~Port 8 are bi-directional tri-state I/O ports. All can be pulled high and pulled low internally by software. Furthermore, they can also be set as open-drain output and high sink/drive by software. Ports 5~8 feature wake-up and interrupt function as well as input status change interrupt function. Each I/O pin can be defined as "input" or "output" pin by the I/O control register (IOC5 ~ IOC8).


The I/O registers and I/O control registers are both readable and writable. The I/O interface circuits for Port 5 \sim Port 8 are shown in the following Figure 6-4a to 6-4d.

NOTE: Pull-down is not shown in the figure.



NOTE: Pull-high (down) and Open-drain are not shown in the figure.

Figure 6-4b I/O Port and I/O Control Register for /INT Circuit

NOTE: Pull-high (down) and Open-drain are not shown in the figure.

Figure 6-4c I/O Port and I/O Control Register for Port 5~8 Circuit

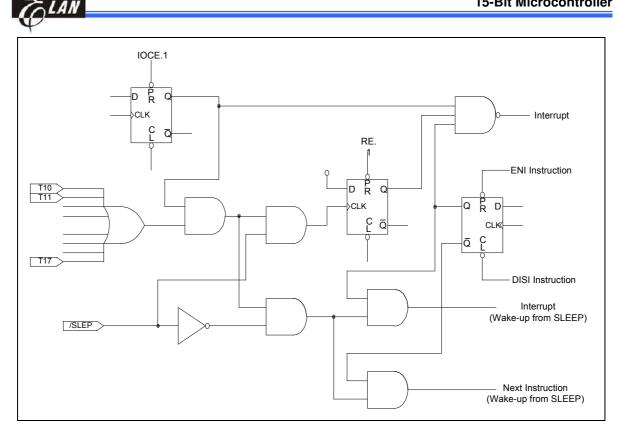


Figure 6-4d I/O Port 5~8 with Input Change Interrupt/Wake-up Block Diagram

1. Wake-up
a) Before SLEEP:
1) Disable WDT
2) Read I/O Port (MOV R6,R6)
3) Execute "ENI" or "DISI"
4) Enable Wake-up bit (Set ICWKPx = 1)
5) Execute "SLEP" instruction
b) After Wake-up:
→ Next instruction

6.3.1	Usage of Port 5~8 Input Change Wake-up/Interrupt Function
-------	---

2. Wake-up and Interrupt
a) Before SLEEP
1) Disable WDT
2) Read I/O Port (MOV R6,R6)
3) Execute "ENI" or "DISI"
4) Enable Wake-up bit (Set ICWKPx = 1)
5) Enable interrupt (Set PxICIE = 1)
6 Execute "SLEP" instruction
b) After Wake-up
 IF "ENI" → Interrupt vector (0006H)
 IF "DISI" → Next instruction

6.4 RESET and Wake-up

A RESET is initiated by one of the following events:

- 1) Power on reset
- 2) /RESET pin input "low", or
- 3) WDT time-out (if enabled)
- 4) LVR (if enabled)

The device is kept in a RESET condition for a period of approximately 18ms⁶ (one oscillator start-up timer period) after a reset is detected. And if the /Reset pin goes "low" or the WDT time-out is active, a reset is generated. In IRC mode, the reset time is 8/32 clocks. Once a RESET occurs, the following functions are performed (see Figure 6-5 below):

- The oscillator continuous running, or will be started.
- The Program Counter (R2) is set to all "0".
- All I/O port pins are configured as input mode (high-impedance state).
- The Watchdog Timer and prescaler are cleared.
- The control register bits are set as shown in the table below under Section 6.4.3, Summary of Register Initial Values after Reset.

The Sleep (power down) mode is asserted by executing the "SLEP" instruction. While entering Sleep mode, WDT (if enabled) is cleared but keeps on running. Wake-up is then generated (in IRC mode the wake-up time is 8/32 clocks). The controller can be awakened by any of the following events:

- 1) External reset input on /RESET pin
- 2) WDT time-out (if enabled)
- 3) External (/INT) pin changes (if INTWE is enabled)
- 4) Port input status changes (if ICWKPx is enabled)
- 5) SPI receives data while it serves as Slave device (if SPIWK is enabled)
- 6) I²C receives data while it serves as Slave device (if I2CWK is enabled)
- 7) A/D conversion completed (if ADWK is enabled)

The first two events (1 & 2) will cause the eKTF5701 to reset. The T and P flags of R3 are used to determine the source of the reset (Wake-up). Events 3 to 7 are considered as continuation of program execution and the global interrupt ("ENI" or "DISI" being executed) decides whether or not the controller branches to the interrupt vector following Wake-up. If ENI is executed before SLEP, the instruction will begin to execute from Address 0x02~0x3C after Wake-up. If DISI is executed before SLEP, the execution will restart from the instruction right next to SLEP after Wake-up.

⁶ Vdd = 5V, set up time period = $16.8ms \pm 8\%$

Vdd = 3V, set up time period = $18ms \pm 8\%$

Only one of Events 3 to 7 can be enabled before entering into Sleep mode. That is:

- a) If WDT is enabled before SLEP, the eKTF5701 can wake-up only when Events 1 or 2 occurs. Refer to the Section 6.5 *Interrupt*, for further details.
- b) If External (P60, /INT) pin change is used to wake-up eKTF5701 and EXWE bit is enabled before SLEP (with WDT disabled). Hence, the eKTF5701 can wake-up only when Event 3 occurs.
- c) If Port Input Status Change is used to wake-up eKTF5701 and the corresponding wake-up setting is enabled before SLEP (with WDT disabled). Hence, the eKTF5701 can wake-up only when Event 4 occurs.
- d) With SPI serving as Slave device and the SPIWK bit of Bank0 R11 register is enabled before SLEP (with WDT disabled), the SPI will wake-up eKTF5701 after it receives data. Hence, the eKTF5701 can wake-up only when Event 5 occurs.
- e) When I²C serving as Slave device and I2CWK bit of Bank0 R11 register is enabled before SLEP (with WDT disabled), the I²C will wake-up eKTF5701 after it received data. Hence, the eKTF5701 can be wake-up only by Event 6.

Wake-up	Condition	Sleep	Mode	Idle I	Node	Green	Mode	Norma	Mode			
Signal	Signal	DISI	ENI	DISI	ENI	DISI	ENI	DISI	ENI			
	INTWK = 0, EXIE = 0		/INT pin Disable									
External	INTWK = 0, EXIE = 1		Wake-up	is invalid.		Next Instruction	Interrupt + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector			
INT	INTWK = 1, EXIE = 0				/INT pin	n Disable						
	INTWK = 1, EXIE = 1	Wake up + Next Instruction	Wake up + Interrupt Vector	Wake up + Next Instruction		Next Instruction	Interrupt + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector			
	TCIE = 0		Wake-up	is invalid.		Interrupt is invalid.						
TCC INT	TCIE = 1	Wake-up	is invalid.	Wake up + Next Instruction		Next Instruction	Interrupt + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector			
PWM1/2 (When	PWMXPIE=0		Wake-up is invalid.				Interrupt is invalid.					
Timer1/2 Match PRD1/2)	PWMxPIE=1	Wake-up	is invalid.	Wake up + Next Instruction	•	Next Instruction	Interrupt + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector			

6.4.1 Summary of Wake-up and Interrupt Modes Operation

	(Contin	uation)							T.
Wake-up	Condition	Sleep Mode Idle Mode				Green	Mode	Normal Mode	
Signal	Signal	DISI	ENI	DISI	ENI	DISI	ENI	DISI	ENI
	$\begin{aligned} ICWKPx &= 0, \\ PxICIE &= 0 \end{aligned}$		Wake-up	is invalid.			Interrupt	is invalid.	
Pin Change INT	ICWKPx = 0, PxICIE = 1		Wake-up	is invalid.		Next Instruction	Interrupt + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector
	ICWKPx = 1, PxICIE = 0		-	e up + struction			Interrupt	is invalid.	
	ICWKPx = 1, PxICIE = 1	Wake up + Next Instruction	Wake up + Interrupt	Wake up + Next Instruction	•	Next Instruction	Interrupt + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector
	I2CWK = 0, I2CxIE = 0		Wake-up	is invalid.		l ² Can'i		Interrupt i	s invalid.
	I2CWK = 0, I2CxIE = 1		Wake-up	is invalid.		I ² C Can't use		Next Instruction	Interrupt + Interrupt Vector
I ² C INT	I2CWK = 1, I2CxIE = 0	Wake up + Next Instruction I ² C must be in Slave mode				I ² Can'i	-	Interrupt is invalid.	
	I2CWK = 1, I2CxIE = 1	Wake up + Next Instruction I ² C must be in Slave mode	Wake up + Interrupt Vector I2C must	Wake up + Next Instruction I2C must	Wake up + Interrupt Vector I2C must	I ² C Can't use		Next Instruction	Interrupt + Interrupt Vector
	SPIWK = 0, SPIE = 0		Wake-up	is invalid.			Interrupt	is invalid.	
	SPIWK = 0, SPIE = 1		Wake-up	is invalid.		Next Instruction	Interrupt + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector
SPI INT	SPIWK = 1, SPIE = 0	SPI	Wake up + Next Instruction SPI must be in Slave mode Wake up Wake up Wake up Wake up Wake up Wake up + + + Next Interrupt Next Interrupt Instruction Vector Instruction Vector SPI must SPI must SPI must SPI must be in Slave be in Slave be in Slave be in Slave mode mode mode mode				Interrupt is invalid.		
	SPIWK = 1, SPIE = 1	Wake up + Next Instruction SPI must					Interrupt + Interrupt Vector	Next Instruction	Interrupt + Interrupt Vector

Wake-up	Condition	Sleep Mode		tion Sleep Mode Idle Mode Greet		Green	een Mode Normal Mo		I Mode
Signal	Signal	DISI	ENI	DISI	ENI	DISI	ENI	DISI	ENI
WDT time out		RESET	RESET	RESET	RESET	RESET	RESET	RESET	RESET

After wake up:

- 1. If interrupt enable \rightarrow interrupt+ next instruction
- 2. If interrupt disable \rightarrow next instruction

6.4.2 The Status of RST, T, and P of Status Register

A RESET condition is initiated by one of the following events:

- 1) A power-on condition,
- 2) A high-low-high pulse on /RESET pin, and
- 3) Watchdog timer time-out.

4) LVR occur

The values of T and P, as listed in the following table are used to check how the MCU wakes up. The next table shows the events that may affect the status of T and P.

NOTE

■ Values of RST, T and P after RESET:

Reset Type	Т	Р
Power-on	1	1
/RESET during Operating mode	P*	P*
/RESET Wake-up during SLEEP mode	1	0
WDT during Operating mode	0	P*
WDT Wake-up during SLEEP mode	0	0
Wake-Up on pin change during SLEEP mode	1	0

* P: Previous status before reset

Status of T and P being Affected by Events:

Event	Т	Р
Power-on	1	1
WDTC instruction	1	1
WDT time-out	0	*P
SLEP instruction	1	0
Wake-Up on pin change during SLEEP mode	1	0

* P: Previous value before reset

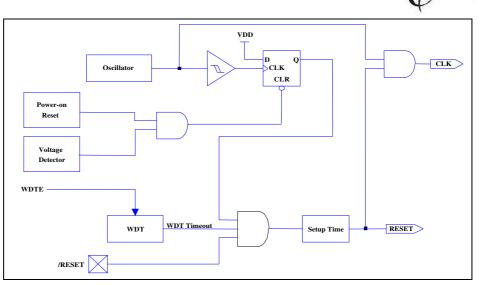


Figure 6-5 Block Diagram of Controller Reset

6.4.3 Summary of Register Initial Values after Reset

Legend: U: Unknown or don't care C: Same with Code option *P:* Previous value before reset*t:* Check tables under Section 6.4.2

Address	Bank Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	-	-	-	-	-	-	-	-
	BU	Power-On	U	U	U	U	U	U	U	U
0x00	(IAR)	/RESET and WDT	Р	Р	Р	Р	Р	Р	Р	Р
	0x00 R0 (IAR) 0x01 R1 (BSR) 0x02 R2 (PCL)	Wake-Up from Sleep/Idle	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Р
		Bit Name	0	0	SBS1	SBS0	0	GBS2	GBS1	GBS0
	R1	Power-On	0	0	0	0	0	0	0	0
0x01		/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-Up from Sleep/Idle	0	0	Ρ	Р	0	Ρ	Ρ	Р
		Bit Name	-	-	-	-	-	-	-	-
	B2	Power-On	0	0	0	0	0	0	0	0
0x02		/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-Up from Sleep/Idle	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Р
		Bit Name	INT	0	0	Т	Р	Z	DC	С
	R3	Power-On	0	0	0	1	1	U	U	U
0x03	(SR)	/RESET and WDT	0	0	0	t	t	Р	Р	Р
		Wake-Up from Sleep/Idle	Ρ	0	0	t	t	Ρ	Ρ	Ρ

Address	Bank Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	Name	Bit Name	RSR7	RSR6	RSR5	RSR4	RSR3	RSR2	RSR1	RSR0
		Power-On	U	U	U	U	U	U	U	U
0x04	R4 (RSR)	/RESET and WDT	Р	Р	Р	Р	Р	Р	Р	Р
	(Wake-Up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	P57	P56	P55	P54	P53	P52	P51	P50
	BANK 0,	Power-On	0	0	0	0	0	0	0	0
0X05	R5 (PORT 5)	/RESET and WDT	0	0	0	0	0	0	0	0
	(FORT 3)	Wake-Up from Sleep/Idle	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ
		Bit Name	-	P66	P65	P64	P63	P62	-	P60
	BANK 0,	Power-On	0	0	0	0	0	0	0	0
0x06	R6 (PORT 6)	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-Up from Sleep/Idle	0	Ρ	Ρ	Ρ	Ρ	Ρ	0	Р
		Bit Name	-	-	-	-	P73	P72	P71	P70
	BANK 0,	Power-On	0	0	0	0	0	0	0	0
0x07	R7 (PORT 7)	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-Up from Sleep/Idle	0	0	0	0	Ρ	Р	Ρ	Р
		Bit Name	-	-	-	-	P83	-	-	P80
	BANK 0,	Power-On	0	0	0	0	0	0	0	0
0x08	R8 (PORT 8)	/RESET and WDT	0	0	0	0	0	0	0	0
	(1 0111 0)	Wake-Up from Sleep/Idle	0	0	0	0	Р	0	0	Р
		Bit Name	IOC57	IOC56	IOC55	IOC54	IOC53	IOC52	IOC51	IOC50
0)/00	BANK 0, RB	Power-On	1	1	1	1	1	1	1	1
0X0B	(IOCR5)	/RESET and WDT	1	1	1	1	1	1	1	1
	(100110)	Wake-Up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	-	IOC66	IOC65	IOC64	IOC63	IOC62	-	IOC60
0.00	BANK 0,	Power-On	0	1	1	1	1	1	0	1
0x0C	RC (IOCR6)	/RESET and WDT	0	1	1	1	1	1	0	1
	(100110)	Wake-Up from Sleep/Idle	0	Р	Р	Р	Р	Р	0	Р
		Bit Name	-	-	-	-	IOC73	IOC72	IOC71	IOC70
0705	BANK 0,	Power-On	0	0	0	0	1	1	1	1
0X0D	RD (IOCR7)	/RESET and WDT	0	0	0	0	1	1	1	1
	()	Wake-Up from Sleep/Idle	0	0	0	0	Р	Р	Р	Р

eKTF5701 15-Bit Microcontroller

Address	Bank Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	CPUS	IDLE	-	-	-	-	RCM1	RCM0
	BANK 0,	Power-On	Code option	1	0	0	0	0	Code option	Code option
0x0E	RE (OMCR)	/RESET and WDT	Code option	1	0	0	0	0	Code option	Code option
		Wake-Up from Sleep/Idle	Р	Р	0	0	0	0	Ρ	Р
		Bit Name	-	-	-	-	-	EIES	-	-
	BANK 0,	Power-On	0	0	0	0	0	1	0	0
0X0F	RF EIESCR	/RESET and WDT	0	0	0	0	0	1	0	0
	LILGON	Wake-Up from Sleep/Idle	0	0	0	0	0	Р	0	0
		Bit Name	-	-	-	-	-	INTWK	-	-
	BANK 0,	Power-On	0	0	0	0	0	0	0	0
0x10	R10 (WUCR1)	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-Up from Sleep/Idle	0	0	0	Ρ	0	Ρ	0	0
		Bit Name	-	-	-	-	SPIWK	I2CWK	-	-
	BANK 0,	Power-On	0	0	0	0	0	0	0	0
0x11	R11 WUCR2	/RESET and WDT	0	0	0	0	0	0	0	0
	WUCR2	Wake-Up from Sleep/Idle	0	0	0	0	Ρ	Ρ	0	0
		Bit Name	ICWKP8	ICWKP7	ICWKP6	ICWKP5	-	-	-	-
	BANK 0,	Power-On	0	0	0	0	0	0	0	0
0x12	R12 WUCR3	/RESET and WDT	0	0	0	0	0	0	0	0
	WOORS	Wake-Up from Sleep/Idle	Р	Р	Р	Р	0	0	0	0
		Bit Name	-	-	-	-	-	EXSF	-	-
	BANK 0,	Power-On	0	0	0	0	0	0	0	0
0X14	R14 SFR1	/RESET and WDT	0	0	0	0	0	0	0	0
	SFNI	Wake-Up from Sleep/Idle	0	0	0	0	0	Ρ	0	Р
		Bit Name	-	-	-	-	PWM2P SF	PWM2D SF	PWM1P SF	PWM1D SF
0X16	BANK 0, R16	Power-On	0	0	0	0	0	0	0	0
0710	SFR3	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-Up from Sleep/Idle	0	0	0	0	Ρ	Р	Ρ	Р

Address	Bank Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	P8ICSF	P7ICSF	P6ICSF	P5ICSF	SPISF	I2CSTP SF	I2CRSF	I2CTSF
0¥17		Power-On	0	0	0	0	0	0	0	0
0,117	AddoressName0X17BANK 0, R17 SFR40X1BBANK 0, R1D IMR10X1DBANK 0, R1D IMR30X1EBANK 0, 	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-Up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	-	-	-	-	-	EXIE0	-	-
		Power-On	0	0	0	0	0	0	0	0
0X1B		/RESET and WDT	0	0	0	0	0	0	0	0
	IIVITA I	Wake-Up from Sleep/Idle	0	0	0	0	0	0	0	0
		Bit Name	-	-	-	-	PWM2 PIE	PWM2 DIE	PWM1 PIE	PWM1 DIE
0X1D		Power-On	0	0	0	0	0	0	0	0
UNID		/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-Up from Sleep/Idle	0	0	0	0	Р	Р	Р	Р
		Bit Name	P8ICIE	P7ICIE	P6ICIE	P5ICIE	SPIIE	I2CSTP IE	I2CRIE	I2CTIE
0X1E		Power-On	0	0	0	0	0	0	0	0
UNIL		/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-Up from Sleep/Idle	Р	Р	Р	Р	Ρ	Р	Р	Р
		Bit Name	WDTE	-	-	-	PSWE	WPSR2	WPSR1	WPSR0
		Power-On	0	0	0	0	0	0	0	0
0X21		/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-Up from Sleep/Idle	Р	0	0	0	Р	Р	Р	Р
		Bit Name	-	-	-	-	PSTE	TPSR2	TPSR1	TPSR0
		Power-On	0	0	0	0	0	0	0	0
0X22		/RESET and WDT	0	0	0	0	0	0	0	0
	recent	Wake-Up from Sleep/Idle	0	Р	0	0	Р	Р	Р	Р
		Bit Name	TCC7	TCC6	TCC5	TCC4	TCC3	TCC2	TCC1	TCC0
0)/25	BANK 0,	Power-On	0	0	0	0	0	0	0	0
0X23	R23 TCCD	/RESET and WDT	0	0	0	0	0	0	0	0
	1000	Wake-Up from Sleep/Idle	Р	Р	Р	Ρ	Ρ	Р	Ρ	Р

eKTF5701 15-Bit Microcontroller

Address	Bank Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	Strobe/ Pend	IMS	ISS	STOP	SAR_ EMPTY	ACK	FULL	EMPTY
0X30	BANK 0, R30	Power-On	0	0	0	0	1	0	0	1
	I2CCR1	/RESET and WDT	0	0	0	0	1	0	0	1
		Wake-Up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	I2CBF	GCEN	-	-	I2CTS1	I2CTS0	-	-
	BANK 0,	Power-On	0	0	0	0	0	0	0	1
0X31	R31 I2CCR2	/RESET and WDT	0	0	0	0	0	0	0	1
	1200112	Wake-Up from Sleep/Idle	Р	Р	0	Р	Р	Ρ	0	Р
		Bit Name	SA6	SA5	SA4	SA3	SA2	SA1	SA0	IRW
	BANK 0,	Power-On	0	0	0	0	0	0	0	0
0X32	R32 I2CSA	/RESET and WDT	0	0	0	0	0	0	0	0
	12004	Wake-Up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	BANK 0,	Power-On	0	0	0	0	0	0	0	0
0X33	R33 I2CDB	/RESET and WDT	0	0	0	0	0	0	0	0
	12000	Wake-Up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	DA7	DA6	DA5	DA4	DA3	DA2	DA1	DA0
	BANK 0,	Power-On	1	1	1	1	1	1	1	1
0X34	R34 I2CDAL	/RESET and WDT	1	1	1	1	1	1	1	1
	IZODAL	Wake-Up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	-	-	-	-	-	-	DA9	DA8
	BANK 0,	Power-On	0	0	0	0	0	0	1	1
0X35	R35 I2CDAH	/RESET and WDT	0	0	0	0	0	0	1	1
	ZODAN	Wake-Up from Sleep/Idle	0	0	0	0	0	0	Р	Р
		Bit Name	CES	SPIE	SRO	SSE	SDOC	SBRS2	SBRS1	SBRS0
	BANK 0,	Power-On	0	0	0	0	0	0	0	0
0X36	R36 SPICR	/RESET and WDT	0	0	0	0	0	0	0	0
	511011	Wake-Up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	DORD	TD1	TD0	-	-	OD4	-	-
	BANK 0,	Power-On	0	0	0	0	0	0	0	0
0X37	R37 SPIS	/RESET and WDT	0	0	0	0	0	0	0	0
	0110	Wake-Up from Sleep/Idle	Ρ	Ρ	Ρ	Р	Р	Ρ	Р	Ρ

Address	Bank	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	Name									
		Bit Name	SRB7	SRB6	SRB5	SRB4	SRB3	SRB2	SRB1	SRB0
0X38	BANK 0, R38	Power-On	0	0	0	0	0	0	0	0
	SPIR	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-Up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	SWB7	SWB6	SWB5	SWB4	SWB3	SWB2	SWB1	SWB0
	BANK 0,	Power-On	0	0	0	0	0	0	0	0
0X39	R39 SPIW	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-Up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	-	-	-	-	IOC83	-	-	IOC80
	BANK 1,	Power-On	0	0	0	0	1	0	0	1
0X05	R5 IOCR8	/RESET and WDT	0	0	0	0	1	0	0	1
	100110	Wake-Up from Sleep/Idle	0	0	0	0	Ρ	0	0	Р
		Bit Name	PH57	PH56	PH55	PH54	PH53	PH52	PH51	PH50
	BANK 1,	Power-On	1	1	1	1	1	1	1	1
0X08	R8 P5PHCR	/RESET and WDT	1	1	1	1	1	1	1	1
	FOFICK	Wake-Up from Sleep/Idle	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Р
		Bit Name	PH67	PH66	PH65	PH64	PH63	PH62	-	PH60
	BANK 1,	Power-On	1	1	1	1	1	1	0	1
0X09	R9 P6PHCR	/RESET and WDT	1	1	1	1	1	1	0	1
	FOFTION	Wake-Up from Sleep/Idle	Р	Ρ	Р	Р	Ρ	Р	0	Р
		Bit Name	-	-	-	-	-	P8LPH	-	P7LPH
	BANK 1, RA	Power-On	0	0	0	0	0	1	0	1
0X0A	P789APH	/RESET and WDT	0	0	0	0	0	1	0	1
	CR	Wake-Up from Sleep/Idle	0	0	0	0	0	Ρ	0	Р
		Bit Name	PL57	PL56	PL55	PL54	PL53	PL52	PL51	PL50
	BANK 1,	Power-On	1	1	1	1	1	1	1	1
0X0B	RB P5PLCR	/RESET and WDT	1	1	1	1	1	1	1	1
	PSPLCR	Wake-Up from Sleep/Idle	Р	Р	Р	Р	Ρ	Р	Ρ	Ρ
		Bit Name	PL67	PL66	PL65	PL64	PL63	PL62	-	PL60
	BANK 1,	Power-On	1	1	1	1	1	1	0	1
0X0C	RC P6PLCR	/RESET and WDT	1	1	1	1	1	1	0	1
	FUFLUK	Wake-Up from Sleep/Idle	Р	Р	Р	Р	Ρ	Р	0	Ρ

eKTF5701 15-Bit Microcontroller

Address	Bank Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	-	-	-	-	-	P8LPL	-	P7LPL
	BANK 1,	Power-On	0	0	0	0	0	1	0	1
0X0D	RD P78PLCR	/RESET and WDT	0	0	0	0	0	1	0	1
	1 / OF LOT	Wake-Up from Sleep/Idle	0	0	0	0	0	Р	0	Р
		Bit Name	H57	H56	H55	H54	H53	H52	H51	H50
	BANK 1,	Power-On	1	1	1	1	1	1	1	1
0X0E	RE P5HDSCR	/RESET and WDT	1	1	1	1	1	1	1	1
	1 SHDSON	Wake-Up from Sleep/Idle	Ρ	Р	Ρ	Ρ	Ρ	Р	Ρ	Р
		Bit Name	H67	H66	H65	H64	H63	H62	-	H60
	BANK 1,	Power-On	1	1	1	1	1	1	0	1
0X0F	RF P6HDSCR	/RESET and WDT	1	1	1	1	1	1	0	1
	I UNDOUN	Wake-Up from Sleep/Idle	Р	Р	Р	Р	Р	Р	0	Р
		Bit Name	-	-	-	-		P8LHDS	-	P7LHDS
	BANK 1, R10	Power-On	0	0	0	0	0	1	0	1
0X10	P78HDSC	/RESET and WDT	0	0	0	0	0	1	0	1
	R	Wake-Up from Sleep/Idle	0	0	0	0	0	Р	0	Р
		Bit Name	OD57	OD56	OD55	OD54	OD53	OD52	OD51	OD50
	BANK 1,	Power-On	0	0	0	0	0	0	0	0
0X11	R11 P5ODCR	/RESET and WDT	0	0	0	0	0	0	0	0
	1000011	Wake-Up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	OD67	OD66	OD65	OD64	OD63	OD62	-	OD60
	BANK 1,	Power-On	0	0	0	0	0	0	0	0
0X12	R12 P6ODCR	/RESET and WDT	0	0	0	0	0	0	0	0
	TOODON	Wake-Up from Sleep/Idle	Р	Р	Р	Р	Р	Р	0	Р
		Bit Name	-	-	-	-	-	P8LOD	-	P7LOD
	BANK 1, R13	Power-On	0	0	0	0	0	0	0	0
0X13	P789AOD	/RESET and WDT	0	0	0	0	0	0	0	0
	CR	Wake-Up from Sleep/Idle	0	0	0	0	0	Р	0	Р
		Bit Name	-	-	-	-	-	-	PWM2S	PWM1S
	BANK 1,	Power-On	0	0	0	0	0	0	0	0
0X16	R16 PWMSCR	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-Up from Sleep/Idle	0	0	0	0	0	0	Ρ	Ρ

	, 1	πησαιοτή								
Address	Bank Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	PWM1E	-	-	-	T1EN	T1P2	T1P1	T1P0
	BANK 1,	Power-On	0	0	0	0	0	0	0	0
0X17	R17 PWM1CR	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-Up from Sleep/Idle	Ρ	0	0	0	Ρ	Ρ	Ρ	Ρ
		Bit Name	PRD1[7]	PRD1[6]	PRD1[5]	PRD1[4]	PRD1[3]	PRD1[2]	PRD1[1]	PRD1[0]
	BANK 1,	Power-On	0	0	0	0	0	0	0	0
0X18	R18 PRD1L	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-Up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	PRD1[F]	PRD1[E]	PRD1[D]	PRD1[C]	PRD1[B]	PRD1[A]	PRD1[9]	PRD1[8]
	BANK 1,	Power-On	0	0	0	0	0	0	0	0
0X19	R19 PRD1H	/RESET and WDT	0	0	0	0	0	0	0	0
	PRDIN	Wake-Up from Sleep/Idle	0	0	0	0	0	0	Ρ	Р
		Bit Name	DT1[7]	DT1[6]	DT1[5]	DT1[4]	DT1[3]	DT1[2]	DT1[1]	DT1[0]
	BANK 1,	Power-On	0	0	0	0	0	0	0	0
0X1A	R1A DT1L	/RESET and WDT	0	0	0	0	0	0	0	0
	DITE	Wake-Up from Sleep/Idle	Ρ	Ρ	Р	Ρ	Ρ	Р	Ρ	Ρ
		Bit Name	DT1[F]	DT1[E]	DT1[D]	DT1[C]	DT1[B]	DT1[A]	DT1[9]	DT1[8]
	BANK 1,	Power-On	0	0	0	0	0	0	0	0
0X1B	R1B DT1H	/RESET and WDT	0	0	0	0	0	0	0	0
	DTIII	Wake-Up from Sleep/Idle	0	0	0	0	0	0	Ρ	Р
		Bit Name	TMR1[7]	TMR1[6]	TMR1[5]	TMR1[4]	TMR1[3]	TMR1[2]	TMR1[1]	TMR1[0]
	BANK 1,	Power-On	0	0	0	0	0	0	0	0
0X1C	R1C TMR1L	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-Up from Sleep/Idle	Р	Р	Р	Р	Ρ	Р	Р	Р
		Bit Name	TMR1[F]	TMR1[E]	TMR1[D]	TMR1[C]	TMR1[B]	TMR1[A]	TMR1[9]	TMR1[8]
	BANK 1,	Power-On	0	0	0	0	0	0	0	0
0X1D	R1D TMR1H	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-Up from Sleep/Idle	0	0	0	0	0	0	Ρ	Ρ
		Bit Name	PWM2E				T2EN	T2P2	T2P1	T2P0
	BANK 1,	Power-On	0	0	0	0	0	0	0	0
0X1E	R1E PWM2CR	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-Up from Sleep/Idle	Р	0	0	0	Ρ	Ρ	Ρ	Ρ

eKTF5701 15-Bit Microcontroller

Address	Bank Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	PRD2[7]	PRD2[6]	PRD2[5]	PRD2[4]	PRD2[3]	PRD2[2]	PRD2[1]	PRD2[0]
	BANK 1,	Power-On	0	0	0	0	0	0	0	0
0X1F	R1F PRD2L	/RESET and WDT	0	0	0	0	0	0	0	0
	TROZE	Wake-Up from Sleep/Idle	Ρ	Р	Р	Р	Ρ	Р	Р	Ρ
		Bit Name	PRD2[F]	PRD2[E]	PRD2[D]	PRD2[C]	PRD2[B]	PRD2[A]	PRD2[9]	PRD2[8]
	BANK 1,	Power-On	0	0	0	0	0	0	0	0
0X20	R20 PRD2H	/RESET and WDT	0	0	0	0	0	0	0	0
	THUZH	Wake-Up from Sleep/Idle	0	0	0	0	0	0	Ρ	Р
		Bit Name	DT2[7]	DT2[6]	DT2[5]	DT2[4]	DT2[3]	DT2[2]	DT2[1]	DT2[0]
	BANK 1,	Power-On	0	0	0	0	0	0	0	0
0X21	R21 DT2L	/RESET and WDT	0	0	0	0	0	0	0	0
	DIZE	Wake-Up from Sleep/Idle	Ρ	Р	Р	Р	Р	Р	Р	Р
		Bit Name	DT2[F]	DT2[E]	DT2[D]	DT2[C]	DT2[B]	DT2[A]	DT2[9]	DT2[8]
	BANK 1,	Power-On	0	0	0	0	0	0	0	0
0X22	R22 DT2H	/RESET and WDT	0	0	0	0	0	0	0	0
	DIZII	Wake-Up from Sleep/Idle	0	0	0	0	0	0	Р	Р
		Bit Name	TMR2[7]	TMR2[6]	TMR2[5]	TMR2[4]	TMR2[3]	TMR2[2]	TMR2[1]	TMR2[0]
	BANK 1,	Power-On	0	0	0	0	0	0	0	0
0X23	R23 TMR2L	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-Up from Sleep/Idle	Ρ	Р	Р	Р	Р	Р	Р	Р
		Bit Name	TMR2[F]	TMR2[E]	TMR2[D]	TMR2[C]	TMR2[B]	TMR2[A]	TMR2[9]	TMR2[8]
	BANK 1,	Power-On	0	0	0	0	0	0	0	0
0X24	R24 TMR2H	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-Up from Sleep/Idle	0	0	0	0	0	0	Р	Р
		Bit Name	TB7	TB6	TB5	TB4	TB3	TB2	TB1	TB0
	BANK 1,	Power-On	0	0	0	0	0	0	0	0
0X45	R45 TBPTL	/RESET and WDT	0	0	0	0	0	0	0	0
	IDFIL	Wake-Up from Sleep/Idle	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	HLB	RDS	-	TB12	TB11	TB10	TB9	TB8
	BANK 1,	Power-On	0	0	0	0	0	0	0	0
0X46	R46 TBPTH	/RESET and WDT	0	0	0	0	0	0	0	0
	וטיוח	Wake-Up from Sleep/Idle	Ρ	Ρ	0	Ρ	Ρ	Ρ	Ρ	Ρ

		πηματιοτή								
Address	Bank Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	STOV	-	-	-	-	STL2	STL1	STL0
	BANK 1,	Power-On	0	0	0	0	0	0	0	0
0X47	R47 STKMON	/RESET and WDT	0	0	0	0	0	0	0	0
	STRMON	Wake-Up from Sleep/Idle	Р	0	0	0	0	Р	Р	Р
		Bit Name	-	-	-	PC12	PC11	PC10	PC9	PC8
	BANK 1,	Power-On	0	0	0	0	0	0	0	0
0X48	R48 PCH	/RESET and WDT	0	0	0	0	0	0	0	0
	РСП	Wake-Up from Sleep/Idle	0	0	0	Ρ	Ρ	Ρ	Ρ	Р
		Bit Name	HLFS	RESET EN	ENWDT	NRHL	NRE	-	-	-
0X4A	BANK 1, R4A	Power-On	Code Option	Code Option	Code Option	Code Option	Code Option	0	0	0
0747	COBS1	/RESET and WDT	Ρ	Code Option	Code Option	Code Option	Code Option	0	0	0
		Wake-Up from Sleep/Idle	Ρ	Ρ	Р	Р	Ρ	0	0	0
		Bit Name	-	-	C5	C4	C3	C2	C1	C0
	BANK 1,	Power-On	0	0	Code Option	Code Option	Code Option	Code Option	Code Option	Code Option
0X4B	R4B COBS2	/RESET and WDT	0	0	Code Option	Code Option	Code Option	Code Option	Code Option	Code Option
		Wake-Up from Sleep/Idle	0	0	Р	Р	Ρ	Р	Р	Р
		Bit Name	-	-	-	FSS	SC3	SC2	SC1	SC0
	BANK 1,	Power-On	0	0	0	Code Option	Code Option	Code Option	Code Option	Code Option
0X4C	R4C COBS3	/RESET and WDT	0	0	0	Code Option	Code Option	Code Option	Code Option	Code Option
		Wake-Up from Sleep/Idle	0	0	0	Р	Р	Р	Р	Р
		Bit Name	-	-	-	-	-	-	DAE1	DAE0
	BANK 2,	Power-On	0	0	0	0	0	0	0	0
0X21	R21 DACR	/RESET and WDT	0	0	0	0	0	0	0	0
	DAUN	Wake-Up from Sleep/Idle	0	0	0	0	0	0	Р	Ρ
		Bit Name	DAD0[7]	DAD0[6]	DAD0[5]	DAD0[4]	DAD0[3]	DAD0[2]	DAD0[1]	DAD0[0]
	BANK 2,	Power-On	0	0	0	0	0	0	0	0
0X22	R22 DACD0	/RESET and WDT	0	0	0	0	0	0	0	0
	DAODU	Wake-Up from Sleep/Idle	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ

Address	Bank Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	DAD1[7]	DAD1[6]	DAD1[5]	DAD1[4]	DAD1[3]	DAD1[2]	DAD1[1]	DAD1[0]
	BANK 2,	Power-On	0	0	0	0	0	0	0	0
0X23	R23 DACD1	/RESET and WDT	0	0	0	0	0	0	0	0
	DACDI	Wake-Up from Sleep/Idle	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ

6.5 Interrupt

The eKTF5701 has 12 interrupts (External, Internal) as listed below:

Interr	upt Source	Enable Condition	Int. Flag	Int. Vector	Priority
Internal / External	Reset	-	-	0	High 0
External	INT	ENI + EXIE=1	EXSF	2	1
External	Pin change	ENI +PxICIE=1	ICSF	4	2
Internal	TCC	ENI + TCIE=1	TCSF	6	3
Internal	SPI	ENI + SPIIE=1	SPISF	С	4
Internal	PWMP1	ENI+PWM1PIE=1	PWM1PSF	14	6
Internal	PWMD1	ENI+PWM1DIE=1	PWM1DSF	16	7
Internal	I ² C Transmit	ENI+ I2CTIE	I2CTSF	1A	8
Internal	I ² C Receive	ENI+ I2CRIE	I2CRSF	1C	9
Internal	I2CSTOP	ENI+ I2CSTPIE	I2CSTPSF	1E	10
Internal	PWMP2	ENI+PWM2PIE=1	PWM2PSF	24	11
Internal	PWMD2	ENI+PWM2DIE=1	PWM2DSF	26	12

Bank0 R14~R19 are the interrupt status registers that record the interrupt requests in the relative flags/bits. Bank0 R1B~R20 are the interrupt Mask register. The global interrupt is enabled by the ENI instruction and is disabled by the DISI instruction. When one of the enabled interrupts occurs, the next instruction will be fetched from individual address. The interrupt flag bit must be cleared by instructions before leaving the interrupt service routine and before interrupts are enabled to avoid recursive interrupts.

The flag (except ICSF bit delete) in the Interrupt Status Register is set regardless of the status of its mask bit or the execution of ENI. The RETI instruction ends the interrupt routine and enables the global interrupt (the execution of ENI).

External interrupt is equipped with digital noise rejection circuit (input pulse of less than **4 system clocks time** is eliminated as noise). When an interrupt (Falling edge) is generated by the External interrupt (if enabled), the next instruction will be fetched from Address 002H.

Before the interrupt subroutine is executed, the contents of ACC and the R3 (Bit0~Bit4) and R4 registers are saved by hardware. If another interrupt occurs, the ACC, R3 (Bit0~Bit4), and R4 will be replaced by the new interrupt. After the interrupt service routine is completed, ACC, R3 (Bit0~Bit4), and R4 restored.

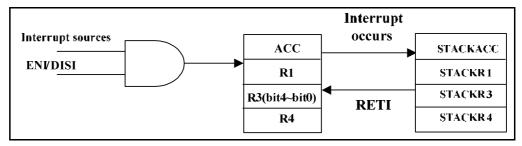


Figure 6-6a Interrupt Backup Diagram

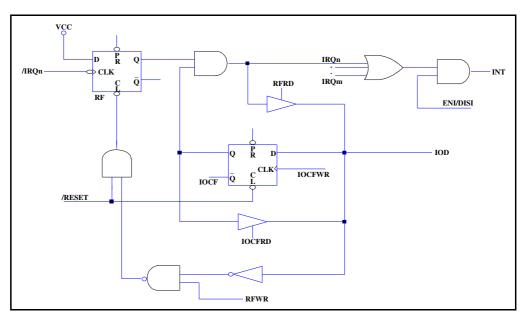


Figure 6-6b Interrupt Input Circuit

6.6 Dual Set of PWM (Pulse Width Modulation)

6.6.1 Overview

In PWM mode, PWM1 and PWM2 produce up to 16-bit resolution PWM output (see. functional block diagram below). A PWM output consists of a time period and a duty cycle, and it keeps the output high. The PWM baud rate is the inverse of the time period. The Figure 6-7b below; *PWM Output Timing*, depicts the relationships between a time period and a duty cycle.

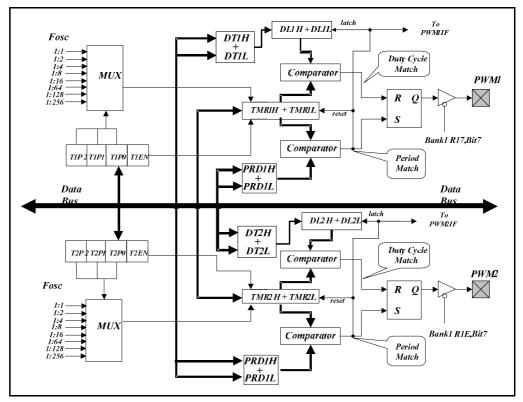


Figure 6-7a Dual PWMs Functional Block Diagram

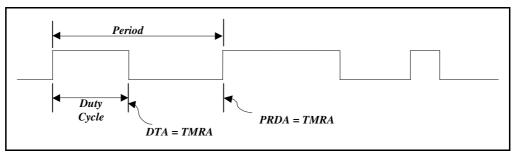


Figure 6-7b PWM Output Timing

R_BANK	Addres	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Bank 0	0.47	SFR3	-	-	-	-	PWM2PSF	PWM2DSF	PWM1PSF	PWM1DS
	0x17		-	-	-	-	F	F	F	F
Bank 0 0x1E	0v1D	IMR3	-	-	-	-	PWM2PIE	PWM2DIE	PWM1PIE	PWM1DIE
	UXID		-	-	-	-	R/W	R/W	R/W	R/W
Bank 1 0x10	0v16	PWMSCR	-	-	-	-	-	-	PWM2S	PWM1S
	0,10		-	-	-	-	-	-	R/W	R/W
Bank 1	0x17	PWM1CR	PWM1E	-	-	-	T1EN	T1P2	T1P1	T1P0
	UX II		R/W	-	-	-	R/W	R/W	R/W	R/W
Bank 1	0x18	PRD1L	PRD1[7]	PRD1[6]	PRD1[5]	PRD1[4]	PRD1[3]	PRD1[2]	PRD1[1]	PRD1[0]
	0,10		R/W							
Bank 1	0x19	PRD1H	PRD1[F]	PRD1[E]	PRD1[D]	PRD1[C]	PRD1[B]	PRD1[A]	PRD1[9]	PRD1[8]
	UX IO		R/W							
Bank 1 0	0x1A	DT1L	DT1[7]	DT1[6]	DT1[5]	DT1[4]	DT1[3]	DT1[2]	DT1[1]	DT1[0]
	•		R/W							
Bank 1	0x1B	DT1H	DT1[F]	DT1[E]	DT1[D]		DT1[B]	DT1[A]	DT1[9]	DT1[8]
	•		R/W							
Bank 1	0x1C	TMR1L					TMR1[3]			TMR1[0]
			R/W							
Bank 1	0x1D	TMR1H		TMR1[E]	TMR1[D	TMR1[C	TMR1[B]	TMR1[A]	TMR1[9]	TMR1[8]
	•		R/W							
Bank 1	0x1E	PWM2CR	-	-	-	-	T2EN	T2P2	T2P1	T2P0
			-	-	-	-	R/W	R/W	R/W	R/W
Bank 1	0x1F	PRD2L					PRD2[3]	PRD2[2]		PRD2[0]
			R/W							
Bank 1	0x20	PRD2H	PRD2[F]		PRD2[D]		PRD2[B]	PRD2[A]	PRD2[9]	PRD2[8]
			R/W							
Bank 1	0x21	DT2L	DT2[7]	DT2[6]	DT2[5]	DT2[4]		DT2[2]	DT2[1]	DT2[0]
			R/W							
Bank 1	0x22	DT2H	DT2[F]	DT2[E]	DT2[D]			DT2[A]	DT2[9]	DT2[8]
			R/W							
Bank 1	0x23	TMR2L					TMR2[3]			
			R/W							
Bank 1	0x24	TMR2H				-		TMR2[A]		
			R/W							

6.6.2 Control Register

6.6.3 Increment Timer Counter (TMRX: TMR1H/TMR1L, TMR2H/TMR2L)

TMRX's are 16-bit clock counters with programmable prescalers. They are designed for the PWM module as baud rate clock generators. TMR can be read only. If employed, they can be turned off for power saving by setting the T1EN bit [BANK1-R17 <3>], T2EN bit [BANK1-R1E<3>] to "**0**". TMR1and TMR2, are internal designs and cannot be read.

6.6.4 PWM Time Period (PRDX: PRD1L/H, PRD1L/H)

The PWM time period is 16-bit resolution and is defined by writing to the PRDX register. When TMRX is equal to PRDX, the following events occur on the next increment cycle:

- 1) TMRX is cleared
- 2) The PWMX pin is set to "1"

NOTE The PWM output cannot be set if the duty cycle is "**0**."

3) The PWMXIF pin is set to "1"

To calculate the PWM time period, use the following formula:

$$Period = (PRDX + 1) \times \left(\frac{1}{F_{osc}}\right) \times (TMRX \ prescale \ value)$$

Example:

```
PRDX = 49; Fosc = 4 MHz; TMRX (0, 0, 0) = 1 : 1,
```

CLKS bit of the Code Option Register = 0 (two oscillator periods);

Then –

$$Period = (49+1) \times \left(\frac{1}{4M}\right) \times 1 = 12.5 \mu s$$

6.6.5 PWM Duty Cycle (DTX: DT1H/DT1L, DT2H/DT2L)

The PWM duty cycle is defined by writing to the DTX register, and is latched from DTX to DLX while TMRX is cleared. When DLX is equal to TMRX, the PWMX pin is cleared. DTX can be loaded anytime. However, it cannot be latched into DLX until the current value of DLX is equal to TMRX.

The following formula shows how to calculate the PWM duty cycle:

Duty cycle =
$$(DTX) \times \left(\frac{1}{F_{osc}}\right) \times (TMRX \text{ prescale value})$$

Example:

DTX = 10; Fosc = 4 MHz; TMRX (0, 0, 0) = 1 : 1,

CLKS bit of the Code Option Register = 0 (two oscillator periods);

Then –

Duty cycle =
$$(10) \times \left(\frac{1}{4M}\right) \times 1 = 2.5 \mu s$$

6.6.6 PWM Programming Process/Steps

- 1) Load the PWM duty cycle to DT
- 2) Load the PWM time period to PRD
- 3) Enable the interrupt function by writing Bank0-R1D, if required
- 4) Load a desired value for the timer prescaler
- 5) Enable PWMX function, i.e., enable PWMXE control bit
- 6) Finally, enable TMRX function, i.e., enable TXEN control bit

If the application needs to change PWM duty and period cycle at run time, refer to the following programming steps:

- 1) Load new duty cycle (if using dual PWM function) at any time.
- Load new period cycle. You must take note of the order of loading period cycle. As the low byte of PWM period cycle is assigned a value, the new PWM cycle is loaded into circuit.
- 3) The circuit will automatically update the new duty and period cycles to generate new PWM waveform at the next PWM cycle.

R_BANK	Address	NAME	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
Bank 0	0726	0726	0X36	0726	SPICR	CES	SPIE	SRO	SSE	SDOC	SBRS2	SBRS1	SBRS0
Dalik U	0730	SFICH	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W			
Bank 0	0X37	SPIS	DORD	TD1	TD0	-	OD3	OD4	-	RBF			
Dank U	0/37	5615	R/W	R/W	R	-	R/W	R/W	-	R/W			
Bank 0	0X38	SPIR	SRB7	SRB6	SRB5	SRB4	SRB3	SRB2	SRB1	SRB0			
Dank U	0730	51 III	R	R	R	R	R	R	R	R			
Bank 0	0X39	SPIW	SWB7	SWB6	SWB5	SWB4	SWB3	SWB2	SWB1	SWB0			
Dank	0733	SIW	R/W										
Bank 0	0X18	SFR4	-	-	-	-	SPSF	-	-	-			
Dank U	0/10	51114	-	-	-	-	R/W	-	-	-			
Bank 0	0X1E	IMR4	-	-	-	-	SPIE	-	-	-			
Dailk U	VATE	1111114	-	-	-	-	R/W	-	-	-			

6.7 SPI (Serial Peripheral Interface)

6.7.1 Overview & Features

Overview:

Figures 6-8a & 6-8b below show how the eKTF5701 communicates with other devices through SPI module. If eKTF5701 is the Master controller, it will send clock through the SCK pin. A couple of 8-bit data are transmitted and received at the same time. However, if eKTF85701 is defined as a Slave, its SCK pin could be programmed as an input pin. Data will continue to be shifted based on both clock rate and the selected edge. You can also set the -

- SPIS Bit 7(DORD) to determine the SPI transmission order,
- SPICR Bit3 (SDOC) to control SDO pin after serial data output status, and
- SPIS Bit 6 (TD1) & Bit 5 (TD0) determine the SDO status output delay times.

Features:

- 1) Operation in either Master mode or Slave mode
- 2) Three-wire or four-wire full duplex synchronous communication
- 3) Programmable baud rates of communication
- 4) Programmable clock polarity, (Bank0 R36 Bit7)
- 5) Interrupt flag available for read buffer full
- 6) SPI transmission order
- 7) SDO status select after serial data output
- 8) SDO status output delay time
- 9) SPI handshake pin
- 10) Up to 8 MHz (maximum) bit frequency

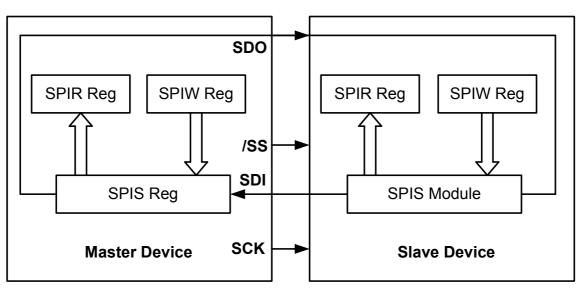


Figure 6-8a SPI Master/Slave Communication Block Diagram

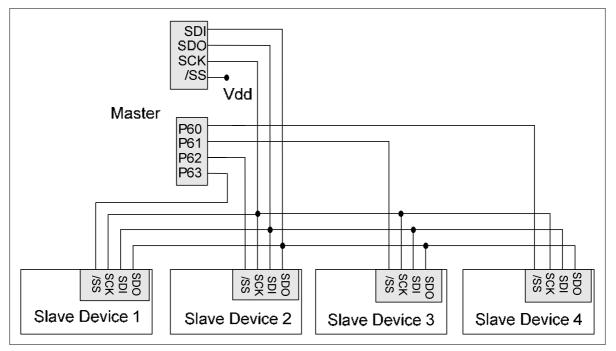
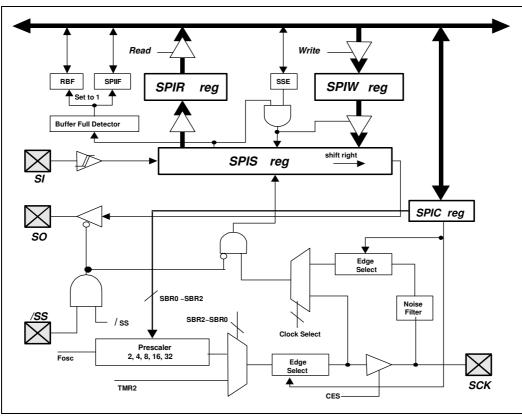



Figure 6-8b Single-Master and Multi-Slave SPI Configuration

6.7.2 SPI Function Description

Figure 6-9a SPI Function Block Diagram

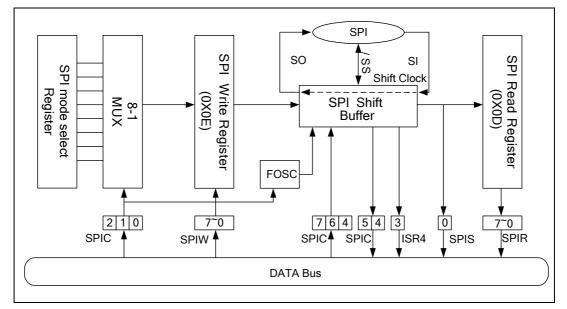


Figure 6-9b SPI Transmission Function Block Diagram

The following explains the functions of each block in the above figures as SPI carries out communication with the depicted signals:

- P52/SI/TPA2: Serial Data In
- P51/SO/TPA1: Serial Data Out
- P53/SCK/TPA3: Serial Clock
- P50//SS/TPA0: /Slave Select (Option). This pin (/SS) may be required during Slave mode
- **RBF:** Set by Buffer Full Detector
- Buffer Full Detector: Set to 1 when an 8-bit shifting is completed.
- SSE: Loads the data in SPIS register, and begin to shift. The SSE bit will be kept in "1" if the communication is still undergoing. This flag must be cleared as shifting is completed. You can determine if the next write attempt is available.
- SPIS reg.: Shifting byte in and out. The MSB is shifted first. Both the SPIR and the SPIW registers are shifted at the same time. Once data are written, SPIS starts transmitting/receiving. The data received will be moved to the SPIR register as the shifting of the 8-bit data is completed. The RBF (Read Buffer Full) flag and the SPISF (SPI Interrupt) flag are then set.
- SPIR reg.: Read buffer. The buffer is updated as the 8-bit shifting is completed. The data must be read before the next reception is completed. The RBF flag is cleared as the SPIR register reads.
- SPIW reg.: Write buffer. The buffer will deny any attempts to write until the 8-bit shifting is completed.
- **SBRS2~SBRS0:** Programming of the clock frequency/rates and sources.

- Clock Select: Select either the internal or the external clock as shifting clock.
- Edge Select: Select the appropriate clock edges by programming the CES bit

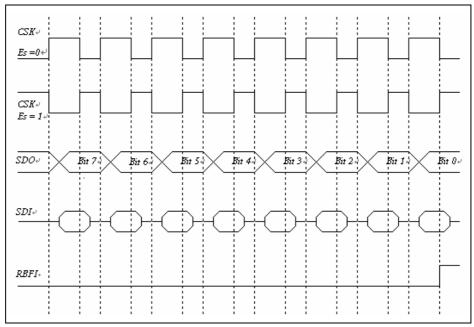
6.7.3 SPI Signal & Pin Description

The detailed functions of the four pins, SI, SO, SCK, and /SS are as follows:

- P52/SI/TPA2:
- Serial Data In
- Receive sequentially, the Most Significant Bit (MSB) first, Least Significant Bit (LSB) last.
- Defined as high-impedance, if not selected.
- Program the same clock rate and clock edge to latch on both the Master and Slave devices.
- The byte received will update the transmitted byte.
- The RBF will be set as the SPI operation is completed.
- Timing is shown in Figures 6-10a & 6-10b below.

■ P51/SO/TPA1:

- Serial Data Out
- Transmit sequentially; the Most Significant Bit (MSB) first, Least Significant Bit (LSB) last.
- Program the same clock rate and clock edge to latch on both the Master and Slave devices.
- The received byte will update the transmitted byte.
- The CES bit is reset, as the SPI operation is completed.
- Timing is shown in Figures 6-10a & 6-10b below.


■ P53/SCK/TPA3:

- Serial Clock
- Generated by a Master device
- Synchronize the data communication on both the SI and SO pins.
- The CES is used to select the edge to communicate.
- The SBR0~SBR2 is used to determine the baud rate of communication.
- The CES, SBR0, SBR1, and SBR2 bits have no effect in Slave mode.
- Timing is shown in Figures 6-10a & 6-10b below.

■ P50//SS/TPA0:

- Slave Select; negative logic.
- Generated by a Master device to indicate the Slave(s) has to receive data.
- Goes low before the first cycle of SCK occurs, and remains low until the last (eighth) cycle is completed
- Ignore the data on the SI and SO pins when /SS is high, because the SO is no longer driven
- Timing is shown in Figures 6-10a & 6-10b below.

6.7.4 SPI Mode Timing

Figure 6-10a SPI Mode with /SS Disabled Timing Diagram

The SCK edge is selected by programming the bit CES. The waveform shown in Figure 6-10a above, is applicable regardless of whether the eKTF5701 is in Master or Slave mode with /SS disabled. However, the waveform in Figure 6-10b below can only be implemented in Slave mode with /SS enabled.

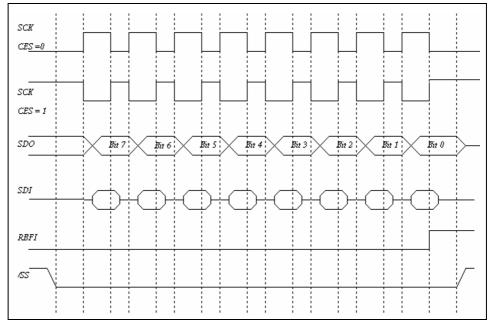


Figure 6-10b SPI Mode with /SS Enabled Timing Diagram

6.8 I²C Function

The I^2C function and transmit/receive pin are enabled by default when eKTF5701 is powered-on.

R_BANK	Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Bank 0	0x30	I2CCR1	Strobe /Pend	IMS	ISS	STOP	SAR_ EMPTY	ACK	FULL	EMPTY	
			R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Bank 0	0x31	I2CCR2	I2CBF	GCEN	-	BBF	I2CTS1	I2CTS0	-	I2CEN	
Dank U	0731	1200112	R	R/W	-	R	R/W	R/W	-	R/W	
Bank 0	0x32	I2CSA	SA6	SA5	SA4	SA3	SA2	SA1	SA0	IRW	
Dalik U	0x32	0 0232	12034	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bank 0	0x33	3 I2CDB	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
Dalik U	0,55	12000	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Bank 0	0x34	I2CDAL	DA7	DA6	DA5	DA4	DA3	DA2	DA1	DA0	
Dalik U	0734	IZODAL	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Bank 0	0x35	I2CDAH	-	-	-	-	-	-	DA9	DA8	
Dalik U	0,55	IZCDAII	-	-	-	-	-	-	R/W	R/W	
Bank 0	0x18	SFR4	-	-	-	-	-	I2CSTPIF	I2CRSF	I2CTSF	
Dalik U		51 114	-	-	-	-	-	R/W	R/W	R/W	
Bank 0	0x1E	IMR4	-	-	-	-	-	I2CSTPIE	I2CRIE	I2CTIE	
Darik U	UNIC	111114	-	-	-	-	-	R/W	R/W	R/W	

■ Registers for I²C circuit:

Product Specification (V1.0) 04.09.2011 (This specification is subject to change without further notice)

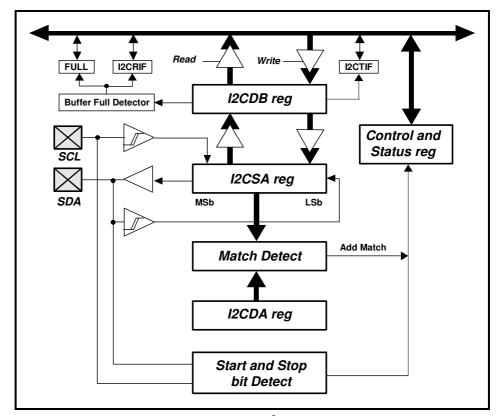


Figure 6-11 eKTF5701 LC Block Diagram

The eKTF5701 supports a bidirectional, 2-wire bus, 7/10-bit addressing, and data transmission protocol. A device that sends data to the bus is defined as transmitter, while a device receiving the data is defined as a receiver. The bus has to be controlled by a Master device which generates the Serial Clock (SCL), controls the bus access, and generates the Start and Stop conditions. Both Master and Slave can operate as transmitter or receiver, but the Master device determines which mode is activated.

Both SDA and SCL are bi-directional lines, connected to a positive supply voltage via a pull-up resistor. When the bus is free, both lines are HIGH. The output stages of the devices connected to the bus must have an open-drain or open-collector to perform the wired-AND function. Data on the I^2 C-bus can be transferred at the rates of up to 100 kbit/s in Standard-mode or up to 400 kbit/s in Fast-mode.

The data on the SDA line must be stable during the HIGH period of the clock. The HIGH or LOW state of the data line can only be changed when the clock signal on the SCL line is LOW.

The I²C interrupt occurs as describe below:

Condition	Master/Slave	Transmit Address	Transmit Data	Stop
Master Transmitter	Master	Transmit interrupt	Transmit interrupt	Stop interrupt
(transmits to Slave-Receiver)	Slave	Receive interrupt	Receive interrupt	Stop interrupt
Master Receiver	Master	Transmit interrupt	Receive interrupt	Stop interrupt
(read Slave- Transmitter)	Slave	Transmit interrupt	Transmit interrupt	Stop interrupt

Within the procedure of the I^2C bus, unique situations could arise which are defined as START (S) and STOP (P) conditions.

A HIGH to LOW transition on the SDA line while SCL is HIGH is one such unique case. This situation indicates a START condition.

A LOW to HIGH transition on the SDA line while SCL is HIGH defines a STOP condition.

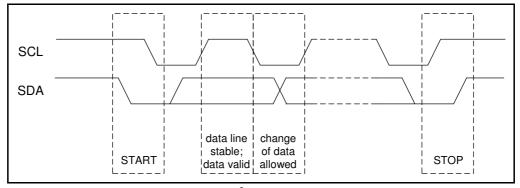


Figure 6-12 C Transfer Condition

6.8.1 7-Bit Slave Address

Master-transmitter transmits to Slave-receiver. The transfer direction is not changed.

Master reads Slave immediately after first byte. At the moment of the first acknowledgement, the Master-transmitter becomes a Master-receiver and the Slave-receiver becomes a Slave-transmitter. This first acknowledgement is still generated by the Slave. The STOP condition is generated by the Master, which has previously sent a Not-Acknowledge (A). The difference between Master-transmitter and Master-receiver is only in their R//W bit. If the R//W bit is "**0**", the Master device would be transmitter. Otherwise, the Master device would be the receiver (R//W bit="**1**").

Communications between the Master-transmitter/receiver and Slavetransmitter/receiver are illustrated in the following Figures 6-13a &6-13b.

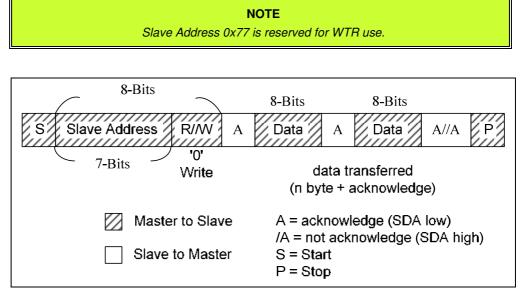


Figure 6-13a Master-Transmitter Transmits to Slave-Receiver with 7-Bit Slave Address

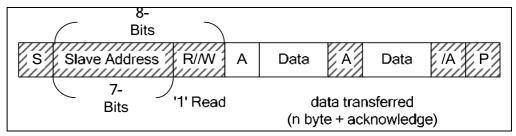


Figure 6-13b Master-Receiver Reads fom Slave-Transmitter with 7-Bit Slave Address

6.8.2 10-Bit Slave Address

In 10-Bits Slave address mode, using 10-bit for addressing exploits the reserved combination 11110XX for the first seven bits of the first byte following a START(S) or repeated START (Sr) condition. The first seven bits of the first byte are the combination 11110XX of which the last two bits (XX) are the two most-significant bits of the 10-bit address. If the R//W bit is "**0**", the second byte after acknowledge would be the eight address bits of 10-bits Slave address. Otherwise, the second byte would just be the next transmitted data from a Slave to Master device. The first byte 11110XX is transmitted by using the Slave address register (I2CSA), and the second byte XXXXXXX is transmitted by using the data buffer (I2CDB).

The possible data transfer formats for 10-bit Slave address mode are explained in the following paragraphs and Figures $6-14a \sim 6-14e$.

Master-Transmitter Transmits to Slave-Receiver with a 10-bits Slave Address

When the Slave receives the first byte after START bit from Master, each Slave device will compare the first seven bits of the first byte (11110XX) with their own address and check the 8th bit (R//W). If the R//W bit is "**0**", a Slave or more, will return an Acknowledge (A1). Then all Slave devices will continue to compare the second address (XXXXXXX). If a Slave device finds a match, that particular Slave device will be the only one to return an Acknowledge (A2). The matched Slave device will remain addressed by the Master until it receives the STOP condition or until a repeated START condition followed by the different Slave address is received.

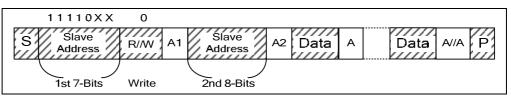


Figure 6-14a Master-Transmitter Transmits to Slave-Receiver with a 10-Bit Slave Address

■ Master-Receiver Read Slave-Transmitter with a 10-bit Slave Address

Up to, and including Acknowledge Bit A2, the procedure is the same as that described above for Master-Transmitter addressing a Slave-Receiver. After the Acknowledge (A2), a repeated START condition (Sr) takes place followed by seven bits Slave address (11110XX), but the 8th bit R//W is "1." The addressed Slave device will then return the Acknowledge (A3). If the repeated START (Sr) condition occurs and the seven bits of first byte (11110XX) are received by Slave device, all the Slave devices will compare with their own address and check the 8th bit (R//W). However, none of the Slave devices can return an acknowledgement because R//W=1.

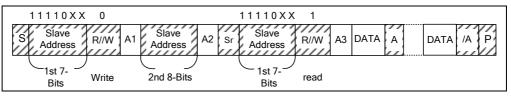


Figure 6-14b Master-Receiver Read Slave-Transmitter with a 10-Bit Slave Address

Master Transmits and Receives Data to and from the Same Slave Device with 10-Bit Addresses

The initial operation of this data transfer format is the same as explained in the above paragraph on "*Master-Transmitter Transmits to Slave-Receiver with a 10-bit Slave Address.*" Then the Master device starts to transmit the data to Slave device. When the Slave device receives the Acknowledge or None-Acknowledge that is followed by repeat START (Sr), the above operation under "*Master-Receiver Read Slave-Transmitter with a 10-Bit Slave Address*" is repeatedly performed.

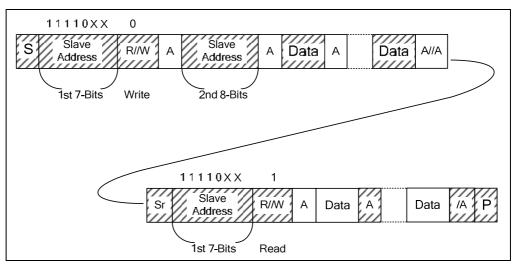


Figure 6-14c Master Addresses a Slave with 10-Bit Addresses Transmits and Receives Data with the Same Slave Device

Master Device Transmits Data to Two or More Slave Devices with 10 & 7 Bits Slave Address

For 10-bit address, the initial operation of this data transfer format is the same as explained in the above paragraph on "*Master-Transmitter Transmits to Slave-Receiver with a 10-bit Slave Address*," which describes how to transmit data to Slave device. After the Master device completes the initial transmittal, and wants to continue transmitting data to another device, the Master needs to address each of the new Slave devices by repeating the initial operation mentioned above. If the Master device wants to transmit the data in 7-bit and 10-bit Slave address modes successively, this could be done after the START or repeat START conditions as illustrated in the following figures.

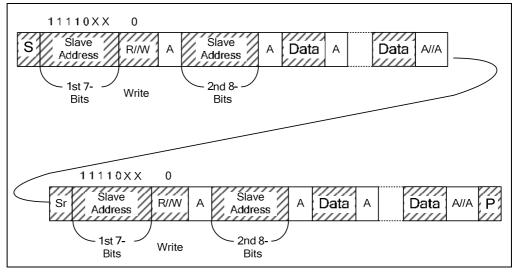


Figure 6-14d Master Transmitting to More than One Slave Devices with 10-Bit Slave Address

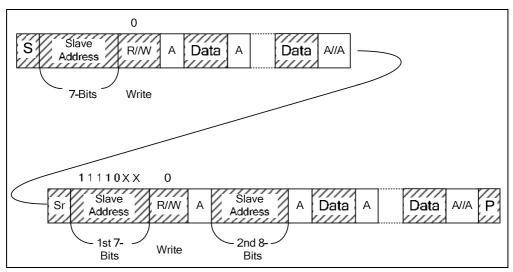


Figure 6-14e Master Succesivley Transmitting to 7-Bit and 10-Bit Slave Address

6.8.3 Master Mode

In transmitting (receiving) serial data, the I²C is carried on as follows:

- 1) Set I2CTS1~0, I2CCS, and ISS bits to select I^2C transmit clock source.
- 2) Set I2CEN and IMS bits to enable I^2C Master function.
- 3) Write Slave address into the I2CSA register and IRW bit to select read or write.
- 4) Set strobe bit to start transmitting and then check I2CTSF (I2CTSF) bit.
- 5) Write 1st data into the I2CDB register, set strobe bit, and check I2CTSF (I2CRSF) bit.
- Write 2nd data into the I2CDB register, set strobe bit, STOP bit, and check I2CTSF (I2CRSF) bit.

6.8.4 Slave Mode LC Transmit

In receiving (transmitting) serial data, the I²C is carried on as follows:

- 1) Set I2CTS1~0, I2CCS, and ISS bits to select I^2C transmit clock source.
- 2) Set I2CEN and IMS bits to enable I²C Slave function.
- 3) Write device address into the I2CDA register.
- 4) Check I2CRSF (I2CTSF) bit, read I2CDB register (address), and then clear Pend bit.
- 5) Check I2CRSF (I2CTSF) bit, read I2CDB register (1st data), and then clear Pend bit.
- 6) Check I2CRSF (I2CTSF) bit, read I2CDB register (2nd data), and then clear Pend bit.
- 7) Check I2CSTPSF bit, end transmission.

6.9 Oscillator

6.9.1 Oscillator Modes

The eKTF5701 can be operated in the one oscillator mode, i.e., Internal RC oscillator mode (IRC). You need to set the main-oscillator modes by selecting the OSC0, and set sub-oscillator modes by selecting the FSS in the CODE Option register to complete the overall oscillator mode setting.

Main-Oscillator Modes Defined By OSC0

Main-Oscillator Mode	OSC0
IRC (Internal RC oscillator mode; default) RCOUT (P54) acts as I/O pin	1
IRC (Internal RC oscillator mode) RCOUT (P54) acts as clock output pin	0

Summary of Maximum Operating Speeds

Conditions	VDD	Fxt Max. (MHz)
	2.5	4.0
Two cycles with two clocks	2.5	8.0
	2.5	12.0
	2.5	16.0

6.9.2 Internal RC Oscillator Mode

eKTF5701 offers a versatile internal RC mode with default frequency value of 4MHz. The Internal RC oscillator mode has other frequencies (16MHz, 8MHz, & 12MHz) that can be set by CODE OPTION; RCM1 and RCM0. All these four main frequencies can be calibrated by programming the CODE OPTION bits; C5~C0. Table below describes a typical drift rate of the calibration.

Internal RC	Drift Rate								
Frequency	Temperature (-40℃~+85℃)			Total					
12MHz	±2%	±1%	±1%	±4%					
4MHz	±2%	±1%	±1%	±4%					
8MHz	±2%	±1%	±1%	±4%					
16MHz	±2%	±1%	±1%	±4%					

■ Internal RC Drift Rate (Ta=25°C, VDD=3.6V±5%, VSS=0V)

NOTE: These are theoretical values intended for reference only. Actual values may vary depending on actual conditions.

	Trimming Code		Clock Period	Frequency			
CA[5]	CA[4]	CA[3]	CA[2]	CA[1]	CA[0]		requeitey
0	0	0	0	0	0	Period*(1+32%)	F*(1-24.2%)
0	0	0	0	0	1	Period*(1+31%)	F*(1-23.7%)
0	0	0	0	1	0	Period*(1+30%)	F*(1-23.1%)
0	0	0	0	1	1	Period*(1+29%)	F*(1-22.5%)
0	0	0	1	0	0	Period*(1+28%)	F*(1-21.9%)
0	0	0	1	0	1	Period*(1+27%)	F*(1-21.3%)
0	0	0	1	1	0	Period*(1+26%)	F*(1-20.6%)
0	0	0	1	1	1	Period*(1+25%)	F*(1-20%)
0	0	1	0	0	0	Period*(1+24%)	F*(1-19.4%)
0	0	1	0	0	1	Period*(1+23%)	F*(1-18.7%)
0	0	1	0	1	0	Period*(1+22%)	F*(1-18%)
0	0	1	0	1	1	Period*(1+21%)	F*(1-17.4%)
0	0	1	1	0	0	Period*(1+20%)	F*(1-16.7%)
0	0	1	1	0	1	Period*(1+19%)	F*(1-16%)
0	0	1	1	1	0	Period*(1+18%)	F*(1-15.3%)
0	0	1	1	1	1	Period*(1+17%)	F*(1-14.5%)
0	1	0	0	0	0	Period*(1+16%)	F*(1-13.8%)
0	1	0	0	0	1	Period*(1+15%)	F*(1-13%)
0	1	0	0	1	0	Period*(1+14%)	F*(1-12.3%)
0	1	0	0	1	1	Period*(1+13%)	F*(1-11.5%)
0	1	0	1	0	0	Period*(1+12%)	F*(1-10.7%)
0	1	0	1	0	1	Period*(1+11%)	F*(1-9.9%)
0	1	0	1	1	0	Period*(1+10%)	F*(1-9.1%)
0	1	0	1	1	1	Period*(1+9%)	F*(1-8.33%)
0	1	1	0	0	0	Period*(1+8%)	F*(1-7.4%)
0	1	1	0	0	1	Period*(1+7%)	F*(1-6.5%)
0	1	1	0	1	0	Period*(1+6%)	F*(1-5.7%)
0	1	1	0	1	1	Period*(1+5%)	F*(1-4.8%)
0	1	1	1	0	0	Period*(1+4%)	F*(1-3.8%)
0	1	1	1	0	1	Period*(1+3%)	F*(1-2.97%)
0	1	1	1	1	0	Period*(1+2%)	F*(1-2%)
0	1	1	1	1	1	Period*(1+1%)	F*(1-1%)
1	1	1	1	1	1	Period (default)	F (default)
1	1	1	1	1	0	Period*(1-1%)	F*(1+1%)
1	1	1	1	0	1	Period*(1-2%)	F*(1+2%)
1	1	1	1	0	0	Period*(1-3%)	F*(1+3.1%)
1	1	1	0	1	1	Period*(1-4%)	F*(1+4.2%)
1	1	1	0	1	0	Period*(1-5%)	F*(1+5.3%)
1	1	1	0	0	1	Period*(1-6%)	F*(1+6.4%)
1	1	1	0	0	0	Period*(1-7%)	F*(1+7.5%)
1	1	0	1	1	1	Period*(1-8%)	F*(1+8.7%)
1	1	0	1	1	0	Period*(1-9%)	F*(1+9.9%)
1	1	0	1	0	1	Period*(1-10%)	F*(1+11.1%)
1	1	0	1	0	0	Period*(1-11%)	F*(1+12.3%)
1	1	0	0	1	1	Period*(1-12%)	F*(1+13.6%)

■ Calibration Selections for Internal RC Mode

	Т	rimmir	ng Cod	le	Clock Period	Frequency	
CA[5]	CA[4]	CA[3]	CA[2]	CA[1]	CA[0]		rrequency
1	1	0	0	1	0	Period*(1-13%)	F*(1+14.9%)
1	1	0	0	0	1	Period*(1-14%)	F*(1+16.3%)
1	1	0	0	0	0	Period*(1-15%)	F*(1+17.6%)
1	0	1	1	1	1	Period*(1-16%)	F*(1+19%)
1	0	1	1	1	0	Period*(1-17%)	F*(1+20.5%)
1	0	1	1	0	1	Period*(1-18%)	F*(1+22%)
1	0	1	1	0	0	Period*(1-19%)	F*(1+23.5%)
1	0	1	0	1	1	Period*(1-20%)	F*(1+25%)
1	0	1	0	1	0	Period*(1-21%)	F*(1+26.6%)
1	0	1	0	0	1	Period*(1-22%)	F*(1+28.2%)
1	0	1	0	0	0	Period*(1-23%)	F*(1+29.9%)
1	0	0	1	1	1	Period*(1-24%)	F*(1+31.6%)
1	0	0	1	1	0	Period*(1-25%)	F*(1+33.3%)
1	0	0	1	0	1	Period*(1-26%)	F*(1+35.1%)
1	0	0	1	0	0	Period*(1-27%)	F*(1+37%)
1	0	0	0	1	1	Period*(1-28%)	F*(1+38.9%)
1	0	0	0	1	0	Period*(1-29%)	F*(1+40.8%)
1	0	0	0	0	1	Period*(1-30%)	F*(1+42.9%)
1	0	0	0	0	0	Period*(1-31%)	F*(1+44.9%)

NOTE: These are theoretical values intended for reference only. Actual values may vary depending on actual conditions.

6.10 Power-On Considerations

Any microcontroller is not guaranteed to start to operate properly before the power supply reaches its steady state. eKTF5701 is equipped with a Power-On Voltage Detector (POVD) with a detection level of 2.2V. It will work well if Vdd rises fast enough (50 ms or less). However, in critical applications, extra devices are still required to assist in solving power-up problems.

6.11 External Power-On Reset Circuit

The circuit diagram in Figure 6-15 below implements an external RC to generate the reset pulse. The pulse width (time constant) should be kept long enough for VDD to reach minimum operational voltage. Apply this circuit when the power supply has slow rise time. Since the current leakage from the /RESET pin is about $\pm 5\mu$ A, it is recommended that R should not be greater than 40K Ω in order for the /RESET pin voltage to remain at below 0.2V. The diode (D) functions as a short circuit at the instant of power down. The capacitor (C) will discharge rapidly and fully. The current-limited resistor (Rin) will prevent high current or ESD (electrostatic discharge) from flowing into /RESET pin.

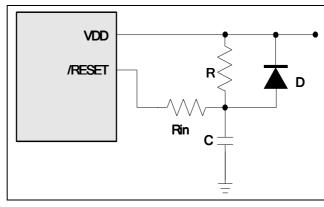


Figure 6-15 External Power-Up Reset Circuit

6.12 Residue-Voltage Protection

When the battery is replaced, device power (VDD) is taken off but residue-voltage remains. The residue-voltage may trips below VDD minimum, but not to zero. This condition may cause a poor power-on reset. Following Figures 6-16a & 6-16b show how to accomplish a proper residue-voltage protection circuit.

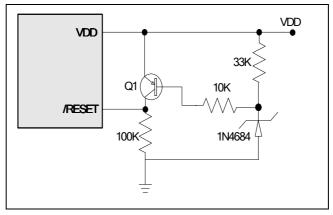


Figure 6-16a Circuit 1 for the Residue Voltage Protection

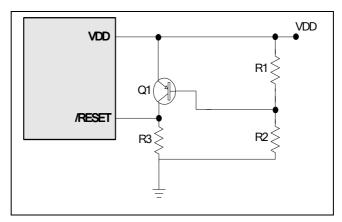


Figure 6-16b Circuit 2 for the Residue Voltage Protection

6.13 Code Option

						W	ord 0								
Bit	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Mnemonic	COBS	IRCWUT	-	-	HLFS	-	LVR1	LVR0	RESETEN	ENWDT	NRHL	NRE	PR2	PR1	PR0
1	Code Option	8 clks	High	High	Normal	High	High	High	P57	Disable	32/fc	Enable	D	isabl	е
0	Register	32 clks	Low	Low	Green	Low	Low	Low	/RST	Enable	8/fc	Disable	E	nabl	е
Default	1	1	1	1	1	1	1	1	1	1	1	1		1	

6.13.1 Code Option Register (Word 0)

Bit 14 (COBS): Code Option Bit Selection

- **0:** Control bits in Bank1 R4A, R4B, & R4C are read from **control register**.
- 1: Control bits in the Bank1 R4A, R4B, & R4C are read from code option register (default).

NOTE

When IC powers on, IC latches the code option setting values first. Then, the values in code option words are determined to whether linked them with corresponding Control Registers Bank1 R4A~4C by setting COBS to "1" or "0". If COBS equals "0", the initial values in the Control Registers Bank1 R4A~4C are the same with the value in code option words. They can be modified later to any other values as you wish.

Bit 13 (IRCWUT): IRC Warm-Up Time (back to Normal mode)

0: 32 clocks

1: 8 clocks (default)

- Bits 12~11: Not used. Set to "1" all the time.
- Bit 10 (HLFS): Reset to Normal or Green Mode select bit
 - **0:** CPU is selected to enter into Green mode when a reset occurs.
 - 1: CPU is selected to enter into Normal mode when a reset occurs. (default).
- Bit 9: Not used. Set to "1" all the time.

Bits 8~7 (LVR1~LVR0): Low Voltage Reset enable bit

LVR1, LVR0	VDD Reset Level	VDD Release Level
1x	NA (Power-on	reset; default)
01	2.7V *	2.9V
00	3.0V **	3.2V

* If VDD < 2.7V and is kept for about 5us, IC will reset.

** If VDD < 3.0V and is kept for about 5us, IC will reset.

Bit 6 (RESETEN)	: P80//RESET pin select bit 0: Enable /RESET pin 1: Disable P80 pin (default)
Bit 5 (ENWDT):	WDT Enable bit 0: Enable 1: Disable (default)
Bit 4 (NRHL):	Noise Rejection High/Low pulse definition bit. 0: Pulses equal to 8/fc [s] is considered as valid signal 1: Pulses equal to 32/fc [s] is considered as valid signal (default)
Bit 3 (NRE):	Noise Rejection Enable bit 0: Disable. 1: Enable (default)
	NOTE

During Green, Idle, and Sleep modes, the Noise Rejection circuit is always disable.

Bits 2~0 (PR2 ~ PR0): Protect bit. Each	protect status is as follows:
---	-------------------------------

PR2	PR1	PR0	Protect
0	0	0	Enable
1	1	1	Disable

6.13.2 Code Option Register (Word 1)

1 - High High High High High High High High								Word	1							
1 - High High High High High High High High	Bit	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	Mnemonic		FSS	C5	C4	C3	C2	C1	C 0	RCM1	RCM0	DAS	-	-	OSC0	RCOUT
0 - Low Low Low Low Low Low Low Low Low User Low L	1	-	High	High	High	High	High	High	High	High	High	0x77	-	-	High	High
	0	-	Low	Low	Low	Low	Low	Low	Low	Low	Low	User	-	-	Low	Low
Default 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Default	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Bit 14: Not used. Set to "1" all the time.

Bits 13 (FSS): Sub-oscillator mode select bit 0: Fs is 64KHz 1: Fs is 16KHz.

NOTE

WDT frequency is always 16KHz regardless of the FSS[1:0] bits setting.

	Т	rimmir	ng Cod	le		Clock Pariod	Frequency		
CA[5]	CA[4]	CA[3]	CA[2]	CA[1]	CA[0]	Clock Period	Frequency		
0	0	0	0	0	0	Period*(1+32%)	F*(1-24.2%)		
0	0	0	0	0	1	Period*(1+31%)	F*(1-23.7%)		
0	0	0	0	1	0	Period*(1+30%)	F*(1-23.1%)		
0	0	0	0	1	1	Period*(1+29%)	F*(1-22.5%)		
0	0	0	1	0	0	Period*(1+28%)	F*(1-21.9%)		
0	0	0	1	0	1	Period*(1+27%)	F*(1-21.3%)		
0	0	0	1	1	0	Period*(1+26%)	F*(1-20.6%)		
0	0	0	1	1	1	Period*(1+25%)	F*(1-20%)		
0	0	1	0	0	0	Period*(1+24%)	F*(1-19.4%)		
0	0	1	0	0	1	Period*(1+23%)	F*(1-18.7%)		
0	0	1	0	1	0	Period*(1+22%)	F*(1-18%)		
0	0	1	0	1	1	Period*(1+21%)	F*(1-17.4%)		
0	0	1	1	0	0	Period*(1+20%)	F*(1-16.7%)		
0	0	1	1	0	1	Period*(1+19%)	F*(1-16%)		
0	0	1	1	1	0	Period*(1+18%)	F*(1-15.3%)		
0	0	1	1	1	1	Period*(1+17%)	F*(1-14.5%)		
0	1	0	0	0	0	Period*(1+16%)	F*(1-13.8%)		
0	1	0	0	0	1	Period*(1+15%)	F*(1-13%)		
0	1	0	0	1	0	Period*(1+14%)	F*(1-12.3%)		
0	1	0	0	1	1	Period*(1+13%)	F*(1-11.5%)		
0	1	0	1	0	0	Period*(1+12%)	F*(1-10.7%)		
0	1	0	1	0	1	Period*(1+11%)	F*(1-9.9%)		
0	1	0	1	1	0	Period*(1+10%)	F*(1-9.1%)		
0	1	0	1	1	1	Period*(1+9%)	F*(1-8.33%)		
0	1	1	0	0	0	Period*(1+8%)	F*(1-7.4%)		
0	1	1	0	0	1	Period*(1+7%)	F*(1-6.5%)		
0	1	1	0	1	0	Period*(1+6%)	F*(1-5.7%)		
0	1	1	0	1	1	Period*(1+5%)	F*(1-4.8%)		
0	1	1	1	0	0	Period*(1+4%)	F*(1-3.8%)		
0	1	1	1	0	1	Period*(1+3%)	F*(1-2.97%)		
0	1	1	1	1	0	Period*(1+2%)	F*(1-2%)		
0	1	1	1	1	1	Period*(1+1%)	F*(1-1%)		
1	1	1	1	1	1	Period (default)	F (default)		
1	1	1	1	1	0	Period*(1-1%)	F*(1+1%)		
1	1	1	1	0	1	Period*(1-2%)	F*(1+2%)		
1	1	1	1	0	0	Period*(1-3%)	F*(1+3.1%)		
1	1	1	0	1	1	Period*(1-4%)	F*(1+4.2%)		
1	1	1	0	1	0	Period*(1-5%)	F*(1+5.3%)		
1	1	1	0	0	1	Period*(1-6%)	F*(1+6.4%)		
1	1	1	0	0	0	Period*(1-7%)	F*(1+7.5%)		

Bits 12~7 (C5~C0): IRC trim bits

(Continuation)

	Т	rimmir	ng Cod	le		Clock Period	Frequency			
CA[5]	CA[4]	CA[3]	CA[2]	CA[1]	CA[0]	Chock I chica	ricquerioy			
1	1	0	1	1	1	Period*(1-8%)	F*(1+8.7%)			
1	1	0	1	1	0	Period*(1-9%)	F*(1+9.9%)			
1	1	0	1	0	1	Period*(1-10%)	F*(1+11.1%)			
1	1	0	1	0	0	Period*(1-11%)	F*(1+12.3%)			
1	1	0	0	1	1	Period*(1-12%)	F*(1+13.6%)			
1	1	0	0	1	0	Period*(1-13%)	F*(1+14.9%)			
1	1	0	0	0	1	Period*(1-14%)	F*(1+16.3%)			
1	1	0	0	0	0	Period*(1-15%)	F*(1+17.6%)			
1	0	1	1	1	1	Period*(1-16%)	F*(1+19%)			
1	0	1	1	1	0	Period*(1-17%)	F*(1+20.5%)			
1	0	1	1	0	1	Period*(1-18%)	F*(1+22%)			
1	0	1	1	0	0	Period*(1-19%)	F*(1+23.5%)			
1	0	1	0	1	1	Period*(1-20%)	F*(1+25%)			
1	0	1	0	1	0	Period*(1-21%)	F*(1+26.6%)			
1	0	1	0	0	1	Period*(1-22%)	F*(1+28.2%)			
1	0	1	0	0	0	Period*(1-23%)	F*(1+29.9%)			
1	0	0	1	1	1	Period*(1-24%)	F*(1+31.6%)			
1	0	0	1	1	0	Period*(1-25%)	F*(1+33.3%)			
1	0	0	1	0	1	Period*(1-26%)	F*(1+35.1%)			
1	0	0	1	0	0	Period*(1-27%)	F*(1+37%)			
1	0	0	0	1	1	Period*(1-28%)	F*(1+38.9%)			
1	0	0	0	1	0	Period*(1-29%)	F*(1+40.8%)			
1	0	0	0	0	1	Period*(1-30%)	F*(1+42.9%)			
1	0	0	0	0	0	Period*(1-31%)	F*(1+44.9%)			

RCM1	RCM0	Frequency (MHz)
0	0	12
0	1	8
1	0	16
1	1	4 (default)

Bit 4 (DAS): Device Address Select for I²C WTR 0: I²C Slave address is at user's option (Word D) for WTR mode 1: I²C Slave Address 0x77 for WTR mode (default)

Bit 3~2: Not used. Set to "1" all the time.

Bits 1 (OSC0): Main-oscillator mode select bit

Main-Oscillator Mode	OSC0
IRC (Internal RC oscillator mode; default) RCOUT (P54) functions as I/O pin	1
IRC (Internal RC oscillator mode) RCOUT (P54) functions as clock output pin	0

Bit 0 (RCOUT): System Clock Output enable bit in IRC mode

0: OSCO pin is open drain

1: OSCO output instruction cycle time (default)

6.13.3 Code Option Register (Word 2)

	Word 2														
Bit	Bit 14							Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Mnemonic	SHEN	SHC LK1	SHC LK0	SC3	SC2	SC1	SC0	-	-	-	EFTIM	-	-	-	-
1	Disable	High	High	High	High	High	High	-	-	-	Light	-	-	-	-
0	Enable	Low	Low	Low	Low	Low	Low	-	-	-	Heavy	-	-	-	-
Default	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Bit 14 (SHEN): System Hold Enable bit

0: Enable

1: Disable

Bits 13~12 (SHCLK1~SHCLK0): System hold clock selection bits (extra 64KHz

source)

SHCLK1~0	System hold clock						
00	16 clock						
01	2 clock						
10	8 clock						
11	4 clock(default)						

	Trimmi	ng Code		CLK Period	Frequency
CA[3]	CA[2]	CA[1]	CA[0]		requercy
0	0	0	0	Period*(1+32%)	F*(1-24.24%)
0	0	0	1	Period*(1+28%)	F*(1-21.88%)
0	0	1	0	Period*(1+24%)	F*(1-19.35%)
0	0	1	1	Period*(1+20%)	F*(1-16.67%)
0	1	0	0	Period*(1+16%)	F*(1-13.79%)
0	1	0	1	Period*(1+12%)	F*(1-10.71%)
0	1	1	0	Period*(1+8%)	F*(1-7.41%)
0	1	1	1	Period*(1+4%)	F*(1-3.85%)
1	1	1	1	Period (default)	F (default)
1	1	1	0	Period*(1-4%)	F*(1+4.17%)
1	1	0	1	Period*(1-8%)	F*(1+8.70%)
1	1	0	0	Period*(1-12%)	F*(1+13.64%)
1	0	1	1	Period*(1-16%)	F*(1+19.05%)
1	0	1	0	Period*(1-20%)	F*(1+25.00%)
1	0	0	1	Period*(1-24%)	F*(1+31.58%)
1	0	0	0	Period*(1-28%)	F*(1+38.89%)

Bits 11~8 (SC3~SC0): Trim bits of sub-frequency IRC

Bits 7~5: Not used. Set to "1" all the time.

Bit 4 (EFTIM): Low Pass Filter (0: Heavy; 1: Light) 0: Pass ~ 10MHz (Heavy LPS) 1: Pass ~ 25MHz (Light LPS; default)

Bits 3~0: Not used. Set to "1" all the time.

6.13.4 Code Option Register (Word 3)

	Word 3															
Bit	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Mnemonic	-	-	-	-	-	-	-	-	-	ID5	ID4	ID3	ID2	ID1	ID0	
1	-	-	-	-	-	-	-	-	-	Customer ID						
0	-	-	-	-	-	-	-	-	-							
Default	1	1	1	1	1	1	1	1	1							

Bits 14~6: Not used. Set to "1" all the time.

Bits 5~0 (ID5~ID0): Customer's ID Code

							Word	2							
Bit	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Mnemonic									I2CS6	I2CS5	I2CS4	I2CS3	I2CS2	I2CS1	I2CS0
1									High						
0									Low						
Default	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

6.13.5 Code Option Register (Word D)

Bits 14~7: Not used. Set to "1" all the time.

Bit 6~0 (I2CS6~I2CS0): User setting Device Address for I²C WTR

6.14 Instruction Set

Each instruction in the instruction set is a 15-bit word divided into an OP code and one or more operands. Normally, all instructions are executed within one single instruction cycle (one instruction consists of 2 oscillator periods), unless the program counter is changed by instruction "MOV R2, A", "ADD R2, A", or by instructions of arithmetic or logic operation on R2 (e.g., "SUB R2, A", "BS(C) R2, 6", "CLR R2", etc.). In this case, the execution takes two instruction cycles.

If for some reasons, the specification of the instruction cycle is not suitable for certain applications, try modifying the instruction as follows:

• "LCALL", "LJMP", "JMP", "CALL", "RET", "RETL", "RETI", or the conditional skip ("JBS", "JBC", "JZ", "JZA", "DJZ", "DJZA") commands which were tested to be true, are executed within two instruction cycles. The instructions that are written to the program counter also take two instruction cycles.

Moreover, the instruction set has the following features:

- 1) Every bit of any register can be directly set, cleared, or tested.
- 2) The I/O register can be considered as general register. That is; the same instruction can operate on I/O register.

■ Instruction Set Table:

In the following Instruction Set table, the following symbols are used:

- "R" represents a register designator that specifies which one of the registers (including operational registers and general purpose registers) is to be utilized by the instruction.
- "b" represents a bit field designator that selects the value for the bit which is located in the register "**R**", and affects operation.
- "k" represents an 8 or 10-bit constant or literal value.

Instruction Binary	Mnemonic	Operation	Status Affected
000 0000 0000 0000	NOP	No Operation	None
000 0000 0000 0001	DAA	Decimal Adjust A	С
000 0000 0000 0011	SLEP	$0 \rightarrow WDT$, Stop oscillator	T,P
000 0000 0000 0100	WDTC	$0 \rightarrow WDT$	T,P
000 0000 0001 0000	ENI	Enable Interrupt	None
000 0000 0001 0001	DISI	Disable Interrupt	None
000 0000 0001 0010	RET	$[Top \text{ of Stack}] \to PC$	None
000 0000 0001 0011	RETI	[Top of Stack] \rightarrow PC, Enable Interrupt	None
000 0001 rrrr rrrr	MOV R,A	$A \to R$	None
000 0010 0000 0000	CLRA	$0 \rightarrow A$	Z
000 0011 rrrr rrrr	CLR R	$0 \rightarrow R$	Z
000 0100 rrrr rrrr	SUB A,R	$R-A \rightarrow A$	Z,C,DC
000 0101 rrrr rrrr	SUB R,A	$R\text{-}A\toR$	Z,C,DC
000 0110 rrrr rrrr	DECA R	$R-1 \rightarrow A$	Z
000 0111 rrrr rrrr	DEC R	$R-1 \rightarrow R$	Z
000 1000 rrrr rrrr	OR A,R	$A \lor R \to A$	Z
000 1001 rrrr rrrr	OR R,A	$A \lor R \to R$	Z
000 1010 rrrr rrrr	AND A,R	A & R \rightarrow A	Z
000 1011 rrrr rrrr	AND R,A	A & R \rightarrow R	Z
000 1100 rrrr rrrr	XOR A,R	$A \oplus R \to A$	Z
000 1101 rrrr rrrr	XOR R,A	$A \oplus R \to R$	Z
000 1110 rrrr rrrr	ADD A,R	$A + R \to A$	Z,C,DC
000 1111 rrrr rrrr	ADD R,A	$A + R \to R$	Z,C,DC
001 0000 rrrr rrrr	MOV A,R	$R \to A$	Z
001 0001 rrrr rrrr	MOV R,R	$R \rightarrow R$	Z
001 0010 rrrr rrrr	COMA R	$/R \to A$	Z
001 0011 rrrr rrrr	COM R	$/R \rightarrow R$	Z
001 0100 rrrr rrrr	INCA R	$R+1 \rightarrow A$	Z
001 0101 rrrr rrrr	INC R	$R+1 \rightarrow R$	Z
001 0110 rrrr rrrr	DJZA R	$R-1 \rightarrow A$, skip if zero	None
001 0111 rrrr rrrr	DJZ R	$R-1 \rightarrow R$, skip if zero	None
001 1000 rrrr rrrr	RRCA R	$\begin{array}{l} R(n) \rightarrow A(n\text{-}1), \\ R(0) \rightarrow C, C \rightarrow A(7) \end{array}$	С

(continuation)			
Instruction Binary	Mnemonic	Operation	Status Affected
001 1001 rrrr rrrr	RRC R	$ \begin{array}{l} R(n) \rightarrow R(n\text{-}1), \\ R(0) \rightarrow C, C \rightarrow R(7) \end{array} $	С
001 1010 rrrr rrrr	RLCA R	$\begin{array}{l} R(n) \rightarrow A(n+1), \\ R(7) \rightarrow C, C \rightarrow A(0) \end{array}$	С
001 1011 rrrr rrrr	RLC R	$\begin{array}{l} R(n) \rightarrow R(n+1), \\ R(7) \rightarrow C, C \rightarrow R(0) \end{array}$	С
001 1100 rrrr rrrr	SWAPA R	$\begin{array}{l} R(0\text{-}3) \to A(4\text{-}7), \\ R(4\text{-}7) \to A(0\text{-}3) \end{array}$	None
001 1101 rrrr rrrr	SWAP R	$R(0-3) \leftrightarrow R(4-7)$	None
001 1110 rrrr rrrr	JZA R	R+1 \rightarrow A, skip if zero	None
001 1111 rrrr rrrr	JZ R	$R+1 \rightarrow R$, skip if zero	None
010 0bbb rrrr rrrr	BC R,b	$0 \rightarrow R(b)$	None
010 1bbb rrrr rrrr	BS R,b	$1 \rightarrow R(b)$	None
011 0bbb rrrr rrrr	JBC R,b	if R(b)=0, skip	None
011 1bbb rrrr rrrr	JBS R,b	if R(b)=1, skip	None
100 kkkk kkkk kkkk	CALL k	$PC+1 \rightarrow [SP],$ (Page, k) $\rightarrow PC$	None
101 kkkk kkkk kkkk	JMP k	$(Page,k)\toPC$	None
110 0000 kkkk kkkk	MOV A,k	$k\toA$	None
110 0100 kkkk kkkk	OR A,k	$A \lor k \to A$	Z
110 1000 kkkk kkkk	AND A,k	A & k \rightarrow A	Z
110 1100 kkkk kkkk	XOR A,k	$A \oplus k \to A$	Z
111 0000 kkkk kkkk	RETL k	$k \rightarrow A$, [Top of Stack] $\rightarrow PC$	None
111 0100 kkkk kkkk	SUB A,k	$k\text{-}A\toA$	Z,C,DC
111 1100 kkkk kkkk	ADD A,k	$K+A\toA$	Z,C,DC
111 1010 0000 kkkk	SBANK k	K->R1(4)	None
111 1010 0100 kkkk	GBANK k	K->R1(3:0)	None
111 1010 1000 kkkk kkk kkkk kkkk kkkk	LCALL k	Next instruction: k kkkk kkkk kkkk PC+1→[SP], k→PC	None
111 1010 1100 kkkk kkk kkkk kkkk kkkk	LJMP k	Next instruction: k kkkk kkkk kkkk K→PC	None
111 1011 rrrr rrrr	TBRD R	$ROM[(TABPTR)] \to R$	None

(continuation)

7 Absolute Maximum Ratings

Items		Rating	
Temperature under bias	-40°C	to	85°C
Storage temperature	-65°C	to	150°C
Input voltage	Vss-0.3V	to	VDD+0.3V
Output voltage	Vss-0.3V	to	VDD+0.3V
Working Voltage	2.5V	to	3.6V
Working Frequency	DC	to	16MHz

8 DC Electrical Characteristic

	$\blacksquare (1a=25 \text{ C}, \text{VDD}=3.6\text{V}\pm5\%, \text{VSS}=0\text{V})$					
Symbol	Parameter	Condition	Min	Тур	Max	Unit
Fxt	IRC: VDD to 3.6 V	4MHz, 12MHz, 8KHz, 16MHz	-	F	-	Hz
IIL	Input Leakage Current for input pins	VIN = VDD, VSS	-1	0	1	μA
IRCE	Internal RC oscillator error per stage		-	±1	-	%
IRC1	IRC:VDD to 3.6V	RCM0:RCM1=1:1	-	4	-	MHz
IRC2	IRC:VDD to 3.6V	RCM0:RCM1=1:0	-	16	-	MHz
IRC3	IRC:VDD to 3.6V	RCM0:RCM1=0:1	-	8	-	MHz
IRC4	IRC:VDD to 3.6V	RCM0:RCM1=0:0	-	12	-	MHz
IIL	Input Leakage Current for input pins	VIN = VDD, VSS	-1	0	1	μA
VIH1	Input High Voltage (Schmitt trigger)	Ports 5, 6, 7, 8	0.7Vdd	-	Vdd+0.3V	V
VIL1	Input Low Voltage (Schmitt trigger)	Ports 5, 6, 7, 8	-0.3V	-	0.3Vdd	V
VIHT1	Input High Threshold Voltage (Schmitt trigger)	/RESET	0.7Vdd	-	Vdd+0.3V	V
VILT1	Input Low Threshold Voltage (Schmitt trigger)	/RESET	-0.3V	-	0.3Vdd	V
VIHT2	Input High Threshold Voltage (Schmitt trigger)	TCC,INT	0.7Vdd	-	Vdd+0.3V	V
VILT2	Input Low Threshold Voltage (Schmitt trigger)	TCC,INT	-0.3V	-	0.3Vdd	V
IOH1	Output High Voltage (Ports 5, 6, 7, 8)	VOH = VDD-0.1VDD	-5	-5.5	-6	mA
IOH2	Output High Voltage (high drive) (Ports 5, 6, 7, 8)	VOH = VDD-0.1VDD	-7.5	-8	-8.5	mA

■ (Ta=25°C, VDD=3.6V±5%, VSS=0V)

_	(Continuation)				τ	
Symbol	Parameter	Condition	Min	Тур	Max	Unit
IOL1	Output Low Voltage (Ports 5, 6, 7, 8)	VOL = GND+0.1VDD	16	17	18	mA
IOL2	Output Low Voltage (high sink) (Ports 5, 6, 7, 8)	VOL = GND+0.1VDD	23.5	25	26.5	mA
IPH	Pull-high current	Pull-high active, input pin at VSS	-	-75	-	μA
IPL	Pull-low current	Pull-low active, input pin at Vdd	-	40	-	μA
ISB1	Power down current (Sleep mode)	/RESET= 'High', Fm & Fs off. All input and I/O pins at VDD, output pin floating, WDT disabled	-	3	-	μΑ
ISB2	Power down current (Sleep mode)	/RESET= 'High', Fm & Fs off. All input and I/O pins at VDD, output pin floating, WDT enabled	-	5	-	μΑ
ISB3	Power down current (Idle mode)	/RESET= 'High', Fm off, Fs=64K/16KHz (IRC type), output pin floating, WDT disabled,	-	5	-	μΑ
ISB4	Power down current (Idle mode)	/RESET= 'High', Fm off, Fs=64K/16KHz (IRC type), output pin floating, WDT enabled	-	5	-	μΑ
ICC1	Operating supply current (Green mode)	/RESET= 'High', Fm off, Fs=64K/16KHz (IRC type), output pin floating, WDT disabled	-	40	-	μΑ
ICC2	Operating supply current (Green mode)	/RESET= 'High', Fm off, Fs=64K/16KHz (IRC type), output pin floating, WDT enabled	-	41	-	μΑ
ICC3	Operating supply current (Normal mode)	/RESET= 'High', Fm=4MHz (IRC type), Fs on, output pin floating, WDT enabled	-	1	-	mA
ICC4	Operating supply current (Normal mode)	/RESET= 'High', Fm=16MHz (IRC type), Fs on, output pin floating, WDT enabled	-	2.8	-	mA

NOTE

- The above parameters are theoretical values only and have not been tested or verified.
- Data under the "Min", "Typ", & "Max" columns are based on theoretical results at 25°C. These data are for design guidance only and have not been tested or verified.

9 AC Electrical Characteristic

■ (eKTF5701, -40≦Ta≦85°C, VDD=3.6V, VSS=0V)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Dclk	Input CLK duty cycle		45	50	55	%
Tins	Instruction cycle time	Crystal type	100		DC	ns
11115	(CLKS=" 0 ")	RC type	500		DC	ns
Ttcc	TCC input period		(Tins+20)/N*			ns
Tdrh	Device reset hold time		11.3	16.2	21.6	ms
Trst	/RESET pulse width	Ta = 25°C	2000			ns
Twdt	Watchdog timer period	Ta = 25°C	11.3	16.2	21.6	ms
Tset	Input pin setup time			0		ns
Thold	Input pin hold time		15	20	25	ns
Tdelay	Output pin delay time	Cload=20pF	45	50	55	ns

* N: Selected prescaler ratio

NOTE

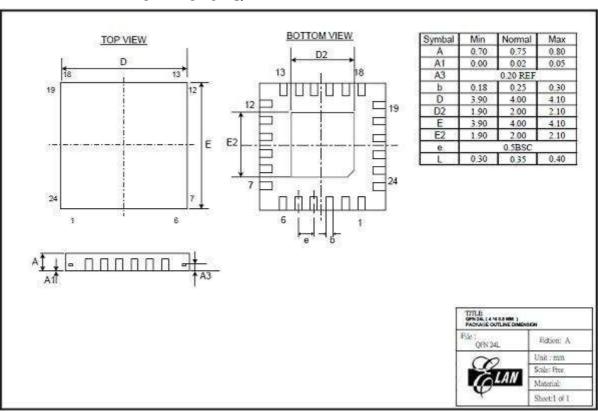
The above parameters are theoretical values only and have not been tested or verified.

Data under the "Min", "Typ", & "Max" columns are based on theoretical results at 25°C. These data are for design guidance only and have not been tested or verified.

APPENDIX

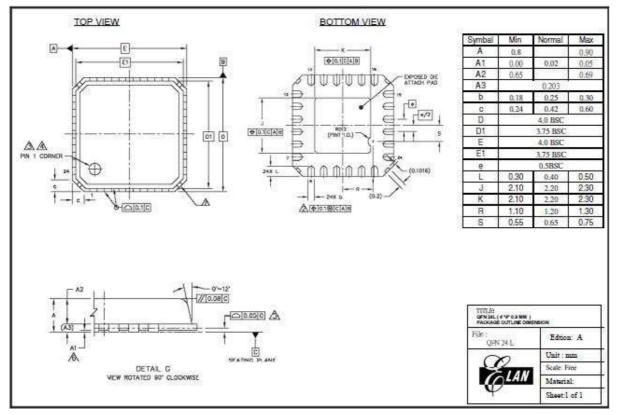
A Package Type

OTP MCU	Package Type	Pin Count	Package Size
eKTF5701QN24J/S	QFN	24 pins	4x4x0.8 mm
eKTF5701QN24AJ/S	QFN	24 pins	4x4x0.9 mm


These are Green products which do not contain hazardous substances and comply with the third edition of Sony SS-00259 standard.

The Pb contents are less 100ppm and comply with Sony specifications.

Part No.	eKTF5701S/J
Electroplate type	Pure Tin
Ingredient (%)	Sn: 100%
Melting point(℃)	232 <i>°</i> C
Electrical resistivity (μΩ-cm)	11.4
Hardness (hv)	8~10
Elongation (%)	>50%


B Package Information

B.1 eKTF5701QN24

Figure B-1 eKTF5701 24-pin QFN Package Type

B.2 eKTF5701QN24A

Figure B-2 eKTF5701 24A-pin QFN Package Type