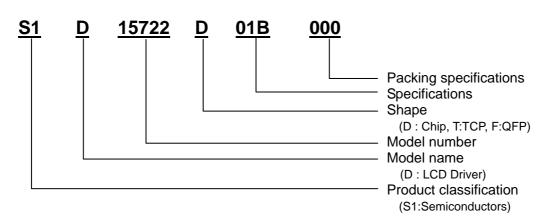


S1D15722D01B000 Technical Manual

NOTICE


No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such as, medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. This material or portions thereof may contain technology or the subject relating to strategic products under the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export license from the Ministry of Economy, Trade and Industry or other approval from another government agency.

All other product names mentioned herein are trademarks and/or registered trademarks of their respective companies.

©SEIKO EPSON CORPORATION 2008, All rights reserved.

Configuration of product number

•DEVICES

Table of Contents

1. DESCRIPTION	1
2. FEATURES	2
3. BLOCK DIAGRAM	3
4. PIN ASSIGNMENT	4
4.1 Chip Assignment	4
4.2 Alignment mark	
4.3 Pad Center Coordinates	5
5. PIN DESCRIPTION	9
5.1 Power Supply Pin	
5.2 System Bus Connection Pins	
5.3 Display Timing Signal Pins	
5.4 Liquid Crystal Drive Pins 5.5 Temperature Sensor Pins	
5.5 Temperature Sensor Pins	
6. FUNCTIONAL DESCRIPTION	
6.1 MPU Interface	
6.1.1 Selecting Interface Type	
6.1.2 Parallel interface	
6.1.3 Serial Interface 6.1.4 Chip Select	
6.1.5 Accessing Display Data RAM and Internal Register	
6.2 Display Data RAM	
6.2.1 Display Data RAM 6.2.2 Gray Scale Display	
6.2.3 Page Address Circuit/Column Address Circuit	
6.2.4 Line Address Circuit	
6.2.5 I/O Buffer Circuit 6.2.6 Display Data Latch Circuit	
6.3 Oscillation Circuit	
6.4 Display Timing Signal Generator	
6.5 Operating State Detector Circuit	21
6.6 Liquid Crystal Drive Circuit	
6.6.1 Segment Driver 6.6.2 Common Driver	
6.7 Temperature Sensor Circuit	
6.7.1 Analog Voltage Output	
6.7.2 Precautions	
6.8 Reset Circuit	
7. COMMAND	
7.1 Command Description 7.2 Command Table	
7.3 Example of Setting Instructions (Reference Example)	
8. ABSOLUTE MAXIMUM RATINGS	

9. DC CHARACTERISTICS	52
9.1 Dynamic Current Consumption Value	
9.1.1 When in normal operation.	
9.2 Current Consumption in the Power-saving Mode	
9.3 Reference Data	
9.3.1 When in normal operation 9.3.2 During MPU access	
9.3.3 Operating Voltage Rage of VDI Series and V3 Series	50
9.3.4 Liquid Crystal Frame Frequency fFR	
9.4 Temperature Sensor Characteristics	58
9.4.1 Analog Voltage Output Characteristics	58
10. TIMING CHARACTERISTICS	59
10.1 System Bus Read/Write Characteristics 1 (80 Series MPU)	59
10.2 System Bus Read/Write Characteristics 2 (68 Series MPU)	61
10.3 Serial Interface	63
10.4 Display Control I/O Timing	64
10.5 Reset Input Timing	65
10.6 Temperature Sensor Measuring Timing	65
11. POWER CIRCUIT (REFERENCE EXAMPLE)	66
12. MPU INTERFACE (REFERENCE EXAMPLE)	67
13. CONNECTION BETWEEN LCD DRIVERS (REFERENCE EXAMPLE)	68
14. LCD PANEL CONNECTION (REFERENCE EXAMPLE)	69
15. PRECAUTIONS	70
REVISION HISTORY	71

1. DESCRIPTION

The S1D15722 series is a MLS drive system dot matrix LCD driver that can be directly connected to the microcomputer bus. An 8-bit parallel or serial display data sent from the microcomputer is stored in the built-in display data RAM and LCD drive signal is generated independently of the microcomputer. (Required external LCD bias voltages input.)

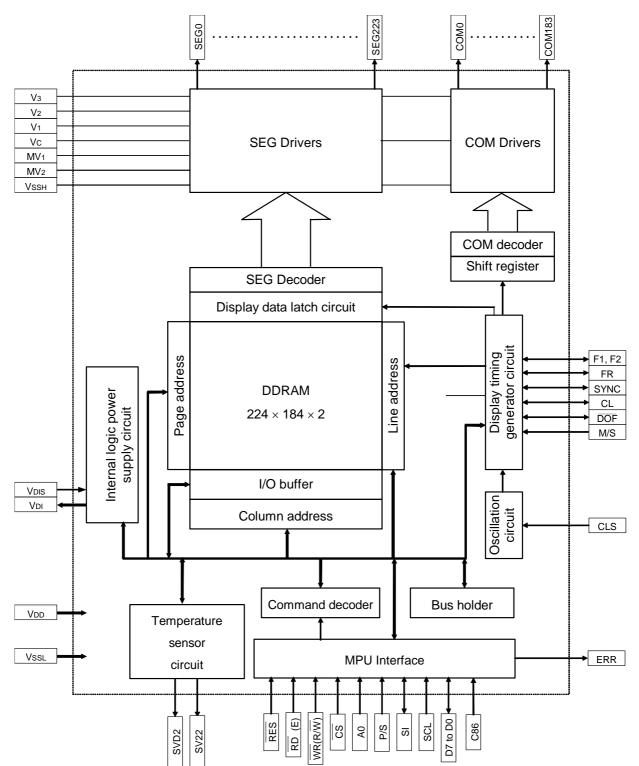
The S1D15722 series provides both FRM 4-grayscale display and binary display. With display data RAM $224 \times 184 \times 2$ bits incorporated, for 4-grayscale display, 2 bits of built-in RAM correspond to 1 dot of pixel, and for binary display, 1 bit of the built-in RAM corresponds to 1 dot of pixel.

The S1D15722 series contains 184 circuits of common output and 224 circuits of segment output. This allows display of a maximum of 224×184 dots per chip.

Read/write operation from microcomputer to display data RAM does not require external operation clock.

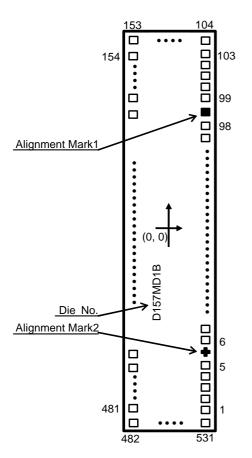
2. FEATURES

- Direct display of RAM data with display data RAM
 - For 4-grayscale display (normally white, normal display mode) RAM bit data (higher and lower)
 - (1, 1): Level 3 of gray scale Black
 - (1, 0): Level 2 of gray scale
 - (0, 1): Level 1 of gray scale
 - (0, 0): Level 0 of gray scale White
 - For binary display (Normally White, normal display mode)
 - RAM bit data
 - "1": ON Black
 - "0": OFF White
- RAM capacity
 - $184 \times 224 \times 2 = 82,432$ bits
- Liquid crystal drive circuit
 - 184 common output and 224 segment output
- Provides a high-speed 8-bit MPU interface (can be directly connected to MPU of both 80 and 68 series)/serial interface.
- Extensive command functions


Display lines set, n-line inversion, display data RAM address control, gray scale control, display ON/OFF, display in forward/reverse direction, full display lighting ON/OFF, display clock built-in oscillation circuit control, select common output status, etc.

- Required external LCD bias voltages input
- Built-in high precision voltage adjustment function
 Built-in high precision CR oscillation circuit
- Power supply:
 Logic power supply : VDD VSSL = 3.0V to 5.5V (Internal logic is operated by VDI-VSSL ··· 2.85V typ.)
 LCD drive power supply: V3 VSSH = 15V to 25V

(VSSL = VSSH = GND)

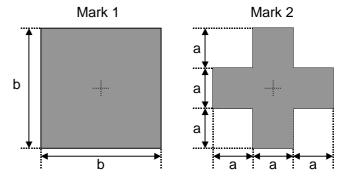

- Wide temperature range: 40 to + 90° C
- CMOS Process
- Shipping form: bare chip
- No anti-radiation and light resistance design

3. BLOCK DIAGRAM

4. PIN ASSIGNMENT

4.1 Chip Assignment

lte	em	х	Size	Y	Unit
Chip	o size	3.31	×	21.00	mm
Chip th	iickness		0.625		mm
Bump	o pitch		62 (Min.)		μm
Bump size	1 to 5	45	×	85	μm
PAD No.	6 to 17, 19 to 44, 83, 85 to 98 18, 48 to 82,	90 90	× ×	109 60	μm μm
	84 45 to 47	90	×	45	μm
	99 to 153	45	×	85	μm
	154 to 481	90	×	35	μm
	482 to 531	45	×	85	μm
Bump	height		Тур. 17		μm


4.2 Alignment mark

Alignment coordinate

1
$$(1500.0, 9380.0) \,\mu\text{m}$$

Mark size

 $\begin{array}{l} a=15 \ \mu m \\ b=45 \ \mu m \end{array}$

4.3 Pad Center Coordinates

PAD	Pin			PAD	Pin				PAD	PIN		nit:	
No.	Name	Х	Y	No.	Name	Х	(Y	No.	Name	Х	١	ſ
1	NC	1539.7	-10204.05	51	FR	151	72	-150.0	101	NC	1539.7	994	6.5
2	NC	1539.7	-10075.5	52	CL			-60.0	102	NC	1539.7		75.5
3	NC	1539.7	-9946.5	53	DOF			210.0	103	NC	1539.7	102	
4	NC	1539.7	-9817.5	54	F1			300.0	104	NC	1519.0		64.7
5	NC	1539.7	-9688.5	55	F2			570.0	105	NC	1457.0	100	
6	TEST3	1517.2	-9238.5	56	VSSL			660.0	105	COM91	1395.0		
7	TEST3	1317.2	-9230.5	57				750.0	107	COM91 COM90	1333.0		
8	TEST4		-8788.5	58	RES			1020.0	107	COM89	1271.0		
9	TEST4		-8662.5	59	A0			1110.0	109	COM88	1209.0		
10	TEST5		-8338.5	60	VSSL			1290.0	110	COM87	1147.0		
11	TEST5		-8212.5	61	WR,R/W			1380.0	111	COM86	1085.0		
12	TEST6		-7888.5	62	RD, E			1650.0	112	COM85	1003.0		
13	TEST6		-7762.5	63	VDD			1740.0	113	COM84	961.0		
14	TEST7		-7438.5	64	SI			1830.0	114	COM83	899.0		
14	TEST7		-7430.5	65	SCL			2100.0	115	COM82	837.0		
					D0			2100.0					
<u>16</u> 17	TEST8 TEST8		-6988.5	66	D0			2460.0	116 117	COM81 COM80	775.0 713.0		
			-6862.5	67					-				
18	TEST9		-6530.0	68	D2			2550.0	118	COM79	651.0		
19	TEST10		-6348.5	69	D3			2820.0	119	COM78	589.0		
20	TEST10		-6222.5	70	D4			2910.0	120	COM77	527.0		
21	TEST11		-5898.5	71	D5			3180.0	121	COM76	465.0		
22	TEST11		-5772.5	72	D6			3270.0	122	COM75	403.0		
23	TEST12		-5448.5	73	D7			3540.0	123	COM74	341.0		
24	TEST12		-5322.5	74	VDD			3630.0	124	COM73	279.0		
25	TEST9		-4998.5	75	M/S			3720.0	125	COM72	217.0		
26	TEST9		-4872.5	76	CLS			3990.0	126	COM71	155.0		
27	Vdd2		-4510.7	77	VSSL			4080.0	127	COM70	93.0		
28	Vdd2		-4384.7	78	TEST			4260.0	128	COM69	31.0		
29	VDD2		-4258.7	79	C86			4350.0	129	COM68	-31.0		
30	Vdd		-3926.7	80	P/S			4620.0	130	COM67	-93.0		
31	Vdd		-3800.7	81	Vdd			4710.0	131	COM66	-155.0		
32	Vdd		-3674.7	82	ERR			4800.0	132	COM65	-217.0		
33	Vssh		-3362.1	83	Vssh			5051.5	133	COM64	-279.0		
34	Vssh		-3236.1	84	TEST13			5210.0	134	COM63	-341.0		
35	Vssh		-3110.1	85	TEST14			5371.5	135	COM62	-403.0		
36	Vssh		-2984.1	86	TEST15			5701.5	136		-465.0		
37	Vssl		-2821.1	87	TEST15			5827.5	137	COM60	-527.0		
38	VSSL		-2695.1	88	TEST16			6159.5	138	COM59	-589.0		
39	VSSL		-2569.1	89	TEST16			6285.5	139	COM58	-651.0		
40	Vssl		-2443.1	90	TEST17			6613.5	140	COM57	-713.0		
41	Vdi		-2280.1	91	TEST17			6739.5	141	COM56	-775.0		
42	Vdi		-2154.1	92	V3			7061.5	142	COM55	-837.0		
43	Vdd		-1841.5	93	V2			7405.5	143	COM54	-899.0		
44	Vdd		-1715.5	94	V1			7749.5	144	COM53	-961.0		
45	TEST2		-1440.0	95	Vc			8093.5	145	COM52	-1023.0		
46	SV22		-1050.0	96	MV1			8437.5	146	COM51	-1085.0		
47	SVD2		-800.0	97	MV2			8781.5	147	COM50	-1147.0		
48	Vdis		-600.0	98	Vssн		,	9111.5	148	COM49	-1209.0		
49	Vssl		-510.0	99	NC	153	9.7	9688.5	149	COM48	-1271.0		
50	SYNC		-420.0	100	NC			9817.5	150	COM47	-1333.0		

Unit : µm

PAD	Pin			PAD	Pin			PAD	PIN		nit : µm
No.	Name	Х	Y	No.	Name	Х	Y	No.	Name	X	Y
151	COM46	-1395.0	10364.7	201	COM0	-1517.2	7223.0	251	SEG45	-1517.2	4123.0
152	NC	-1457.0		202	NC		7161.0	252	SEG46		4061.0
153	NC	-1519.0		203	NC		7099.0	253	SEG47		3999.0
154	NC	-1517.2	10137.0	204	NC		7037.0	254	SEG48		3937.0
155	NC		10075.0	205	NC		6975.0	255	SEG49		3875.0
156	COM45		10013.0	206	SEG0		6913.0	256	SEG50		3813.0
157	COM44		9951.0	207	SEG1		6851.0	257	SEG51		3751.0
158	COM43		9889.0	208	SEG2		6789.0	258	SEG52		3689.0
159	COM42		9827.0	209	SEG3		6727.0	259	SEG53		3627.0
160	COM41		9765.0	210	SEG4		6665.0	260	SEG54		3565.0
161	COM40		9703.0	211	SEG5		6603.0	261	SEG55		3503.0
162	COM39		9641.0	212	SEG6		6541.0	262	SEG56		3441.0
163	COM38		9579.0	213	SEG7		6479.0	263	SEG57		3379.0
164	COM37		9517.0	214	SEG8		6417.0	264	SEG58		3317.0
165	COM36		9455.0	215	SEG9		6355.0	265	SEG59		3255.0
166	COM35		9393.0	216	SEG10		6293.0	266	SEG60		3193.0
167	COM34		9331.0	217	SEG11		6231.0	267	SEG61		3131.0
168	COM33		9269.0	218	SEG12		6169.0	268	SEG62		3069.0
169	COM32		9207.0	219	SEG13		6107.0	269	SEG63		3007.0
170	COM31		9145.0	220	SEG14		6045.0	270	SEG64		2945.0
171	COM30		9083.0	221	SEG15		5983.0	271	SEG65		2883.0
172	COM29		9021.0	222	SEG16		5921.0	272	SEG66		2821.0
173	COM28		8959.0	223	SEG17		5859.0	273	SEG67		2759.0
174	COM27		8897.0	224	SEG18		5797.0	274	SEG68		2697.0
175	COM26		8835.0	225	SEG19		5735.0	275	SEG69		2635.0
176	COM25		8773.0	226	SEG20		5673.0	276	SEG70		2573.0
177	COM24		8711.0	227	SEG21		5611.0	277	SEG71		2511.0
178	COM23		8649.0	228	SEG22		5549.0	278	SEG72		2449.0
179	COM22		8587.0	229	SEG23		5487.0	279	SEG73		2387.0
180	COM21		8525.0	230	SEG24		5425.0	280	SEG74		2325.0
181	COM20		8463.0	231	SEG25		5363.0	281	SEG75		2263.0
182	COM19		8401.0	232	SEG26		5301.0	282	SEG76		2201.0
183	COM18		8339.0	233	SEG27		5239.0	283	SEG77		2139.0
184	COM17		8277.0	234	SEG28		5177.0	284	SEG78		2077.0
185	COM16		8215.0	235	SEG29		5115.0	285	SEG79		2015.0
186	COM15		8153.0	236	SEG30		5053.0	286	SEG80		1953.0
187	COM14		8091.0	237	SEG31		4991.0	287	SEG81		1891.0
188	COM13		8029.0	238	SEG32		4929.0	288	SEG82		1829.0
189	COM12		7967.0	239	SEG33		4867.0	289	SEG83		1767.0
190	COM11		7905.0	240	SEG34		4805.0	290	SEG84		1705.0
191	COM10		7843.0	241	SEG35		4743.0	291	SEG85		1643.0
192	COM9		7781.0	242	SEG36		4681.0	292	SEG86		1581.0
193	COM8		7719.0	243	SEG37		4619.0	293	SEG87		1519.0
194	COM7		7657.0	244	SEG38		4557.0	294	SEG88		1457.0
195	COM6		7595.0	245	SEG39		4495.0	295	SEG89		1395.0
196	COM5		7533.0	246	SEG40		4433.0	296	SEG90		1333.0
197	COM4		7471.0	247	SEG41		4371.0	297	SEG91		1271.0
198	COM3		7409.0	248	SEG42		4309.0	298	SEG92		1209.0
199	COM2		7347.0	249	SEG43		4247.0	299	SEG93		1147.0
200	COM1		7285.0	250	SEG44		4185.0	300	SEG94		1085.0

4. PIN ASSIGNMENT

PAD Pin v	,
No. Name X	(
301 SEG95 -1517.2 102	3.0
302 SEG96 96	1.0
303 SEG97 899	9.0
304 SEG98 83	7.0
305 SEG99 775	5.0
306 SEG100 713	3.0
307 SEG101 65	1.0
308 SEG102 589	9.0
309 SEG103 52	7.0
310 SEG104 46	5.0
311 SEG105 403	3.0
312 SEG106 34	
313 SEG107 279	
314 SEG108 21	
315 SEG109 155	
316 SEG110 93	
317 SEG111 31	
318 SEG112 -3'	
319 SEG113 -93	
320 SEG114 -15	
321 SEG115 -21	
321 SEG115 -21 322 SEG116 -27	
323 SEG117 -34	
324 SEG118 -40	
325 SEG119 -46	
326 SEG120 -52	
327 SEG121 -58	
328 SEG122 -65	
329 SEG123 -71	
330 SEG124 -77	
331 SEG125 -83	
332 SEG126 -89	
333 SEG127 -96	
334 SEG128 -102	
335 SEG129 -108	
336 SEG130 -114	
337 SEG131 -120	
338 SEG132 -127	
339 SEG133 -133	
340 SEG134 -139	
341 SEG135 -145	
342 SEG136 -151	19.0
343 SEG137 -158	31.0
344 SEG138 -164	43.0
345 SEG139 -170)5.0
346 SEG140 -176	67.0
347 SEG141 -182	29.0
348 SEG142 -189	91.0
349 SEG143 -195	53.0

PAD	Pin		
No.	Name	Х	Y
351	SEG145	-1517.2	-2077.0
352	SEG146		-2139.0
353	SEG147		-2201.0
354	SEG148		-2263.0
355	SEG149		-2325.0
356	SEG150		-2387.0
357	SEG151		-2449.0
358	SEG152		-2511.0
359	SEG153		-2573.0
360	SEG154		-2635.0
361	SEG155		-2697.0
362	SEG156		-2759.0
363	SEG157		-2821.0
364	SEG158		-2883.0
365	SEG159		-2945.0
366	SEG160		-3007.0
367	SEG161		-3069.0
368	SEG162		-3131.0
369	SEG163		-3193.0
370	SEG164		-3255.0
371	SEG165		-3317.0
372	SEG166		-3379.0
373	SEG167		-3441.0
374	SEG168		-3503.0
375	SEG169		-3565.0
376	SEG170		-3627.0
377	SEG171		-3689.0
378	SEG172		-3751.0
379	SEG173		-3813.0
380	SEG174		-3875.0
381	SEG175		-3937.0
382	SEG176		-3999.0
383	SEG177		-4061.0
384	SEG178		-4123.0
385	SEG179		-4185.0
386	SEG180		-4247.0
387	SEG181		-4309.0
388	SEG182		-4371.0
389	SEG183		-4433.0
390	SEG184		-4495.0
391	SEG185		-4557.0
392	SEG186		-4619.0
393	SEG187		-4681.0
394	SEG188		-4743.0
395	SEG189		-4805.0
396	SEG190		-4867.0
397	SEG191		-4929.0
398	SEG192		-4991.0
399	SEG193		-5053.0
400	SEG194		-5115.0

	-	Unit : μm				
PAD No.	PIN Name)	(Y		
401	SEG195	-15 ⁻	17.2	-5177.0		
402	SEG196			-5239.0		
403	SEG197			-5301.0		
404	SEG198			-5363.0		
405	SEG199			-5425.0		
406	SEG200			-5487.0		
407	SEG201			-5549.0		
408	SEG202			-5611.0		
409	SEG203			-5673.0		
410	SEG204			-5735.0		
411	SEG205			-5797.0		
412	SEG206			-5859.0		
413	SEG207			-5921.0		
414	SEG208			-5983.0		
415	SEG209			-6045.0		
416	SEG210			-6107.0		
417	SEG211			-6169.0		
418	SEG212			-6231.0		
419	SEG212			-6293.0		
420	SEG213			-6355.0		
420	SEG214 SEG215			-6417.0		
421	SEG215 SEG216			-6479.0		
422	SEG210 SEG217			-6541.0		
423						
	SEG218			-6603.0		
425	SEG219			-6665.0		
426	SEG220			-6727.0		
427	SEG221			-6789.0		
428	SEG222			-6851.0		
429	SEG223			-6913.0		
430	NC			-6975.0		
431	NC			-7037.0		
432	NC			-7099.0		
433	NC			-7161.0		
434	COM92			-7223.0		
435	COM93			-7285.0		
436	COM94			-7347.0		
437	COM95			-7409.0		
438	COM96			-7471.0		
439	COM97			-7533.0		
440	COM98			-7595.0		
441	COM99			-7657.0		
442	COM100			-7719.0		
443	COM101			-7781.0		
444	COM102			-7843.0		
445	COM103			-7905.0		
446	COM104			-7967.0		
447	COM105			-8029.0		
448	COM106			-8091.0		
449	COM107			-8153.0		
450	COM108		,	-8215.0		

PAD	Pin	V	V	
No.	Name	X	Y	
451	COM109	-1517.2	-8277.0	
452	COM110		-8339.0	
453	COM111		-8401.0	
454	COM112		-8463.0	
455	COM113		-8525.0	
456	COM114		-8587.0	
457	COM115		-8649.0	
458	COM116		-8711.0	
459	COM117		-8773.0	
460	COM118		-8835.0	
461	COM119		-8897.0	
462	COM120		-8959.0	
463	COM121		-9021.0	
464	COM122		-9083.0	
465	COM123		-9145.0	
466	COM124		-9207.0	
467	COM125		-9269.0	
468	COM126		-9331.0	
469	COM127		-9393.0	
470	COM128		-9455.0	
471	COM129		-9517.0	
472	COM130		-9579.0	
473	COM131		-9641.0	
474	COM132		-9703.0	
475	COM133		-9765.0	
476	COM134		-9827.0	
477	COM135		-9889.0	
478	COM136		-9951.0	
479	COM137		-10013.0	
480	NC		-10075.0	
481	NC		-10137.0	
482	NC	-1519.0	-10364.7	
483	NC	-1457.0	10001.7	
484	COM138	-1395.0		
485	COM139	-1333.0		
486	COM140	-1271.0		
487	COM140	-1209.0		
488	COM142	-1147.0		
489	COM143	-1085.0		
490	COM143	-1023.0		
491	COM145	-961.0		
492	COM145 COM146	-899.0		
492	COM140 COM147	-837.0		
493	COM147 COM148	-775.0		
494 495	COM148 COM149			
		-713.0		
496	COM150	-651.0		
497	COM151	-589.0		
498	COM152	-527.0		
499	COM153	-465.0		
500	COM154	-403.0	¥	

			Unit : µm
PAD	Pin	х	Y
No.	Name		-
501	COM155	-341.0	-10364.7
502	COM156	-279.0	
503	COM157	-217.0	
504	COM158	-155.0	
505	COM159	-93.0	
506	COM160	-31.0	
507	COM161	31.0	
508	COM162	93.0	
509	COM163	155.0	
510	COM164	217.0	
511	COM165	279.0	
512	COM166	341.0	
513	COM167	403.0	
514	COM168	465.0	
515	COM169	527.0	
516	COM170	589.0	
517	COM171	651.0	
518	COM172	713.0	
519	COM173	775.0	
520	COM174	837.0	
521	COM175	899.0	
522	COM176	961.0	
523	COM177	1023.0	
524	COM178	1085.0	
525	COM179	1147.0	
526	COM180	1209.0	
527	COM181	1271.0	
528	COM182	1333.0	
529	COM183	1395.0	
530	NC	1457.0	
531	NC	1519.0	v

5. PIN DESCRIPTION

5.1 Power Supply Pin

Pin name	I/O	Description	Number of pins					
Vdd	Power supply	C system power supply. Also, use this pin together with the MPU power supply bin Vcc.						
Vdd2	Power supply	Connect to VDD.	3					
VSSL	Power supply	0V pin connected to the system ground.	8					
Vssh	Power supply	High-voltage resistance circuit negative power supply pin. Short-circuit to VssL outside the LCD module.	6					
Vdi	Power supply	Power supply pin for internal circuit. It is made from VDD. This pin is required to connect external capacitance between this pin and Vss to stabilize the voltage. The VDI generator can select valid/invalid by VDIS pin. For single chip usage, the VDI generator must be ON (VDIS = HIGH). Prohibit to supply VDI externally. For multi chip usage, each VDI of chips are must be same, therefore set master's VDIS = HIGH and slave's VDIS = LOW to supply VDI voltage from master chip to slave chip(s).	2					
Vdis	I	This pin is used for making the VDI generating circuit valid or invalid.VDIS = HIGH: The VDI generating circuit is valid. (Master chip)VDIS = LOW: The VDI generating circuit is invalid. (Slave chip)When the VDIS pin is used by changing from LOW to HIGH, it should be initialized by the pin after changing it.Only the VDIS pin controls operation of the VDI generating circuit and the circuit operates independently of the save power command.						
V3, V2, V1, VC, MV1, MV2	Power supply	Multi-level, liquid crystal drive power supply pins. The voltage specified according to liquid crystal cells is impedance-converted by a split resistor or operational amplifier and applied. The following magnitude correlation should be followed: $V_3 \ge V_2 \ge V_1 \ge V_C \ge MV 1 \ge MV_2 \ge V_{SSH}$ (=VSSL) The following voltages are example in case of Bias 1/13 to 8. Input externally symmetrical voltages against VC. <u>Bias 1/13 1/12 1/11 1/10 1/9 1/8</u> $V_2 \ 8.5/13 \cdot V_3 \ 8/12 \cdot V_3 \ 7.5/11 \cdot V_3 \ 7/10 \cdot V_3 \ 6.5/9 \cdot V_3 \ 6/8 \cdot V_3$ $V_1 \ 7.5/13 \cdot V_3 \ 7/12 \cdot V_3 \ 6.5/11 \cdot V_3 \ 6/10 \cdot V_3 \ 5.5/9 \cdot V_3 \ 5/8 \cdot V_3$ $V_C \ 6.5/13 \cdot V_3 \ 6/12 \cdot V_3 \ 5.511 \cdot V_3 \ 5/10 \cdot V_3 \ 4.5/9 \cdot V_3 \ 4/8 \cdot V_3$ $MV_1 \ 5.5/13 \cdot V_3 \ 5/12 \cdot V_3 \ 4.5/11 \cdot V_3 \ 3/10 \cdot V_3 \ 2.5/9 \cdot V_3 \ 2/8 \cdot V_3$	each 1					

5.2 System Bus Connection Pins

Pin name	I/O	Description	Number of pins				
D7 to D0	I/O	8-bit bi-directional data bus; connected to the standard 8-bit or 16-bit MPU data bus. When serial interface is selected ($P/S = LOW$), if chip select is inactive or the state of operation is other than reading or writing, D0 to D7 are set to High-impedance (Hi-Z).					
SI	I/O	Serial data input/output pin when the serial interface is selected ($P/S = LOW$) When serial interface is selected, read status is enabled, but read display data RAM is not enabled.	1				
SCL	Ι	Serial clock input pin when serial interface is selected ($P/S = LOW$). Data is read at the rising edge of clock.	1				
A0	I	The least significant bit (LSB) of the standard MPU address bus is connected and a distinction is made between data and command. A0 = HIGH : D0 to D7 is display data or command parameter. A0 = LOW : D0 to D7 is control command.	1				
RES	I	Setting RES to LOW resets the device. Reset operation depends on the signal level.	1				
CS	I	Chip select signal Active when \overline{CS} = LOW, enabling input or output of data/command. When \overline{CS} = HIGH, data bus are set to Hi-Z.	1				
RD (E)	I	 When MPU of the 80 series is connected. Active LOW This pin connects RD signal of 80 series MPU. Data bus enters a state of output while this signal is set to LOW. When MPU of the 68 series is connected. Active HIGH 					
WR (R/W)	I	 Becomes enable clock input pin of the 68 series MPU. When MPU of the 80 series is connected. Active LOW This pin connects the 80 series MPU signal. Signals on the data bus are latched at the trailing edge of Signal WR. When the 68 series MPU is connected: Becomes input pin of read/write control signal. R/W = HIGH : Read R/W = HIGH : Read 					
P/S	Ι	R/W = LOW : Write Select pin between parallel interface and serial interface P/S = HIGH : Parallel interface P/S = LOW : Serial Interface: Sets as shown in the table below depending on the state of P/S. P/S Data/Command Data Read/Write Serial clock HIGH A0 D0 to D7 \overline{RD} , \overline{WR} LOW A0 SI Write Read status When P/S = LOW, D0 to D7 are Hi-Z. For D0 to D7, it may be set to HIGH, LOW or open. However, set $\overline{RD}(E)$ and \overline{WR} (R/\overline{W}) to HIGH or LOW. When serial interface is selected, read status is enabled, but read display data RAM is not enabled.					

Pin name	I/O	Description					
C86	Ι	Pin for switching MPU interface. C86 = HIGH : 68 series MPU interface C86 = LOW : 80 series MPU interface When serial interface is selected, set to LOW.	1				
ERR	0	 Pin for monitoring the operating state of IC. ERR = LOW : Normal operating state ERR = HIGH : Initial state or error detection Becomes ERR = HIGH in the initial state following resetting. Becomes ERR = LOW after resetting. If a bit-flip occurs in the register which is part of internal logic because of external noise or similar reason, becomes ERR = HIGH. When ERR = HIGH, re-write all commands. After resetting, returns to WRR = LOW. At this time it is also recommended to re-write data to display data RAM. 					

5.3 Display Timing Signal Pins

Pin name	I/O				Description							
		Pin for selecting master/slave operation. Master operation outputs timing signal required for LCD display and slave operation inputs timing signal required for LCD display. This causes synchronization in LCD display system. M/S = HIGH : Master operation M/S = LOW : Slave operation Sets as shown in the table below depending on the state of M/S and CLS.										
M/S	I	M/S		cillation	CL	FR, DOF, F1, F2, SYNC	1					
		HIGH	-	nabled	Output	Output						
			-	isabled	Input	Output						
			LOW	-	isabled	Input	Input					
			LOW D	isabled	Input	Input						
CLS	I	CLS = H CLS = LC When CLS	IGH : Built-in DW : Built-in = LOW, disp	oscillation oscillation o lay clock is r or slave, s	t-in oscillation circuit fo circuit enabled sircuit disabled (externa input from the CL pin. et each CLS pin to the Master	al input)	1					
		Use o	f built-in osci			HIGH						
				External in		LOW	LOW					
CL	I/O	Display clock input/output pin. Sets as shown in the table below depending on the state of M/S and CLS. M/S CLS CL HIGH HIGH Output LOW Input LOW HIGH LOW Input To use this IC on master/slave, connect each CL pin.					1					

5. PIN DESCRIPTION

Pin name	I/O	Description	Number of pins
FR	I/O	Liquid crystal alternating-current signal input/output pin. M/S = HIGH : Output M/S = LOW : Input To use this IC on master/slave, connect each FR pin.	1
F1, F2, SYNC	I/O	Liquid crystal synchronization signal input/output pin. M/S = HIGH : Output M/S = LOW : Input To use this IC on master/slave, connect each F1, F2 or SYNC pin.	1 for each
DOF	I/O	Pin for controlling blanking of liquid crystal display. M/S = HIGH : Output M/S = LOW : Input To use this IC on master/slave, connect each DOF pin.	1

5.4 Liquid Crystal Drive Pins

Pin name	I/O	Description				
SEG0 to SEG223	0	Liquid crystal segment drive output pin. One level is selected from V2, V1, Vc, MV1, and MV2 by combining display RAM and FR, F1 and F2 signals.	224 in total			
COM0 to COM183	0	Liquid crystal common drive output pin. One level is selected from V ₃ , Vc, and VssL (= VssL) by combining scan data and FR, F1 and F2 signals.	184 in total			

5.5 Temperature Sensor Pins

Pin name	I/O	Description	Number of pins
SVD2	0	Temperature sensor analog voltage output pin.	1
SV22	0	Pin for testing temperature sensor. Sets to open.	1

5.6 Test Pins

Pin name	I/O	Description	Number of pins
TEST	I	Pin for testing IC chip. Set to LOW.	1
TEST2	0	Pin for testing IC chip. Set to open.	1
TEST3 to TEST17	Ι	Pin for testing IC chip. Set to open.	1

6. FUNCTIONAL DESCRIPTION

6.1 MPU Interface

6.1.1 Selecting Interface Type

This IC allows data transfer through 8-bit bi-directional data bus (D7 to D0) or serial data input (SI). Selecting HIGH or LOW for polarity of P/S pin allows selection of 8-bit parallel data input or serial data input as shown in Table 6.1.

Table 6.1

P/S	CS	A0	RD	WR	C86	SI	SCL	D7~D0
HIGH : Parallel input	CS	A0	RD	WR	C86	_	_	D7~D0
LOW : Serial input	CS	A0	_	_	—	SI	SCL	(HZ)

— : Set - to HIGH or LOW. HZ is in the state of high impedance.

6.1.2 Parallel interface

When parallel interface is selected (P/S = HIGH), setting the C86 pin to HIGH or LOW allows direct connection to the MPU bus of either 80 series or 68 series as shown in Table 6.2.

Table 6.2

C86	CS	A0	RD	WR	D7~D0
HIGH : 68 series MPU bus	CS	A0	E	R/W	D7~D0
LOW : 80 series MPU bus		A0	RD	WR	D7~D0

Data bus signal is identified by combination of A0, $\overline{RD}(E)$ and $\overline{WR}(R/\overline{W})$ as shown in Table 6.3.

Table 6.3

Common	68 series			Function	
A0	R/W	RD	WR	Function	
1	1	0	1	Display data reading, reads status.	
1	0	1	0	Status data writing, writes command parameter.	
0	0	1	0	Writes a command.	

6.1.3 Serial Interface

When serial interface is selected (P/S = LOW), the chip is active ($\overline{CS} = LOW$) and can accept serial data input (SI) and serial clock input (SCL). Serial interface is comprised of an 8-bit shift register and 3-bit counter. Serial data is captured from serial data input pin in order from D7, D6 to D0 on the rising edge of the serial clock and converted into 8-bit parallel data on the rising edge of the 8th serial clock and then processed.

Whether serial data input is display data, command parameter or command is determined by A0 input. For A0 = HIGH, display data or command parameter, for A0 = LOW, command. A0 input is read and determined on the 8xn-th rising edge of the serial clock after the chip goes into the active state.

Using the status read command enables read status and read data, respectively, even when serial interface is selected. However, it should be noted that the \overline{CS} signal is handled differently from the time of serial data input. Read from display data RAM is not enabled. Signal chart of serial interface is shown in Fig.6.1.

6. FUNCTIONAL DESCRIPTION

Fig.6.1 Signal Chart of Serial Interface

- * When the chip is inactive, the counter is reset to the initial state. Continuous serial clock input is possible, however, it is recommended to clear the counter by setting \overline{CS} = HIGH for every 8 bits of serial clock at the time of serial data input so that malfunction caused by external noise can be prevented. When reading serial data, continuously read data by entering serial clock from the SCL pin with the setting left \overline{CS} = LOW instead of setting \overline{CS} = HIGH after the read command. After getting the read data, to set \overline{CS} = HIGH is necessary.
- * For serial interface, read from display data RAM is not enabled.
- * For SCL signal, great care should be taken for wiring termination reflection and external noise. It is recommended to check operation using the actual equipment.

6.1.4 Chip Select

Since this IC has chip select pin, parallel interface or serial interface is enabled when $\overline{CS} = LOW$ is set. When the chip select is inactive, D0 to D7 are in the state of high impedance and input of A0, \overline{RD} , \overline{WR} , SI, and SCL is disabled. When serial interface is selected, shift register and counter are reset.

6.1.5 Accessing Display Data RAM and Internal Register

Since this IC is accessed as a kind of pipeline processing between LSIs via bus holder coming with internal data bus, wait time is not necessary if the cycle time is satisfied, enabling high-speed data transmission.

For example, if MPU writes data to display data RAM, data is temporarily held in the bus holder and written to the display data RAM by the next data write cycle. When MPU reads display data RAM, read data is held in the bus holder in the first data read cycle (dummy) and read on the system bus from the bus holder in the next data read cycle.

Therefore, read sequence of display data RAM is subject to constraints. In the data read immediately after the display data read command, the specified address data is not output (dummy read), but it is output at the 2nd data read session.

This relationship is shown in Fig.6.2.

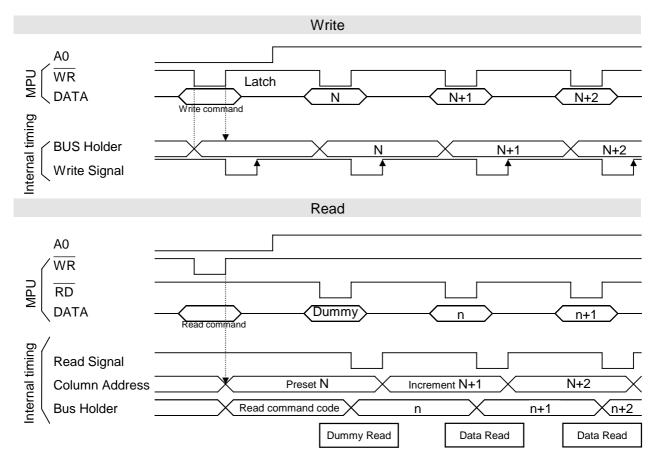


Fig.6.2 Read Sequence of Display Data RAM

6.2 Display Data RAM

6.2.1 Display Data RAM

This RAM for storing display dot data is comprised of $184 \times 224 \times 2$ bits. The desired bit is accessible by specifying page address and column address.

When 4 gray scales are selected with the set display mode command, the input display data is processed as a pair of 2 bits each. Combination is

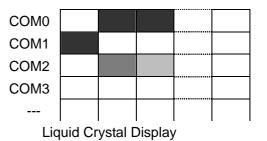
RAM bit data (higher bit, lower bit) = (D1, D0), (D3, D2), (D5, D4), (D7, D6)

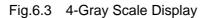
= (1, 1): Gray scale 3 Black (in normal display mode)= (1, 0): Gray scale 2= (0, 1): Gray scale 1= (0, 0): Gray scale 0 White (in normal display mode)

When RAM bit data is gray scales 1 and 2, gray scale display will be provided according to parameters of set gray scale pattern command.

When binary display is selected with the set display mode command, 1-bit of built-in RAM corresponds to 1 dot of pixel. When RAM bit data is "1", black display appears. When RAM data is "0", white display appears.

RAM bit data


"1": ON	Black (in normal display mode)
"0": OFF	White (in normal display mode)


Since display data D7 to D0 from MPU corresponds to the common direction of LCD as shown in Fig.6.3 and Fig.6.4, higher degree of freedom is achieved in configuring display with less constraints on display data transfer if the S1D15722 series is used for the multi-chip.

Read/write from MPU to RAM is performed via I/O buffer, which is controlled independently of liquid crystal drive RAM. Therefore, even if MPU makes an asynchronous access to RAM during liquid crystal display, it does not have an adverse effect on the display.

(D1, D0)	(0, 0)	(1, 1)	(1, 1)		(0, 0)		
(D3, D2)	(1, 1)	(0, 0)	(0, 0)		(0, 0)		
(D5, D4)	(0, 0)	(1, 0)	(0, 1)		(0, 0)		
(D7, D6)	(0, 0)	(0, 0)	(0, 0)		(0, 0)		
Dicplay Data BAM							

Display Data RAM

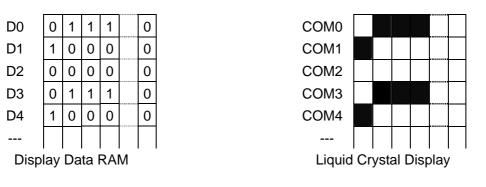


Fig.6.4 Binary Display

6.2.2 Gray Scale Display

When 4-gray scale is displayed with the set display mode command, the display is expressed by controlling FRM (frame gray scale) based on the gray scale data written to the display data RAM.

Density of gray level (gray scale 2, gray scale 1) of four gray scales is specified with the set gray scale pattern command. The density of gray scale can be selected from 14 levels.

6.2.3 Page Address Circuit/Column Address Circuit

Use the set page address command and set column address command to specify display data RAM address to be accessed as shown in Fig.6.5 and Fig.6.6.

The address increment direction can be selected between the column direction and page direction using the select display data input direction command. In both directions, an increment by +1 takes place following read or write operation.

When the address increment direction is column, the column address increments by +1 each time read or write operation takes place. After the column address has made an access to DFH, the page address increments by +1 and the column address moves to 0H.

When the address increment direction is page, the page address increments with the column address fixed. After the page address has made an access to Page45, the column address increments by +1 and the page address moves to Page0.

In both address increment directions, moves to the page address Page0 and the column address 0H after an access to the column address DFH of the page address Page 45 is made.

As shown in Table 6.4, the correspondence between the column address of the display data RAM and segment output can be reversed with the direction of setting column address command. Therefore, IC arrangement comes to be less restricted when the LCD module is assembled.

[Direction of setting column address Command register value	Correspondence between RAM column address and SEG output			
	Command register value	SEG0	\rightarrow	SEG223	
D0 = "0"	Column address: normal rotation	0(H)	\rightarrow	DF(H)	
D0 = "1"	Column address: reversal	DF(H)	\leftarrow	0(H)	

Table 6.4

6.2.4 Line Address Circuit

For the line address, specify the line address corresponding to the COM output when the display data RAM is displayed as shown in Fig.6.5 and Fig.6.6. Normally, specify the top line on display (in the state of common output .. for normal rotation, COM0 output, for inverted, COM183 output) using the set display start line command. The display area corresponds to the lines specified in the incremental direction from the specified display start line address to the line address, using the number of display lines set command.

The display start line address is set every four lines of display. Dynamically changing the line address using the set display start line command enables screen scrolling and page turning.

6.2.5 I/O Buffer Circuit

Bi-directional buffer for reading or writing display data RAM from the side of MPU. Since read or write of display data RAM from the side of MPU is controlled independently of data output from the display data RAM to the display data clutch circuit, an asynchronous access made to the display data RAM during crystal liquid display does not have an adverse effect on display, including flickering.

6.2.6 Display Data Latch Circuit

The display data latch circuit is a latch for temporarily storing data to be output to the liquid crystal drive circuit from the display data RAM. Since the display normal/inverted, display ON/OFF, and display full lighting ON/OFF commands control data in this latch, data in the display data RAM will not change.

6. FUNCTIONAL DESCRIPTION

	Pa	ae A	ddre	ess		Data	Ī				4-	Grav	/ Scale D	ispla	av				1	Line	Sta	ate of commor	СОМ
D5	D4				D0				Wh	nen t			ay start lir			to 1	OН			Address	no	output: ormal rotation	Output
0	0	0	0	0	0	D1,D0 D3,D2 D5,D4 D7,D6							Page 0							00H 01H 02H 03H			COM0 COM1 COM2 COM3
0	0	0	0	0	1	D1,D0 D3,D2 D5,D4 D7,D6							Page 1							04H 05H 06H 07H			COM4 COM5 COM6 COM7
0	0	0	0	1	0	D1,D0 D3,D2 D5,D4 D7,D6							Page 2							08H 09H 0AH 0BH	101 lince		COM8 COM9 COM10 COM11
0	0	0	0	1	1	D1,D0 D3,D2 D5,D4 D7,D6							Page 3							0CH 0DH 0EH 0FH			COM12 COM13 COM14 COM15
0	0	0	1	0	0	D1,D0 D3,D2 D5,D4 D7,D6							Page 4							10H 11H 12H 13H	•		COM16 COM17 COM18 COM19
0	0	0	1	0	1	D1,D0 D3,D2 D5,D4 D7,D6							Page 5							14H 15H 16H 17H	St	art	COM20 COM21 COM22 COM23
[-									
1	0	1	1	0	0	D1,D0 D3,D2 D5,D4 D7,D6							Page 44							B0H B1H B2H B3H			COM176 COM177 COM178 COM179
1	0	1	1	0	1	D1,D0 D3,D2 D5,D4 D7,D6							Page 45							B4H B5H B6H B7H			COM180 COM181 COM182 COM183
							B3	B2	B1	BO	AF	AE		05	04 DB	03 DC	02 DD	01 DE	00 DF	1 0 D0 D0	Normal/ inverted	Column Address	
							SEGO	SEG1	SEG2	SEG3	SEG4	SEG5		SEG198	SEG199	SEG220	SEG221	SEG222	SEG223	LCD	Out		

Fig.6.5 4-Gray Scale Display

6. FUNCTIONAL DESCRIPTION

D5		ge A D3			D0	Data	1			W	′her	ר th	e di	hary Displ ay start lin	-	se	t to	0Cł	4					Line Address	Stat outp		common	COM Output
0	0	0	0	0	0	D0 D1 D2 D3 D4 D5 D6 D7								 Page 0										00H 01H 02H 03H 04H 05H 05H	norr	nal rot	tation	COM0 COM1 COM2 COM3 COM4 COM5 COM6
0	0	0	0	0	1	D0 D1 D2 D3								Page 1										05H 06H 07H 08H 09H 0AH 0AH 0BH 0CH				COM5 COM6 COM7 COM9 COM10 COM11 COM12
0	0	0	0	1	0	D4 D5 D6 D7 D0 D1 D2 D3 D4																		00H 00H 00FH 10H 11H 12H 13H 14H		Start		COM12 COM13 COM14 COM15 COM15 COM16 COM17 COM18 COM19 COM20
						D5 D6 D7 D0 D1 D2 D3																		15H 16H 17H 18H 19H 14H				COM21 COM22 COM23 COM24 COM25 COM25
0	0	0	0	1	1	D4 D5 D6 D7 D0 D1																		18H 1CH 1DH 1EH 1FH 20H 21H 22H 23H 23H 24H 24H		184 lines		COM27 COM28 COM29 COM30 COM31 COM32 COM33 COM34 COM35
0	0	0	1	0	0	D2 D3 D4 D5 D6 D7 D7 D7 D1 D2								Page 4										24H 25H 26H 27H A8H A9H AAH		18		COM36 COM37 COM38 COM39 COM39
0	1	0	1	0	1	D3 D4 D5 D6 D7 D0								Page 21										ABH ACH ADH AEH AEH				COM171 COM172 COM173 COM174 COM175
0	1	0	1	1	0	D2 D3 D4 D5 D6 D7 D7 D0 D1								0										80H 81H 82H 83H 84H 85H 85H 86H 87H 87H 88H 89H			/	COM178 COM179 COM180 COM181 COM182 COM182
0	1	0	1	1	1	D2 D3 D4 D5 D6 D7								Page 23										BAH BBH BCH BDH BEH BEH BFH				
0	1	1	0	0	0	D0 D1 D2 D3 D4 D5 D6 D7								Page 24										C0H C1H C2H C3H C4H C5H C5H C6H C7H			J	
1	0	1	1	0	0	D0 D1 D2 D3 D4 D5 D6 D7								Page 44										160H 161H 162H 163H 164H 164H 165H				
1	0	1	1	0		D7 D1 D2 D3 D4 D5 D5 D6 D7								Page 45										167H 168H 169H 16AH 16BH 16CH 16CH 16DH 16DH	- - - - -			
							SEG0 DF 00 SEG1 DE 01	DD	DC	SEG4 DB 04	SEG5 DA 05	SEG6 D9 06	SEG7 D8 07		<u>.</u>	SEG216 07 D9	SEG217 06 D9	SEG218 05 DA	SEG219 04 DB	SEG220 03 DC	SEG221 02 DD	SEG222 01 DE	SEG223 00 DF		Out Normal/ inverted	Column	Address	

Fig.6.6 Binary Display

6.3 Oscillation Circuit

This CR-type oscillator generates internal clocks and display clocks. The oscillation circuit is enabled only when set to M/S = HIGH and CLS = HIGH. Oscillation starts following input of the built-in oscillation circuit ON command.

When set to CLS = LOW, oscillation stops and display clock is input from the CL pin.

6.4 Display Timing Signal Generator

Based on the built-in oscillation circuit or external clock, display timing signals (FR, SYNC, F1, F2, CL, and DOF) are generated.

The FR normally generates 2-frame alternating drive system drive waveform to the liquid crystal drive circuit. FR normally generates. Setting data a for the n-line inverted drive register generates n-line inversion alternating drive waveform for each $4 \times (a+1)$ line. When the display quality such as cross talk presents a problem, it may be improved by using the n-line inverted alternating drive. Determine the number of lines n for AC drive through actual liquid crystal display.

When this IC is shared by multiple chips, supply the display timing signals (FR, SYNC, F1, F2, CL, and DOF) to the slave from the master and synchronize the master and the slave.

The state of FR, SYNC, F1, F2, CL, and DOF is shown in Table 6.5.

Table 6.5

	Operating Mode	CL	FR, SYNC, F1, F2, DOF
Master (M/S = HIGH)	Built-in oscillation circuit enabled (CLS = HIGH)	Output	Output
	Built-in oscillation circuit disabled (CLS = LOW)	Input	Output
Slave (M/S = LOW)	Built-in oscillation circuit enabled (CLS = HIGH)	Input	Input
Slave ($\frac{101}{5} = LOVV$)	Built-in oscillation circuit disabled (CLS = LOW)	Input	Input

6.5 Operating State Detector Circuit

This circuit detects an error if the state of a specific command register was changed because of excessive external noise. The circuit can determine the state at the level output from the pin ERR or read the state from the data bus using the read status command.

Relationship between the output level from the pin ERR and the internal state is shown in Table 6.6.

Table 6.6

Output	Descriptions
LOW	Error was not detected.
HIGH	Bit-flip occurred in part of the command register.

When the level is set to HIGH, display operation may not be normal because of bit-flip in the command register. Monitor the level of the pin ERR or execute the read status command regularly to check the operating state of the IC. When an error is detected, reset all the commands. It is also recommended to rewrite to all the bits of the display data RAM concurrently with the above operation.

This circuit detects specific error modes. It does not support all command registers. For command registers to be supported and expanded information, see 7.1 Command Description (30) Read Status. The initial state after resetting is ERR = HIGH. This function is enabled after resetting.

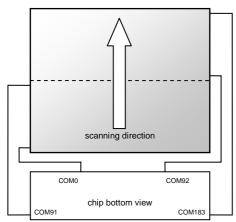
6.6 Liquid Crystal Drive Circuit

6.6.1 Segment Driver

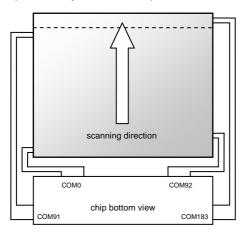
This SEG output circuit selects from five values of V2, V1, VC, MV1 and MV2 using the driver control signal determined by the decoder and outputs them.

6.6.2 Common Driver

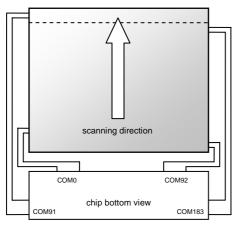
This COM output circuit selects from three values of V3, VC and VSSH using the driver control signal determined by the decoder and outputs them.

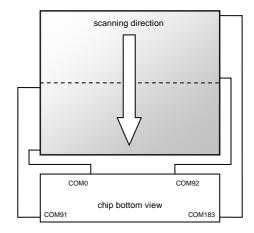

This IC can set the COM output scanning direction and select normal drive or interlace drive using the select common output status command (See Table 6.7.). Therefore, IC arrangement comes to be less restricted when the LCD module is assembled.

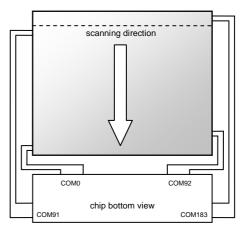
Status	Drive system	COM scanning direction
State 1	Normal drive/normal scan direction	$COM(0,1,2,3) \rightarrow COM(4,5,6,7) \rightarrow \cdots$
State 1	Normal unve/normal scan direction	\rightarrow COM(176,177,178,179) \rightarrow COM(180,181,182,183)
State 2	Normal drive/invert scan direction	$COM(183,182,181,180) \rightarrow COM(179,178,177,176) \rightarrow \cdots$
Otate 2	Normal drive/invent scan direction	\rightarrow COM(7,6,5,4) \rightarrow COM(3,2,1,0)
	Interlace drive pattern A	$COM(0,1,2,3) \rightarrow COM(92,93,94,95)$ (
State 3	(Scanning start position: COM0)	(COM(44,45,46,47) (COM(136,137,138,139) (···
	- Normal scan direction	(COM(88,89,90,91) (COM(179,181,182,183)
	Interlace drive pattern A	COM(183,182,181,180) (COM(91,90,89,88) (···
State 4	(Scanning start position: COM183)	(COM(139,138,137,136) (COM(47,46,45,44) (···
	 Invert scan direction 	(COM(95,94,93,92) (COM(3,2,1,0)
	Interlace drive pattern B	COM(92,93,94,95) (COM (0,1,2,3) (···
State 5	(Scanning start position: COM92)	(COM(136,137,138,139) (COM(44,45,46,47) (…
	 Normal scan direction 	\rightarrow COM(179,181,182,183) \rightarrow COM (88,89,90,91)
	Interlace drive pattern B	$COM(91,90,89,88) \rightarrow COM (183,182,181,180) \rightarrow \cdots$
State 6	(Scanning start position: COM91)	(COM(47,46,45,44) (COM(139,138,137,136) (···
	 Invert scan direction 	(COM(3,2,1,0) (COM((95,94,93,92)


Table 6.7

* Four lines in parentheses () indicate those of COM to be selected at a time.


State 1: Normal drive/normal rotation of scanning direction (Scan start position: COM0)


State 3: Interlace drive pattern A/ normal rotation of scanning direction (Scan start position: COM0)


State 5: Interlace drive pattern B/ normal rotation of scanning direction (Scan start position: COM92)

State 2: Normal drive/inverted scanning direction (Scan start position: COM183)

State 4: Interlace drive pattern A/ inverted scanning direction (Scan start position: COM183)

State 6: Interlace drive pattern B/ inverted scanning direction (Scan start position: COM91)

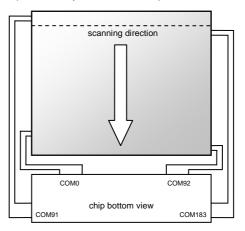


Fig. 6.7 Relationship between Select Common Output Status Command and LCD Panel Connection

6.7 Temperature Sensor Circuit

This IC incorporates the temperature sensor circuit that consists of analog voltage output that changes on the temperature gradient of -5.06 mV/°C (typ.). Liquid crystal display of appropriate contrasting density is available in the wide temperature range by inputting the electronic volume register value according to the temperature sensor output value from MPU and controlling the liquid crystal display voltage V₃.

6.7.1 Analog Voltage Output

Inputting the temperature sensor ON command causes the analog voltage to be output from the SVD2 pin, which varies according to the temperature. To control liquid crystal drive voltage with higher accuracy, configure the system which can reduce variations in output voltage by allowing the MPU to give the feedback of values of the output voltage sampled under certain temperature and store them as reference voltage.

6.7.2 Precautions

(1) Noise influence

The temperature sensor circuit operates in the SV22 voltage generated in the regulator operating in the VDI system which is IC's logic operating voltage. The circuits of the SV22 voltage are configured so that steady variations in the VDI power supply system do not have an effect on them. However, if logic is operated at high speed for writing to RAM, for example, power supply noise may be caused in the VDI voltage and the SV22 voltage may also be influenced similarly.

To perform temperature detection accurately, be sure to stop access from the MPU when capturing the temperature sensor output and comply with operating conditions specified at the AC timing.

(2) Influence of mounting

The temperature sensor circuit analog output SVD2 is specified using the output voltage value for the IC's board potential Vss. When measuring the SVD2 potential in the actual system, attention should be paid to the relationship between the IC's board potential and the system ground's potential.

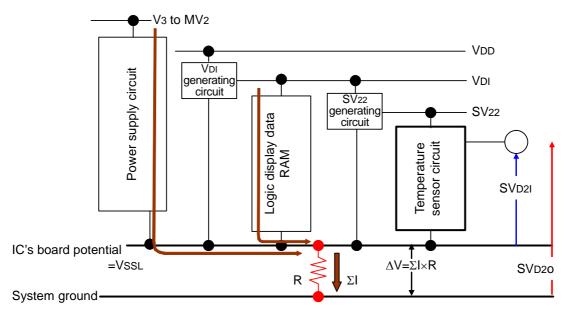


Fig.6.8 Influence of Resistance R between System Ground and Vss

If there is a resistance component R between the system ground and IC's Vss pin, the IC's board potential Vss viewed from the system ground experiences fall of potential of

$$\Delta V = \sum I \times R$$
 (where $\sum I$: IC is the total amount of the current consumed by IC)

Therefore, the temperature sensor output (Fig.6.22: SVD20) viewed from the system ground is also influenced similarly. That is, ΔV has an impact on the temperature sensor output (Fig.6.22: SVD21) viewed from the IC's VDD defined in the specifications.

To eliminate the impact of ΔV as much as possible, adopt the design and usage with consideration given to three points below:

- Decrease the resistance value between the system ground and IC's Vss pin as low as possible, including ITO resistance when mounting COG.
- Measure the temperature sensor output voltage with the current consumed by IC reduced as much as possible by placing the IC in the power-saving mode.
- Minimize the impact caused by the IC's external circuits by leaving the system to be used under certain temperature and allowing the system to store the SVD2 voltage measured while operating the system as the reference voltage.

6.8 Reset Circuit

When the $\overline{\text{RES}}$ input reaches LOW, this IC enters the state of initial settings. The state of initial settings is as follows:

- 1 Display: OFF
- 2 Display: normal rotation
- 3 Full display lighting: OFF
- 4 Common output state: normal drive, scanning direction in normal rotation
- 5 Display start line: set on the 1st line
- 6 Page address: set to page 0.
- 7 Column address: set to address 0.
- 8 Display data input direction: column direction
- 9 Column address direction: normal rotation
- 10 n line alternating inverted drive: Off (inverted drive for each frame)
- 11 n line inverted drive register: (D5, D4, D3, D2, D1, D0) = (0, 0, 0, 0, 0, 0)
- 12 Display mode: 4-gray scale display
- 13 Gray scale pattern register: (D7, D6, D5, D4, D3, D2, D1, D0) = (0, 1, 0, 1, 0, 0, 1, 0)
- 14 FRM pallet: Pallet 0
- Display line number set register: (D5, D4, D3, D2, D1, D0) = (1, 0, 1, 1, 0, 1) (184 lines) start point (block) register: (D5, D4, D3, D2, D1, D0) = (0, 0, 0, 0, 0, 0) (COM0 ~ COM3)
 *: COM output state: Normal drive, Normal scan direction.
- 16 Read-modify-write: OFF
- 17 Built-in oscillation circuit: stop
- 18 Clock frequency register: (D3, D2, D1, D0) = (0, 1, 0, 0)
- 19 TEST1 register: (D7, D6, D5, D4, D3, D2, D1, D0) = (0, 0, 0, 0, 0, 0, 0, 0)
- 20 Discharge: ON (at the $\overline{\text{RES}}$ = LOW level only)
- 21 Power-saving: reset (OFF)
- 23 Data in the register in the serial interface: clear
- 24 Temperature sensor: OFF
- 25 MLS drive select register: (D4, D3) = (0, 1) (N-line frame inversion overlap OFF,

Non-dispersive drive)

When the power is turned on, this circuit requires initialization using the $\overline{\text{RES}}$ pin. After being initialized by the pin, each input pin should be controlled successfully.

If the impedance of the control signal from the MPU is high, an over current may flow into the IC. After power is turned on, remedies for high impedance of input pin must be prescribed.

This IC discharges VOUT1 to VSSL, and VOUT2, V20, VOUT3 and liquid crystal drive voltages V3, V2, V1, VC, MV1, and MV2 to VSSH at the $\overline{\text{RES}}$ pin = LOW level. Prevent the VSSL and VSSH from being high impedance during discharge. When using the external power supply for liquid crystal drive, do not supply external power but set high impedance during the pin $\overline{\text{RES}}$ = LOW to prevent shorting in the external power supply and VSSH and apply the specified voltage after canceling reset.

7. COMMAND

This IC identifies data bus signal by combination of A0, $\overline{RD}(E)$, and $\overline{WR}(R/\overline{W})$. Since the command is interpreted and executed at the internal timing only without relying on the external clock, high-speed processing is possible.

For the 80 series MPU interface, entering low pulse in the $\overline{\text{RD}}$ pin during read and low pulse in the pin during write starts the command. When HIGH is entered in the R/W pin, the 68 series MPU interface goes into the state of read. When LOW is entered, it goes into the state of write. Entering high pulse in the E pin starts the command (For timing, see 10. TIMING CHARACTERISTICS.) Consequently, the 68 series MPU interface is different from the 80 series MPU interface in the point that $\overline{\text{RD}}(E)$ becomes "1(H)" during display data read in the command description and command table. Command description is shown below by taking the 80 series MPU interface as an example.

When serial interface is selected, sequentially input data from D7.

7.1 Command Description

(1) Display ON/OFF

This command allows specification of display ON/OFF. Liquid crystal display is performed in synchronization with display clock input from the built-in oscillation circuit or external source. Do not stop clock frequency input from the built-in oscillation circuit or external source during display ON.

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0	Output level
0	1	0	1	0	1	0	1	1	1	0 1	Display OFF Display ON

* After resetting by the $\overline{\text{RES}}$ pin, the display is set to OFF.

(2) Display normal/inverted

This command allows inversion of display lighting/non-lighting without rewriting display data RAM. At this time the contents of the display data RAM are held.

	Е	R/W									
A0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	Setting
0	1	0	1	0	1	0	0	1	1	0	RAM data HIGH
											LCD ON voltage level
											(normal display)
										1	RAM data LOW
											LCD ON voltage level
											(inverted display)

* After resetting by the $\overline{\text{RES}}$ pin, the display is set to normal display.

(3) Full display lighting ON/OFF

This command allows to forcefully place full display in the state of lighting irrespective of the contents of the display data RAM. At this time the contents of the display data RAM are held. In combination with the invert the display command, all-white display is also available.

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0	Setting
0	1	0	1	0	1	0	0	1	0	0 1	State of normal display Full display lighting

* After resetting by the $\overline{\text{RES}}$ pin, the full display lighting is set to OFF.

(4) Select common output state

This command allows selection of the scanning direction of the COM output pin. For more information, see 6.6.2 Common Driver in FUNCTIONAL DESCRIPTION.

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0	Command
0	1	0	1	1	0	0	0	1	0	0	Mode set
1	1	0	*	*	*	*	*	P2	P1	P0	Register set

Note: An asterisk (*) denotes invalid bit.

Note: After resetting by the $\overline{\text{RES}}$ pin, it is set to normal drive/normal scanning direction.

P2 Normal/interlace drive switching	P1 Interlace A/B switching	P0 Scanning normal/inverte d switching	Status
0	0	0	Normal drive, normal scanning direction
0	0	1	Normal drive, inverted scanning direction
1	0	0	Interlace drive pattern A/normal scanning direction
1	0	1	Interlace drive pattern A/inverted scanning direction
1	1	0	Interlace drive pattern B/normal scanning direction
1	1	1	Interlace drive pattern B/inverted scanning direction

(5) Set display start line

With the parameter following this command, specify the display start line address of the display data RAM shown in Figs.6.5 and 6.6.

The display area appears in the incremental direction of the line address from the specified line address. Dynamically changing the line address using this command allows lengthwise screen scrolling and page turning. For more information, see 6.2.4 Line Address Circuit in FUNCTIONAL DESCRIPTION.

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0	Command
0	1	0	1	0	0	0	1	0	1	0	Mode set
1	1	0	*	P6	P5	P4	P3	P2	P1	P0	Register set

Note: An asterisk (*) denotes invalid bit.

Set display start line/set register

The display start line address can be set every four lines of display. The address range that can be specified in the 4-gray scale display in the display mode differs from that in the binary display.

Relationship between the register value with the set register and line address is shown below.

(I) In the 4-gray scale display mode

P6	P5	P4	P3	P2	P1	P0	Line address
*	0	0	0	0	0	0	00H (4 × 0)
*	0	0	0	0	0	1	04H (4 × 1)
		``	L				\downarrow
*	1	0	1	1	0	0	B0H (4 × 44)
*	1	0	1	1	0	1	B4H (4 × 45)

Note: After resetting by the $\overline{\text{RES}}$ pin, the line address is set to 00H. Note: An asterisk (*) denotes invalid bit.

Note: Register setting at (1, 0, 1, 1, 1, 0) or higher is not allowed.

(II) In the binary display mode

P6	P5	P4	P3	P2	P1	P0	Line address
0	0	0	0	0	0	0	00H (4 × 0)
0	0	0	0	0	0	1	04H (4 × 1)
		`	L				\downarrow
0	1	0	1	1	0	0	B0H (4 × 44)
0	1	0	1	1	0	1	B4H (4 × 45)
		、	L				\downarrow
1	0	1	1	0	1	0	168H (4 × 90)
1	0	1	1	0	1	1	16CH (4 × 91)

Note: After resetting by the $\overline{\text{RES}}$ pin, the line address is set to 00H. Note: Register setting at (1, 0, 1, 1, 1, 0, 0) or higher is not allowed.

Sequence of setting display start line

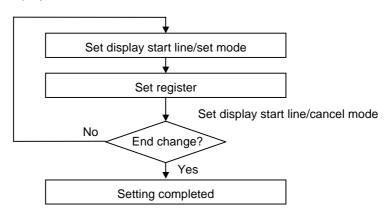


Fig.7.1 Sequence of Setting Display Start Line

(6) Set page address

This command specifies the page address that corresponds to the row address when making an access to the display data RAM shown in Figs.6.5 and 6.6 from the side of MPU.

For more information, see 6.2.3 Page Address Circuit/Column Address Circuit in FUNCTIONAL DESCRIPTION.

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0	Command
0	1	0	1	0	1	1	0	0	0	1	Set mode
1	1	0	*	*	P5	P4	P3	P2	P1	P0	Set register

Note: An asterisk (*) denotes invalid bit.

Relationship between the register value with set register and page address is shown below.

P5	P4	P3	P2	P1	P0	Page address
0	0	0	0	0	0	00H (Page 0)
0	1	0	0	1	1	01H (Page 1)
			、	L I		\downarrow
1	0	1	1	0	0	2CH (Page 44)
1	0	1	1	0	1	2DH (Page 45)

Note: After resetting by the $\overline{\text{RES}}$ pin, the address is set to 00H. Note: Register setting at (1, 0, 1, 1, 1, 0) or higher is not allowed.

(7) Set column address

This command specifies the column address of the display data RAM shown in Figs.6.5 and 6.6. For more information, see 6.2.3 Page Address Circuit/Column Address Circuit in FUNCTIONAL DESCRIPTION.

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0	Command
0	1	0	0	0	0	1	0	0	1	1	Set mode
1	1	0	P7	P6	P5	P4	P3	P2	P1	P0	Set register

Relationship between the register value with the set register and column address is shown below.

P7	P6	P5	P4	P3	P2	P1	P0	Column address
0	0	0	0	0	0	0	0	00H
0	0	0	0	0	0	0	1	01H
0	0	0	0	0	0	1	0	02H
			``	L				\downarrow
1	1	0	1	1	1	1	0	DEH
1	1	0	1	1	1	1	1	DFH

Note: After resetting by the $\overline{\text{RES}}$ pin, the address is set to the column 00H. Note: Register setting at (1, 1, 1, 0, 0, 0, 0, 0) or higher is not allowed.

(8) Write display data

This command allows writing 8-bit data to the specified address of the display data RAM. Using the select display data input direction after writing automatically increments the column address or page address by 1. So MPU can write data on display continuously.

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	0	0	0	1	1	1	0	1
1	1	0				Write	e data			

(9) Read display data

This command allows reading 8-bit data from the specified address of the display data RAM Using the select display data input direction after reading automatically increments the column address or page address by 1. So MPU can read data of multiple words continuously.

Immediately setting the column address or page address, one-shot dummy read is required. For more information, see 6.1.5 Description of Access to Display Data RAM and Internal Register. When serial interface is used, the display data RAM cannot be read.

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	0	0	0	1	1	1	0	0
1	0	1				Read	l data			

(10) Select display data input direction

This command allows setting of the direction of automatic increment of the display RAM address. For more information, see 6.2.3 Page Address Circuit/Column Address Circuit in FUNCTIONAL DESCRIPTION.

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0	Direction
0	1	0	1	0	0	0	0	1	0	0 1	Column Page

Note: After resetting by the RES pin, the direction is set to column.

(11) Direction of setting column address

This command allows reversal of correspondence between the column address of the display RAM data shown in Figs.6.5 and 6.6 and segment driver output. Therefore, the order of the segment driver output pins can be reversed using the command.

The column address is incremented by +1 according to the column address in Figs.6.5 and 6.6 as display data is written and read. For more information, see 6.2.3 Page Address Circuit/Column Address Circuit in FUNCTIONAL DESCRIPTION.

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0	Setting
0	1	0	1	0	1	0	0	0	0	0 1	Normal Reversal

Note: After resetting by the $\overline{\text{RES}}$ pin, the direction is set to normal of setting the column address.

(12) Set n line inverted drive register

This command allows setting the number of inverted lines of the liquid crystal AC drive and starting of the line inverting drive. The number of lines that can be set is 4 to 184 (45 states for 4 lines each). For more information, see 6.4 Display Timing Signal Generator in FUNCTIONAL DESCRIPTION.

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0	Command
0	1	0	0	0	1	1	0	1	1	0	Set mode
1	1	0	*	*	P5	P4	P3	P2	P1	P0	Set register

Note: An asterisk (*) denotes invalid bit.

Relationship between the register value with set register and the number of inverted lines is shown below.

P5	P4	P3	P2	P1	P0	Number of inverted lines
0	0	0	0	0	0	4 (1 × 4)
0	0	0	0	0	1	8 (2 × 4)
		\downarrow				\downarrow
1	0	1	1	0	0	180 (45 × 4)
1	0	1	1	0	1	184 (46 × 4)

Note: After resetting by the $\overline{\text{RES}}$ pin, the number of inverted lines is set to 4. Note: Register setting at (1, 0, 1, 1, 1, 0) or higher is not allowed.

(13) n line inverted drive ON/FF

This command allows ON/OFF of the n line inverted drive.

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0	N line inverted drive
0	1	0	1	1	1	0	0	1	0	0	OFF
										1	ON

Note: After resetting by the $\overline{\text{RES}}$ pin, the n line inverted drive is set to OFF.

(14) Set display mode

This command allows setting of the normal display mode. Structure of display data RAM in the 4-gray scale display differs from that in the binary display. For more information, see 6.2 Display RAM FUNCTIONAL DESCRIPTION.

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0	Command
0	1	0	0	1	1	0	0	1	1	0	Set mode
1	1	0	*	*	*	*	*	*	P1	P0	Set register

Note: An asterisk (*) denotes invalid bit.

Relationship between the register value with set register and display mode is shown below.

P1	P0	Display mode
0	0	4-gray scale display
0	1	Binary display

Note: After resetting by the $\overline{\text{RES}}$ pin, the display is set to 4-gray scale.

(15) Set gray scale pattern

This command allows setting of the density of gray scale.

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0	Command
0	1	0	0	0	1	1	1	0	0	1	Set mode
1	1	0	P7	P6	P5	P4	P3	P2	P1	P0	Set register

Select the density of (P7, P6, P5, P4): gray scale bit (1,0).

Select the density of (P3, P2, P1, P0): gray scale bit (0, 1).

For the gray scale pattern, one state can be selected from 14 states of gray level. Register value with set register, density of gray scale, and setting range are shown below.

Density of	G	ray scal	e bit (1,	0)	Gi	ray scal	e bit (0,	1)	Setting range	
gray level	P7	P6	P5	P4	P3	P2	P1	P0	(1,0)	(0,1)
Level 1 (light)		Setting of	disabled		0	0	0	1		
	0	0	1	0	0	0	1	0	A	I T
	0	0	1	1	0	0	1	1		
	0	1	0	0	0	1	0	0		
\downarrow		:				:				
	1	0	1	1	1	0	1	1		
	1	1	0	0	1	1	0	0		
	1	1	0	1	1	1	0	1		•
Level 14 (dark)	1	1	1	0		Setting	disabled	1	•	_

Note: Set so that the density of gray scale bits (1, 0) and (0, 1) will not be reversed. Note: After resetting by the RES pin, the density is set to gray scale bit (1,0): (0, 1, 0, 1) and gray scale bit (0, 1): (0, 0, 1, 0).

(16) Select FRM Pallet

This command is used to switch FRM pattern group (pallet).

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0	Command
0	1	0	1	1	1	1	1	1	1	0	Set mode
1	1	0	*	*	*	*	*	*	*	P0	Set register

Note: An asterisk (*) denotes invalid bit.

Relationship between the register value with the set register and pallet is shown below.

P0	Pallet
0	Pallet 0
1	Pallet 1

Note: After resetting by the $\overline{\text{RES}}$ pin, the number is set to Pallet 0.

Density of	Set register value with the set gray	De	nsity
gray level	scale pattern command	Pallet 0	Pallet 1
Level 1 (light)	01h	1 / 10 = 10%	1 / 6 = 17%
Level 2	02h	1 / 7 = 14%	1 / 5 = 20%
Level 3	03h	1 / 5 = 20%	1 / 4 = 25%
Level 4	04h	1 / 4 = 25%	1 / 3 = 33%
Level 5	05h	3 / 10 = 30%	2 / 5 = 40%
Level 6	06h	3 / 8 = 38%	3 / 7 = 43%
Level 7	07h	3 / 7 = 43%	2 / 4 = 50%
Level 8	08h	2 / 4 = 50%	4 / 7 = 57%
Level 9	09h	4 / 7 = 57%	3 / 5 = 60%
Level 10	0Ah	5 / 8 = 63%	2 / 3 = 67%
Level 11	0Bh	2 / 3 = 67%	5 / 7 = 71%
Level 12	0Ch	3 / 4 = 75%	3 / 4 = 75%
Level 13	0Dh	5 / 6 = 83%	4 / 5 = 80%
Level 14 (dark)	0Eh	9 / 10 = 90%	5 / 6 = 83%

Relationship between density of gray level setting with the set gray scale pattern command and pallet is shown below.

(17) Set display lines

This command allows change of display lines. Setting the start point (block) displays in the desired location on the panel (continuous COM pin in 4 lines).

Be sure to set both parameters continuously, because this command uses both parameters of the display lines and start point (block) in a pair.

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0	Command
0	1	0	0	1	1	0	1	1	0	1	Set mode
1	1	0	*	*	P15	P14	P13	P12	P11	P10	Display lines Set register
1	1	0	*	*	P25	P24	P23	P22	P21	P20	Set start point Set register

Note: An asterisk (*) denotes invalid bit.

Set display line register

The number of display lines can be set from 4 to 184 in steps of 4 lines. Adjust the crystal liquid drive voltage that attains optimal display contrast by adjusting to the change of the number of display lines.

Relationship between the register value with set register and the number of display lines is as follows:

P15	P14	P13	P12	P11	P10	Number of display lines
0	0	0	0	0	0	4
0	0	0	0	0	1	8
		\downarrow				\downarrow
1	0	1	1	0	0	180
1	0	1	1	0	1	184

Note: After resetting by the $\overline{\text{RES}}$ pin, the number is set to 184 lines. Note: Register setting at (1, 0, 1, 1, 1, 0) or higher is not allowed.

Set start point (block) register

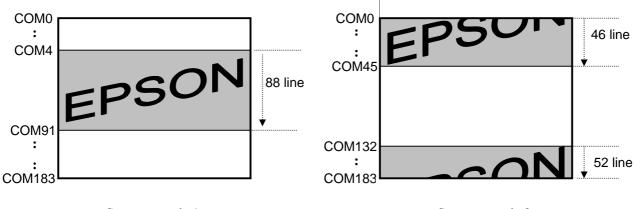
Setting 8-bit data in the start point (block) register with this parameter takes one block out of 45 start point blocks. To scroll display, use (5) Set display start line command instead of this command.

P25	P24	P23	P22	P21	P20	Set sta	art point
						Common Output State: Normal Drive, Normal scan direction	Common Output State: Normal Drive, Reverse scan direction
0	0	0	0	0	0	0 (COM0~3)	45 (COM183~180)
0	0	0	0	0	1	1 (COM4~7)	44 (COM179~176)
0	0	0	0	1	0	2 (COM8~11)	43 (COM175~172)
		\downarrow				\downarrow	\downarrow
1	0	1	1	0	0	44 (COM176~179)	1 (COM7~4)
1	0	1	1	0	1	45 (COM180~183)	0 (COM3~0)

* After reset by RES pin, the start point is below.

•Common output state: Normal driving, Normal scan direction, Block 0.

* Prohibit (1, 0, 1, 1, 1, 0) or upper value.


[Setup example of set the number of display line command]

Setup example 1: Select common output state: normal drive, normal scanning direction

When the display is set to 88 lines and the start point is to 1 (COM4 to 7), the display of 88 lines appears from COM4.

Setup example 2: Select common output state: normal drive, normal scanning direction

When the display is set to 88 lines and the start point is to 33 (COM132 to 135), the display of 88 lines appears from COM132. COM183 is followed by COM0.

Setup example 1

Setup example 2

Fig.7.2 Image of Correspondence between COM Output and the Number of Display Lines

(18) Read-modify-write

This command is used with the end command in a pair. Once this command is input, the column address will not be changed with the read display data command but incremented by +1 only with the write display data. This state is held until the end command is input.

Inputting the end command returns the column address to the address at the time of inputting the read-modify-write command. This function lessens the load from MPU when repeatedly changing data in the specific display area like blinking cursor.

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	1	1	0	0	0	0	0

The command other than read/write display command can be used even in the read-modify-write mode. The page address set command and column address set command.

Sequence of cursor display

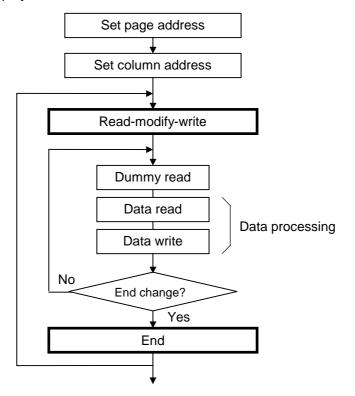


Fig.7.3 Sequence of Cursor Display

(19) End

This command clears the read-modify-write mode and returns the page address and column address to the initial address of the mode.

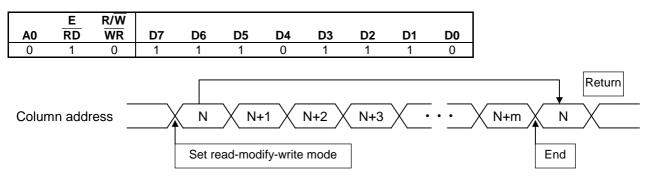


Fig.7.4 Addressing During Read-Modify-Write

(20) Built-in oscillation circuit ON/OFF

This command starts operation of the built-in oscillation circuit. This command is enabled on when the master operation (M/S = HIGH) and built-in oscillation circuit enabled (CLS = HIGH).

The liquid crystal display circuit operate in synchronization with the built-in oscillation circuit. To turn off the built-in oscillation circuit, stop the built-in power supply circuit and liquid crystal display circuit using the set power control command and display OFF command and then discharge the capacitor using the discharge ON command.

	E	R/W				_	_		_	_	Built-in oscillation
A0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	circuit
0	1	0	1	0	1	0	1	0	1	0	OFF
										1	ON

(21) Select clock frequency

This command sets the dividing ratio of the internal clock fCL to the built-in oscillation circuit frequency fOSC. Enabled only when the built-in oscillation circuit is ON.

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0	Command
0	1	0	0	1	0	1	1	1	1	1	Set mode
1	1	0	*	*	*	*	P3	P2	P1	P0	Set register

Note: An asterisk (*) denotes invalid bit.

Relationship between the register value with the set register and internal clock frequency when the built-in oscillation circuit is used is as follows:

P3	P2	P1	P0	Internal clock frequency		Frame freque	ency ffr [Hz]	
				fc∟ [kHz]	184 lines	160 lines	128 lines	96 lines
0	0	0	0	80.0	217	250	313	417
0	0	0	1	71.1	193	222	278	370
0	0	1	0	64.0	174	200	250	333
0	0	1	1	58.2	158	182	227	303
0	1	0	0	53.3	145	167	208	278
0	1	0	1	49.2	134	154	192	256
0	1	1	0	45.7	124	143	179	238
0	1	1	1	42.7	116	133	167	222
1	0	0	0	40.0	109	125	156	208
1	0	0	1	35.6	97	111	139	185
1	0	1	0	32.0	87	100	125	167
1	0	1	1	29.1	79	91	114	152
1	1	0	0	26.7	72	83	104	139
1	1	0	1	24.6	67	77	96	128
1	1	1	0	22.9	62	71	89	119
1	1	1	1	21.3	58	67	83	111

Target value

* After resetting by the $\overline{\text{RES}}$ pin, it is set to (0, 1, 0, 0).

* Indicates the typical value at 25°C.

(22) Discharge ON/OFF

This command allows the capacitor connected to the power supply circuit to be discharged, which is required for the following instances.

• When turning off the system power supply VDD-VSS

• When changing the number of display lines

See (4) When changing the number of display lines and (5) Power supply OFF in 7.3 Setup Example of Instructions (Reference Example).

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0	Setting
0	1	0	1	1	1	0	1	0	1	0 1	Discharge OFF Discharge ON

*: Set to discharge ON during reset by the $\overline{\text{RES}}$ pin and set to discharge OFF after clearing reset.

This command short-circuits each liquid crystal drive voltages to VSSH with switching elements. Be sure to execute this command after turning off the external power supply to avoid possible breakdown caused by over current.

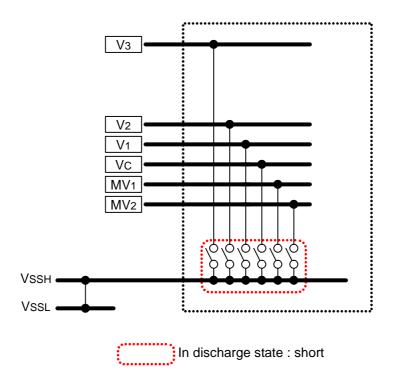


Fig.7.5 Location of Switching Elements for Discharge

(23) Power-saving

This commands places the IC in the power-saving mode. When all operations of the LCD system are stopped and there is no access from the MPU, current consumption can be reduced to the value close to static current.

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0	Power-saving mode
0	1	0	1	0	1	0	1	0	0	0	OFF
										1	ON

*: After resetting by the $\overline{\text{RES}}$ pin, it is set to power-saving OFF.

In the power-saving condition, display data and operating state before starting power save command is held and display data RAM is accessible from MPU.

The power save OFF command is used to cancel the power-saving condition and reset to the state prior to starting power save command.

- In the power-saving mode,
- The built-in oscillation circuit is stopped.
- All the liquid crystal drive circuits are stopped (Vc level is output from all SEG/COM.)
- The temperature sensor circuit and VDI generation circuit operate.

It is recommended to stop the function of the external power supply circuit when starting the power save function. For example, if each level of the liquid crystal drive voltage is provided in the external resistive division circuit, it is recommended to add a circuits that cuts current flowing into the resistive division circuit when starting the power save function. It is recommended to quit the power saving-state, goes power-saving OFF after turing the external power circuit ON and stabilized it.

Power-save ON/OFF sequence

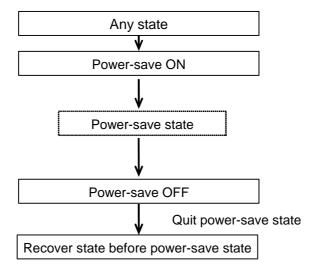


Fig.7.6 Power-save ON/OFF sequence

* In power-save state, it is recommended to stop external power supply circuit. For example, in case of input LCD Bias voltages by external ladder resistances, it is recommended to add cut-off circuit to the ladder resistances. To recover from power-save state to normal state, quit power-save state after external power supply circuit ON and stable.

(24) Read status

This command allows detection of bit error of the specific command register, caused by excessive external noise or the like.

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0	Command
0	1	0	1	0	0	0	1	1	1	0	Set mode
1	0	1	*	*	*	*	*	*	*	P0	Register read

: An asterisk () denotes invalid bit.

Description of the register value P0 that were read is given below:

Results of reading	Description
LOW	Error not detected.
HIGH	A bit-flip of part of the command register occurred, which could be a cause of disabled normal display. Re-execute all the commands.

The commands that support error detection of the register are

- Display ON/OFF
- Built-in oscillation circuit ON/OFF
- Full display lighting ON/OFF
- Display normal/inverted
- TEST1 set

The five commands above can be used to detect an error when a bit-flip occurred in any of the specified registers. When those five commands are executed and operated normally, LOW is output.

When the IC is placed in the reset condition because of external noise or the like, it can also be detected as an error. So the register PO will be set to HIGH after resetting by a pin. Therefore, in normal operation sequence, the above five commands must be set in the register again before executing read status.

7. COMMAND

For example, even if the built-in oscillation circuit is not used, execute the "built-in oscillation circuit OFF command". Perform read status after executing all the five commands above (for the function not to be used, execute the OFF command).

This command is used to conduct self-check on a specific error mode, but not used to detect all errors. Even if the result of read status is "normal" because of an influence of excessive external noise, it could have gone into malfunction mode of some sort that is not detected by this command. It is recommended to refresh the state regularly instead of relying on the result of read status. Moreover, garbled bit data of display data RAM may have been caused when an error was detected. So it is also recommended to refresh the data of the display data RAM.

Since the register P0 level is output from the pin ERR, the operating state can be checked without executing a command. For ERR output operating conditions and precautions, conform to the above read status command.

(25) Temperature sensor ON/OFF

This command allows specification of the temperature sensor ON/OFF. For more information, see 6.10 Temperature Sensor Circuit in FUNCTIONAL DESCRIPTION.

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0	Command
0	1	0	0	1	1	0	1	0	0	0 1	Temperature sensor OFF Temperature sensor ON

*: After resetting by the $\overline{\text{RES}}$ pin, the temperature sensor is set to OFF.

Setting the temperature sensor to ON is no problem when the temperature sensor is not use. However, operating current of the temperature sensor is steadily consumed.

The temperature sensor circuit is controlled independently of the power save command. To reduce current consumption during power saving, set the temperature sensor to OFF using this command.

(26) Select MLS drive

This command is used for selecting the MLS drive and method of AC drive. It should be selected according to display quality on actual display patterns.

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0	Command
0	1	0	1	1	1	0	0	1	1	1	Set mode
1	1	0	0	0	0	P4	P3	0	1	1	Set register.

P4	P3	-	-	-	MLS drive
0	-	-	-	-	N-line/frame inversion overlap OFF
1	-	-	-	-	N-line/frame inversion overlap ON
-	0	-	-	-	Dispersion drive
-	1	-	-	-	Non-dispersion drive

*: After resetting by the $\overline{\text{RES}}$ pin, it is set to N-line frame in version overlap OFF and non-dispersion drive.

• N-line frame inversion overlap ON / OFF

This function is controlled by parameter P4. It is valid only in "n-line inverted drive ON".

It may cause dark / light stripes on the display due to occur AC drive deflection depend on combination of number of display lines and number of n-line inverted drive. This function reduces the AC drive defledction therefore reduce the dark / light stripes.

• Dispersion / Non-dispersion drive

This function is controlled by parameter P3. The S1D15722 uses 4 line MLS drive method, and common

EPSON

output pins output 4 lines of select-signal at once, 4 times / 1frame.

When non-dispersion drive is selected, the common outputs output select-signal 4 times continuously. If display content is changed frequently, it is recommended to use the non-dispersion drive.

When dispersion drive is selected, the common outputs output select-signal 4 times dispersively in one frame. The dispersion drive can get higher contrast than non-dispersion drive in theory, however the dispersion drive may cause a flicker in case to display moving pictures.

Anyway, it is recommended to decide above both functions ON/OFF after evaluate display quality totally like as flicker, crosstalk and so on, with actual display patterns.

Optimum frame frequency may be changed depend on these function ON/OFF, therefore display quality evaluation with various frame frequency is also recommended. Frame frequency can be changed by "Select clock frequency" command or external clock frequency.

(27) NOP

Command for Non-Operation.

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	1	1	0	0	0	1	1

(28) TEST1

Command for IC chip testing. Do not use. If this command is executed, the IC goes into test mode. If the IC goes into test mode by mistake, execute the NOP command to clear test mode.

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0	Command
0	1	0	0	0	1	0	0	1	0	1	Set mode
1	1	0	0	0	0	0	0	0	0	0	Set register

*: It is set to (0,0,0,0,0,0,0,0) after reset by RESET pin.

(29) TEST2

Command for IC chip testing. Do not use. If this command is executed, the IC goes into test mode. If the IC goes into test mode by mistake, execute the NOP command to clear test mode.

۸0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	БО
AU				-	-		-	02	וט	00
0	1	0	1	1	1	1	0	*	*	*
0	1	0	1	1	1	1	1	1	1	1

Command Set mode Set register

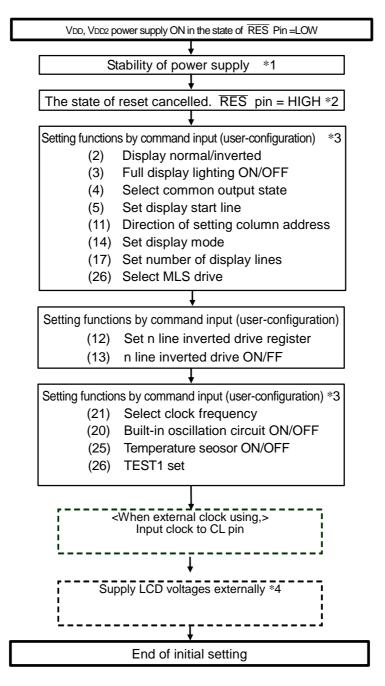
: An asterisk () denotes invalid bit.

(30) TEST3

Command for IC chip testing. Do not use. If this command is executed, the IC goes into test mode. If the IC goes into test mode by mistake, execute the NOP command to clear test mode.

A0	E RD	R/W WR	D7	D6	D5	D4	D3	D2	D1	D0	Command
0	1	0	1	0	0	0	1	1	1	1	Set mode

7.2 Command Table


Table 7.1

				Сс	omm	and	Cod	le				
Command	A0	RD	WR	D7	D6			D3	D2	D1	D0	Function
(1) Display ON/OFF	0	1	0	1	0	1	0	1	1	1	0 1	LCD ON/OFF 0: OFF, 1: ON
(2) Display normal/inverted	0	1	0	1	0	1	0	0	1	1	0 1	LCD normal/inverted 0: Normal, 1: Inverted
(3) Full display lighting ON/OFF	0	1	0	1	0	1	0	0	1	0	0 1	Full display lighting 0: Normal display, 1: Full ON
(4) Select common output state	0	1 1	0 0	1	1	0	0	0	1 Out	0 put s	0 state	Selects COM output method.
(5) Set display start line	0	1 1	0	1 *	0	0 Displ	0 av st	1 tart li	0	1 ddres	0	Sets the display start line.
(6) Set page address	0	1 1 1	0	1 *	0	1	1	0	0	0	1	Sets the display RAM page address.
(7) Set column address	0	1 1 1	0	0	0	0 Sot (1	0	addre 0	1	1	Sets the display RAM column address.
(8) Write display data	0	1	0	0	0	0	1	1	ddres 1	0	1	Writes to display RAM.
(9) Read display data	1	1	0	0	0	0	1	<u>e dat</u> 1 d dat	1	0	0	Reads to display RAM.
(10) Select display data input direction	0	0 1	1 0	1	0	0	0 0	d dat 0	1	0	0 1	Display RAM data input direction 0: Column direction, 1: Page direction
(11) Direction of setting column address	0	1	0	1	0	1	0	0	0	0	0 1	Supports SEG output of the display RAM column address 0: Normal, 1: Inverted
(12) Set n line inverted drive register	0	1 1	0 0	0 *	0 *	1 Nu	1 umbe	0 erofi	1 inver	1 ted li	0 nes	Set the number of lines of n line inverted drive
(13) n line inverted drive ON/FF	0	1	0	1	1	1	0	0	1	0	0 1	n line inverted drive ON/FF 0: OFF, 1: ON
(14) Set display mode	0 1	1 1	0 0	0 *	1 *	1 *	0 *	0 *	1 *	1 Mo	0 ode	Select 4-gray scale display/binary display 00: 4-gray scale, 01: binary
(15) Set gray scale patterr	0	1 1	0 0	0	0	1 Gra	1 v sca	1 ale p	0 atteri	0 n	1	Selects the density of the gray scale bits (1,0), (0,1)
(16) Select FRM Pallet	0 1	1 1	0 0	1 *	1 *	1 *	1 *	1 *	1 *	1 *	0 PL	Selects FRM Pallet PL=0: Pallet 0 PL=1: Pallet 1
(17) Oct display line	0	1	0	0 *	1 *	1	0	1	1	0	1	Sets the number of display lines and
(17) Set display line	1	1 1	0 0	*	*	N			aispi t poir	lay lir nt	ies	start address.
(18) Read-modify-write	0	1	0	1	1	1	0	0	0	0	0	Increments the column address. When writing: +1, when reading: 0
(19) End	0	1	0	1	1	1	0	1	1	1	0	Cancels read-modify-write
(20) Built-in oscillation circuit ON/OFF	0	1	0	1	0	1	0	1	0	1	0 1	Operation of the built-in CR oscillation circuit 0: OFF, 1: ON
(21) Select clock frequence	y 0 1	1 1	0 0	0 *	1 *	0 *	1 *	1 Fre	1 quer	1 וכע v	1 alue	Sets the dividing ratio of the internal clock frequency fosc.
(22) Discharge ON/OFF	0	1	0	1	1	1	0	1	0	1	0 1	Discharges the capacitor connected to the power supply circuit 0: OFF, 1:ON
(23) Power save ON/OFF	0	1	0	1	0	1	0	1	0	0	0 1	Power save 0: OFF, 1: ON
(24) Read status	0	1 0	0 1	1 *	0 *	0 *	0 *	1 *	1 *	1 *	0	Outputs the result of detecting bit error to ERR bus
(25) Temperature sensor ON/OFF	0	1	0	0	1	1	0	1	0	0	0	Operation of the temperature sensor 0: OFF, 1: ON

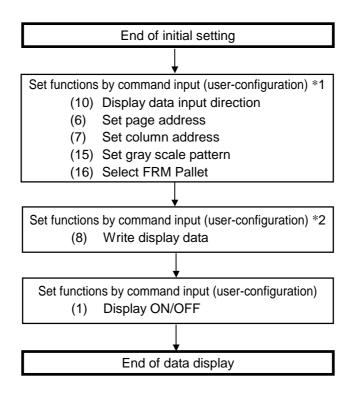
				Сс	omm	and	Cod	le				
Command	A0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	Function
(26) Select MLS drive	0	1	0	1	1	1	0	0	1	1	1	P4/ N-line frame inv. Overlap 0:OFF 1:ON
	1	1	0	0	0	0	P4	P3	0	1	1	P3/ 0: Dispersion, 1: Non-dispersion
(27) NOP	0	1	0	1	1	1	0	0	0	1	1	Command for Non-Operation.
(20) TEST1	0	1	0	0	0	1	0	0	1	0	1	Command for testing IC chip.
(28) TEST1	0	1	0	0	0	0	0	0	0	0	0	(Prohibit)
	0	1	0	1	1	1	1	0	*	*	*	Command for testing IC chip.
(29) TEST2	0	1	0	1	1	1	1	1	1	1	1	(Prohibit)
(30) TEST3	0	1	0	1	0	0	0	1	1	1	1	Command for testing IC chip. (Prohibit)

7.3 Example of Setting Instructions (Reference Example)

(1) Initial setting

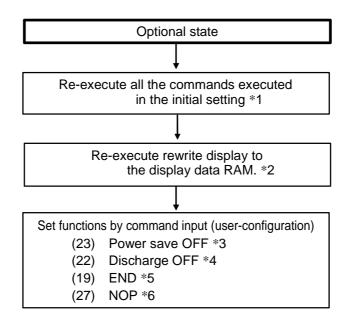
Numbers in parentheses correspond to those in the item of command description.

*1: Consideration must be given to the wait time until the internal generation VDI voltage is stabilized. The wait time varies with external circuit, depending on the capacity between VDI and Vss. Therefore, evaluate and set with sufficient margin.


Reference: When VDD = 5V and VDI stabilizing capacity at 4.7 μ F, the wait time = 5 mS.

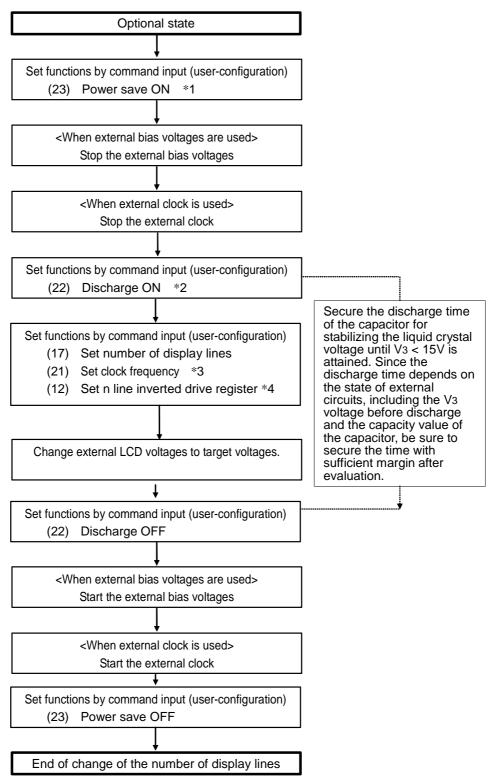
(The wait time is inversely proportional to the VDD voltage, but proportional to the VDI stabilizing capacity.)

- *2: The contents of the display data RAM are undefined even in the state of initial setting following reset.
- *3: Execute the OFF command when performing initial setting and refreshing even if it is set to non-use of each function, so that a recovery can be made from a sudden change of internal state resulted from excessive external noise.

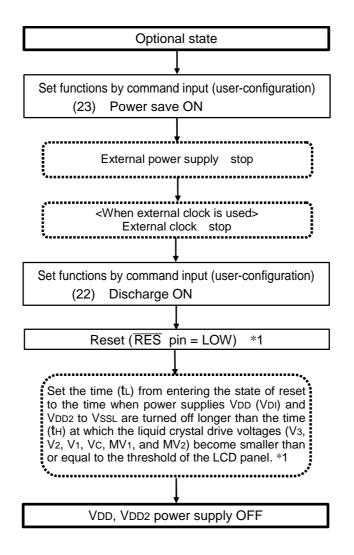

Likewise, for the command used for setting the register value, reset the register when performing initial setting and refreshing even if default values after reset are used as they are.

- *4: LCD voltages (V3 to MV2) are sure to supply all at the same timing.
- (2) Data display

- *1 Reset the register when performing initial setting and refreshing even if it is set to use default values as they are, so that a recovery can be made from a sudden change of internal state resulted from excessive external noise.
- *2 The contents of the display data RAM are undefined after completion of initial setting. Write data all the display data RAMs to be used for display.


(3) Refresh

This IC holds the operating state by a command, however, it may change the internal state when excessive external noise enters. Measures are required to prevent noise generation or influence in terms of mounting and the system itself. To provide for a sudden, excessive external noise, it is recommended to refresh the operating state and the contents of display regularly.


- *1: (1) Initial setting reference
- *2: (2) Data display reference
- *3: When the IC chip enters the power-saving mode, the power save OFF command can be used to exit.
- *4: When the IC chip goes into power-saving mode, the discharge OFF command can be used to exit.
- *5: When the IC chip goes into read-modify-write mode, the end command can be used to exit.
- *6: When the IC chip goes into test mode, the NOP command can be used to exit.

(4) When changing the number of display lines

- *1: When the number of liquid crystal display lines is changed, the liquid crystal drive voltage from which optimal contrast is obtained changes. To avoid the problem of the display, for example, the display turns black for an instant, place in the power save mode in the above sequence and turn off the display once. Then set to obtain the optimal liquid crystal drive voltage before displaying again.
- *2: To change the liquid crystal drive voltage, discharge the capacitor for holding the voltage once.
- *3: Set to the number of frame frequency that won't cause display problem such as a flicker.
- *4: Set to the number of n line inversions that won't cause display problem such as a flicker.

(5) Power supply OFF

This IC controls the circuits of the liquid crystal drive power supply system in the VDD, VDD2 to VSSL, and VSSH power supply circuits. If VDD, VDD2 to VSSL, and VSSH power supplies are cut off with the voltage remaining in the liquid crystal drive power supply system, the voltage that is not controlled will be output from the SEG and COM pins, which could cause display problem. Be sure to follow the above power supply OFF sequence.

*1: The threshold voltage of the LCD panel 1[V] serves as an index. Prevent VDD and VDD2 from becoming high impedance during discharge (reset).

8. ABSOLUTE MAXIMUM RATINGS

If not specified, particularly, VSSL = VSSH = 0V

Table 8.1

Item	Symbol	Standard value	Unit
Power supply voltage (1)	Vdd	-0.3 to +6.0	V
Power supply voltage (2)	VDD2	VDD to +6.0	
Power supply voltage (3) during external input	VDI	-0.3 to +4.0	
Power supply voltage (4)	V3	-0.3 to +42.0	
Power supply voltage (5)	V2, V1, VC, MV1, MV2	-0.3 to V3	
Input voltage	Vin	-0.3 to VDD+0.3	
Output voltage	Vo	-0.3 to VDD+0.3	
Operating temperature	Topr	-40 to +90	°C
Storage temperature Bare chip	TSTR	-55 to +125	

1: For the V3, V2, V1, VC, MV1 and MV2 voltages, be sure to satisfy the following conditions: $V_3 \ge V_2 \ge V_1 \ge V_C \ge MV_1 \ge MV_2 \ge V_{SSL}$, VSSH.

2: The use of IC exceeding the absolute maximum rating can cause permanent damage to the IC. During normal operation, electrical characteristics conditions should be observed. Failure to do so can cause malfunction of the IC and have adverse effect on the reliability of IC.

9. DC CHARACTERISTICS

If not specified, particularly: VSSL, VSSH = 0V, VDD = $5.0V \pm 10\%$, Ta = - 40 to 90°C

lter	m	Symbol	Con	ditions	Sta	ndard va	lue	Unit	Applicable
nei	11	Symbol	Con		Min.	Тур.	Max.	Unit	pin
Operating voltage (1)	Operable	Vdd			3.0		5.5	V	Vdd *1
Operating voltage (2)	Operable	Vdd2	VDD2 —				5.5		Vdd2
Operating voltage (3)	Operable	Vdi	during slave Ta=25°C	external input	_	2.85			Vdi
Operating voltage (4)	Operable	V3			15.0	—	25.0		V3 *2
High level input voltag	e	VIHC	VDD=3.0V to	5.5V	0.8xVdd	_	Vdd		*3
Low level input voltage	e	VILC			VSSL	—	0.2xVdd		*3
High level output volta	ge	Vонс	Vdd=3.0V	Іон=-25μА	0.8xVdd		Vdd		*4
Low level output voltage	ge	Volc	to 5.5V	Iol= 25μA	VSSL	—	0.2xVdd		*4
Input leak current		Iu	VIN=VDD or V	'ss	-1	_	1	μA	*5
Output leak current		Ilo			-1	_	1		*6
Liquid crystal driver O	N resistance	Ron	Ta=25°C	V3= 15.0V	—	2.0	6.0	kΩ	SEGn
				V3= 25.0V	—	0.6	3.0		COMn *7
Static power consump	tion	Iddq	Ta=25°C	Vdd = 3.0V	-	0.3	3	μA	Vdd *8
		lзq		V3 = 16.0V	—	0.3	3		V3
Input pin capacitance		CIN	Ta=25°C, f=	1MHz	-	4	12	pF	—
Oscillation frequency	Built-in oscillation	fosc	Ta = 25°C at maximum frequency		608	640	672	kHz	*9
	External input	fclo			_	—	160		

Table 9.1

[References marked with an asterisk (*)]

- *1 The IC operations are not guaranteed when rapid voltage fluctuations are observed during access from MPU.
- *2 For operating voltage range of VDI series and V3 series, see Fig.9.4.
- *3 A0, D0 to D7, SCL, SI, $\overline{\text{RD}}(\text{E})$, $\overline{\text{WR}}(\text{R}/\overline{\text{W}})$, $\overline{\text{CS}}$, CLS, CL, FR, F1, F2, SYNC, M/S, C86, P/S, $\overline{\text{DOF}}$, $\overline{\text{RES}}$, TEST pins
- *4 D0 to D7, FR, DOF, CL, F1, F2, SYNC, ERR, SI TEST2 pins
- *5 A0, $\overline{\text{RD}}(\text{E})$, $\overline{\text{WR}}(\text{R}/\overline{\text{W}})$, CLS, M/S, C8<u>6</u>, P/S, RES, SCL, TEST pins
- *6 Apply when D0 to D7, SI, CL, FR, DOF, F1, F2, SYNC, ERR TEST2 pins are in the state of high impedance.
- *7 Resistance value when the voltage of 0.1 V is applied between output pin SEGn or COMn and each power supply pin (V3, V2, V1, VC, MV1, MV2, VSSH).
- $Ron = 0.1V/\Delta I$ (where ΔI is current flowing when 0.1 V is applied between power supply On.)
- *8 Current value at VSIS = LOW
- *9 For relationship between the oscillation frequency and the frame frequency, see Table 9.7. The internal oscillation items indicates manufacturing variations in the built-in oscillation circuit while the external input item indicates the maximum operability.

9.1 Dynamic Current Consumption Value

9.1.1 When in normal operation.

Current value consumed by the entire IC at $T_a = 25[^{\circ}C]$ when the external power supply is use.

• Display mode 4-gray scale, $f_{FR} = 80$ Hz, no n line inversion, 1/13 bias, non-dispersion drive

Table 9.2	Display all white
-----------	-------------------

	Booster			Standa	rd value			
VDD	magnification	V3 voltage	1/184	Duty	1/132	Duty	Unit	Remarks
	magnification		Тур.	Max.	Тур.	Max.		
5V	—	20	125	210	112	190	μA	*10
3V	—	20	110	185	100	170		

Table 9.3	Display Heavy Load Pattern
-----------	----------------------------

	Booster			Standa	rd value			
Vdd	magnification	V3 voltage	1/184	4Duty	1/132	Duty	Unit	Remarks
	magnification		Тур.	Max.	Тур.	Max.		
5V	—	20	159	265	140	235	μΑ	*11
3V	—	20	148	250	130	220		

• Display mode binary, $f_{FR} = 80$ Hz, no n line inversion, 1/13 bias, non-dispersion drive

	Booster			Standa	rd value			
Vdd	magnification	V3 voltage	1/184	Duty	1/132	Duty	Unit	Remarks
	magnification		Тур.	Max.	Тур.	Max.		
5V	—	20	133	225	114	190	μΑ	*10
3V	—	20	117	195	100	170		

Table 9.4 Display all white

Table 9.5	Display Heavy Load Pattern
-----------	----------------------------

	Booster			Standa	rd value			
Vdd	magnification	V3 voltage	1/184	Duty	1/132	Duty	Unit	Remarks
	maynincation		Тур.	Max.	Тур.	Max.		
5V	_	20	210	350	167	280	μA	*11
3V	_	20	200	335	159	265		

[References marked with an asterisk (*)]

*10 The built-in oscillation circuit is used and "0" is written to all the bits of the display data RAM and displayed. Current consumed by a single IC. Current related to LCD panel capacity and wiring capacity is not included. Applicable when no access is made from MPU.

*11 The built-in oscillation circuit is used and display data that makes current consumption maximum is written and displayed. Current consumed by a single IC. Current related to LCD panel capacity and wiring capacity is not included. Applicable when no access is made from MPU.

9.2 Current Consumption in the Power-saving Mode

• $VDD = 5V, Ta = 25^{\circ}C$

Table 9.6

ltem	Symbol	Conditions	S	tandard valu	е	Unit	Remarks
nem	Symbol	Conditions	Min.	Тур.	Max.	Unit	Remarks
Sleep state	IDDS1	VDIS= HIGH	—	36	72	μΑ	_
		VDIS= LOW	_	0.3	3		

9.3 Reference Data

9.3.1 When in normal operation.

• VDD = 5.0 V, Display mode 4-gray scale, $f_{FR} = 100$ Hz, no n line inversion, 1/13 bias, non-dispersion drive, $T_a = 25^{\circ}C$.

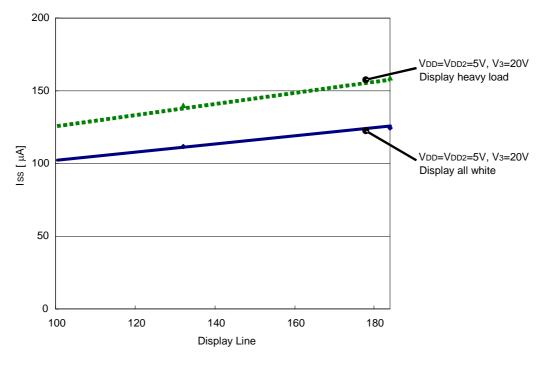


Fig.9.1

• VDD = 5.0 V, Display mode binary, $f_{FR} = 100$ Hz, no n line inversion, 1/13 bias, non-dispersion drive, $T_a = 25^{\circ}C$.

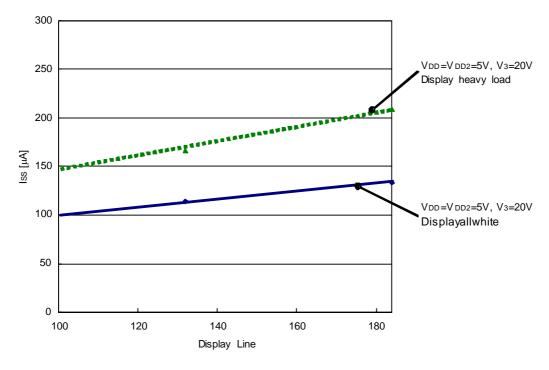
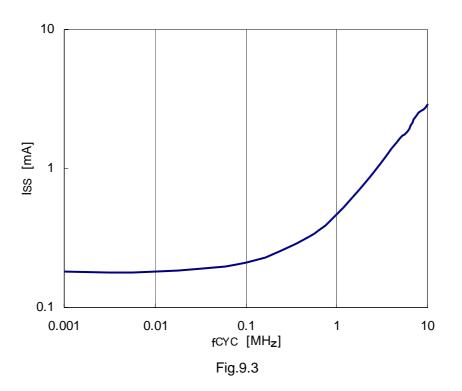



Fig.9.2

9. DC CHARACTERISTICS

9.3.2 During MPU access

• Current consumption by a single IC when the display heavy load pattern is written in fCYC. VDD = 5V, V3 = 25V, FR = 100 Hz, no n line inversion, built-in power supply OFF, 1/13 bias, non-dispersion drive, display ON, $Ta = 25^{\circ}C$.

9.3.3 Operating Voltage Rage of VDI Series and V3 Series

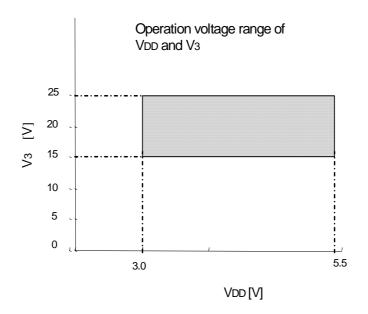


Fig.9.4

9.3.4 Liquid Crystal Frame Frequency frR

• When the number of display lines is set to 1

Table 9.7

Item	Display clock frequency fc∟	Frame frequency frR
Built-in oscillation circuit is used.	See command#21.	$f_{\rm cl}/2$
Built-in oscillation circuit is not used.	External input (fcL)	$f_{FR} = \frac{CL/I}{I}$

• 2 CL clock correspond to 1 common line scanned period.

• Frame frequency indicates the frequency that rewrites 1 frame, but it does not indicate a signal (= a cycle of AC drive) from the FR pin.

9.4 Temperature Sensor Characteristics

9.4.1 Analog Voltage Output Characteristics

Item	Symbol	Conditions	St	andard val	ue	Unit	Applicable
nem	Symbol	Conditions	Min.	Тур.	Max.	Unit	pin
Operating Voltage range	Vsv		3.0	_	5.5	V	Vdd *16
Operating temperature range	Ta	-	-40	—	90	°C	
Temperature accuracy	Тасса	TBD to TBD°C	-5	—	+5	°C	SVD2 *12, *13
Output voltage	VSVD2	-40°C	1.490	1.467	1.444	V	SVD2
		25°C	1.185	1.160	1.136		*12, *13
		90°C	0.857	0.831	0.805		
Output voltage temperature gradient	Vgra	*14	_	-5.06	—	mV/°C	SVD2 *12, *13
Output voltage setup time	t sen	*15	100			ms	SVD2 *12, *15
Operating current	ISEN	25°C		100	250	μA	Vdd *16

Table 9.8

[References marked with an asterisk (*)]

*12: To obtain an accurate output voltage value, it should be noted that current path and capacity must not be provided between the SVD2 and VDD, VDI, VDD2.

*13: The curve of the sensor analog output voltage SVD2 is approximated by the following expression.

$$V_{SVD2} = -2.641 \times 10^{-6} \bullet T^2 - 4.763 \times 10^{-3} \bullet T + 1.281[V]$$
 (Expression 9.1)

The accuracy is ± 5 °C at -40 to 90 °C.

*14: It is temperature gradient of VSVD2 output approximation strait line. Accuracy of analog sensor output is caliculated as following.

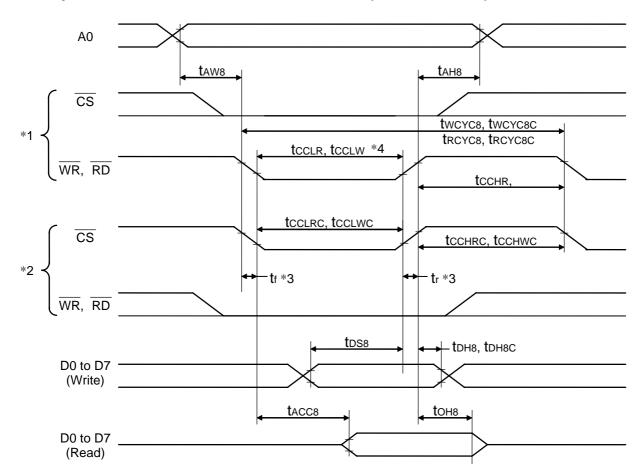

 $\Delta V_{SVD2} = \pm (5.06 \times 5) \cong \pm 25 [mV]$

Fig.9.5

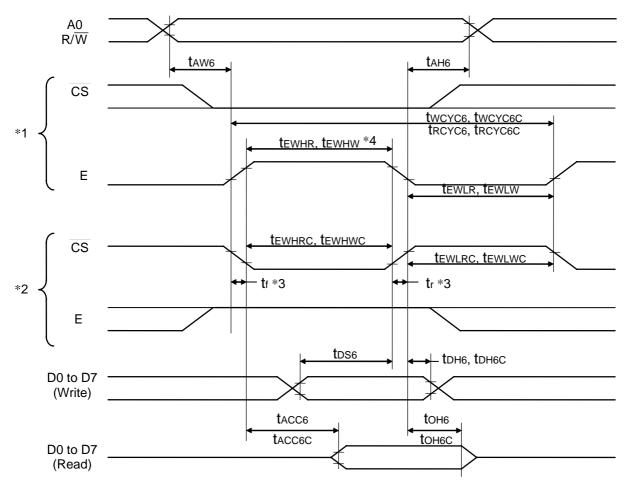
- *15: The wait time after inputting the temperature sensor ON command until the output voltage can be monitored steadily. It is applied not to connect capacitance to SVD2 pin. Be sure to sample the output voltage after a fixed wait time or longer.
- *16: Include operating current of built-in VDI generating circuit.

10. TIMING CHARACTERISTICS

10.1 System Bus Read/Write Characteristics 1 (80 Series MPU)

Fig.10.1

				[VDD=3.0V to \$	5.5V, Ta= -40 to	o +90°C]
Item	Signal	Symbol	Conditions	Standa	rd value	Unit
item	Signal	Symbol	Conditions	Min.	Max.	Unit
Address hold time	A0	t _{AH8}		0	—	ns
Address setup time		t AW8		150	—	
System write cycle time	WR	twcyc8		1000	—	
System write cycle time	CS	twcүс8с		1600	—	
System read cycle time	RD	trcyc8		1600	—	
System read cycle time	CS	trcyc8c		1600	—	
Control L pulse width (WR)	WR	t cclw		650	—	
Control L pulse width (\overline{CS})	CS	tcclwc		1000	—	
Control L pulse width (RD)	RD	t CCLR		1000	—	
Control L pulse width (\overline{CS})	CS	t CCLRC		1000	—	
Control H pulse width (WR)	WR	t CCHW		350	—	
Control H pulse width (\overline{CS})	CS	t сснwс		600	—	
Control H pulse width (RD)	RD	t CCHR		600	—	
Control H pulse width (\overline{CS})	CS	t CCHRC		600	—	
Data setup time	D0 to D7	t _{DS8}		600	—	
Data hold time (WR)		tdh8		30	_	
Data hold time (\overline{CS})		tDH8C		100	—	
RD access time	1	t _{ACC8}	Cload=100pF	_	1000	
Output disable time		tонв		50	600	


Table 10.1

*1. Accessed by \overline{WR} and \overline{RD} at \overline{CS} = LOW. *2. Accessed by \overline{CS} at \overline{WR} , \overline{RD} = LOW.

*3. The rising and trailing times (tr and tf) of the input signal are below 15 ns. When the system cycle time is used at high speed, stipulated at $(tr + tf) \le (tCYC8 - tCCLW - tCCHW)$ or $(tr + tf) \le (tCYC8 - tCCLR - tCCHR)$.

*4. tCCLW and tCCLR are stipulated by the overlap period when \overline{CS} is at LOW and \overline{WR} and \overline{RD} are at the LOW level.

*5. All timings are stipulated on the basis of 20% and 80% of VDD.

10.2 System Bus Read/Write Characteristics 2 (68 Series MPU)

Fig.10.2

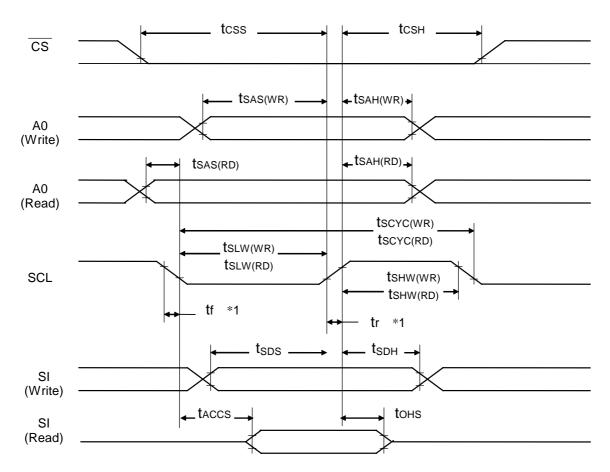

					[VDD=3.0V to 5.	.5V, Ta= -40 to	o +90°C]
ltem		Signal	Symbol	Conditions	Standar	rd value	Unit
item		Signal Symbol		Conditions	Min.	Max.	Unit
Address hold time		A0	tah6		0		ns
Address setup time			taw6		350		
System write cycle time		E	twcyc6		1600		
System write cycle time		CS	twcyc6c		1600		
System read cycle time		E	trcyc6		1600		
System read cycle time		CS	trcyc6c		1600		
Data setup time		D0 to D7	tds6		450		
Data hold time (E)			tdh6		600		
Data hold time (\overline{CS})			tDH6C		100		
Access time			tACC6	Cload=100pF	—	600	
			tACC6C		—	1000	
Output disable time			toh6		100	1000	
			tон6с		50	600	
Enable H pulse width	Read	E	tewhr		600		
	Read	CS	t ewhrc		1000		
	Write	E	t EWHW		600		
	Write	CS	t ewhwc		1000		
Enable L pulse width	Read	E	t ewlr		1000		
	Read	CS	t ewlrc		600		
	Write	E	tewlw		1000		
	Write	CS	t EWLWC		600		

Table 10.2

*1. Accessed by <u>E at</u> \overline{CS} = LOW. *2. Accessed by \overline{CS} at E = HIGH.

*3. The rising and trailing times (tr and tf) of the input signal are below 15 ns. When the system cycle time is used at high speed, stipulated at $(tr + tf) \le (tCYC6 - tEWLW - tEWHW)$ or $(tr + tf) \le (tCYC6 - tEWLR - tEWHR)$. *4. tEWHW and tEWHR are stipulated by the overlap period when \overline{CS} is at LOW and E is at the HIGH level.

*5. All timings are stipulated on the basis of 20% and 80% of VDD.

10.3 Serial Interface

Fig.	10	.3
	-	-

Tab	le	1	0	.3

				[\	DD=3.0V to 5.5	5V, Ta= -40 to -	+90°C]
ltem	Signal Symbol	Conditions	Standa	Unit			
		orginar	Gymbol	conditions	Min.	Max.	Onit
Serial clock cycle	Write	SCL	tscyc(WR)		250		ns
	Read		tscyc(RD)		450	—	
SCL HIGH pulse width	Write		tsнw(WR)		50	—	
	Read		tsнw(RD)		250	—	
SCL LOW pulse width	Write		ts∟w(WR)		150	—	
	Read		tsLw(RD)		150	—	
Address setup time	Write	A0	tsas(WR)		50	—	
	Read		tsas(RD)		50	—	
Address hold time	Write		tsah(WR)		50	—	
	Read		tsah(RD)		50	—	
Data setup time		SI	tsds		50	—	
Data hold time		(Write)	tsdн		50	—	
CS-SCL time		CS	tcss		50	—	
			tcsн		150	—	
RD access time		SI	taccs	Cloud = 100pF	150	_	
Output disable time		(Read)	tонs		30	250	

*1. The rising and trailing times (tr and tf) of the input signal are below 15 ns.

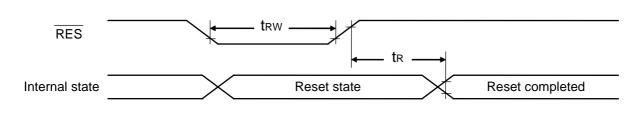
*2. All timings are stipulated on the basis of 20% and 80% of VDD.

10.4 Display Control I/O Timing



Table 10.4 Output timing

				[Vd	D=3.0V to	5.5V, Ta=	= -40 to +	-90°C]
14/	em	Signal	Symbol	Conditions	Sta	ndard val	ue	Unit
10		Signal	Symbol	Conditions	Min.	Тур.	Max.	Unit
Use of built-in	FR delay time	FR	t dfr	CL = 50 pF	-200		200	ns
oscillation circuit (CLS = HIGH)	F1 and F2 delay time	F1,F2	t DF1,F2		-200	Ι	200	
	SYNC delay time	SYNC	t DSYNC		-200	-	200	
	FR delay time	FR	t dfr		0	-	500	
External input (CLS = LOW)	F1 and F2 delay time	F1,F2	t DF1,F2		0	-	500	
	SYNC delay time	SYNC	t DSYNC		0		500	


Table 10.5 Input Timing

			·	[VDD=3.0V	/ to 5.5V, T	Га= -40 to	+90°C]
Item	Signal	Symbol	Conditions	Standard value			Unit
nem		Symbol	Conditions	Min.	Тур.	Max.	Unit
FR delay time	FR	t DFR		-1.25	_	1.25	μs
F1 and F2 delay time	F1,F2	tdf1,F2		-1.25		1.25	μs
SYNC delay time	SYNC	t DSYNC		-1.25	_	1.25	μS
Input clock duty ratio *2	-	tcld		20	_	80	%
Input clock cycle		t CLF		6.25	_	-	μS
Input clock rise time (20% to 80%) *3	CL	tr		_	_	15	ns
Input clock fall time (20% to 80%) *3		tf		_	_	15	ns
Low level pulse width		twlcl		1.25	_	-	μS
High level pulse width		t whcl		1.25		_	μs

*1: All timings are stipulated on the basis of 20% and 80% of VDD.

- *2: The CL duty ratio is stipulated by $tCLD = \frac{tWHCL}{tCLF} \times 100[\%]$ or $tCLD = \frac{tWLCL}{tCLF} \times 100[\%]$.
- *3 A signal beyond the specification has no problem for the functionality, but tCLF, tWLCL and tWHCL always should be kept.

10 10 00001

10.5 Reset Input Timing

					D=3.0V to 5.	5V, Ta= -40	to +90°C	
Item	Signal	Symbol	Symbol Conditions		Standard value			
item	Signal	Symbol	Conditions	Min.	Тур.	Max.	Unit	
Reset time	_	tr	—			1	μS	
Reset LOW pulse width	RES	t rw		2			μS	

*1: All timings are stipulated on the basis of 20% and 80% of VDD.

10.6 Temperature Sensor Measuring Timing

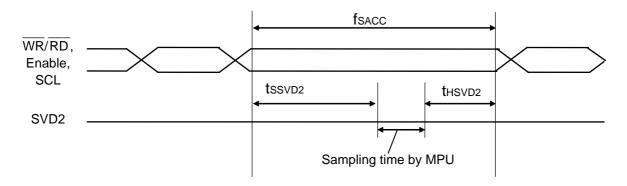


Table 10.7

[VDD=3.0V to 5.5V, Ta=-40 to +90°C]

ltem	Signal	Symbol	Conditions	Sta	Unit		
nem	Sigilar	Symbol	Conditions	Min.	Тур.	Max.	Unit
MPU access cycle	WR or RD (80 series MPU) Enable (68 series MPU) SCL (Serial interface)	fsacc	_	Ι	Ι	0	Hz
Sampling setup time	SVD2	tssvd2		100	Ι		ms
Sampling hold time	SVD2	tHSVD2		0	_		ms

*1: Stop an access from MPU (for 80 series MPU: input from the \overline{WR} or \overline{RD} pin, for 68 series MPU: input from the Enable pin, and for the serial interface: input from the SCL pin) during detection of the SVD2 output.

*2: Wait time until SVD2 sampling is enabled after stopping access from MPU. Apply when the temperature sensor is set to ON beforehand. T o set the temperature sensor to ON after stopping access from MPU, provide a given output voltage setup time.

*3: Wait time until access from MPU can be started after completion of SVD2 sampling by MPU.

11. POWER CIRCUIT (REFERENCE EXAMPLE)

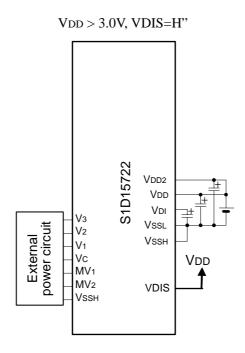
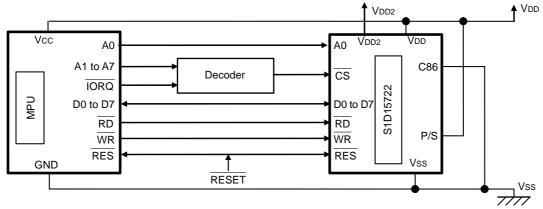


Fig.11.1


12. MPU INTERFACE (REFERENCE EXAMPLE)


This IC can be directly connected to the 80 series MPU and 68 series MPU. Using the serial interface operates with fewer signal lines.

Sharing this IC with multiple chips enlarges the display area. In such cases, the IC that makes an access individually using the chip select signal can be selected.

After being initialized by the pin, each input pin should be controlled successfully.

(1) 80 series MPU

(2) 68 series MPU

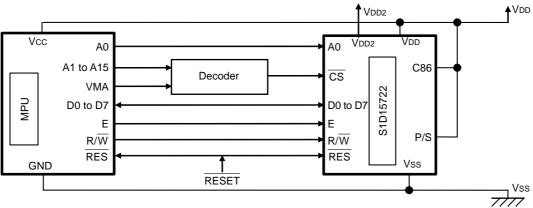
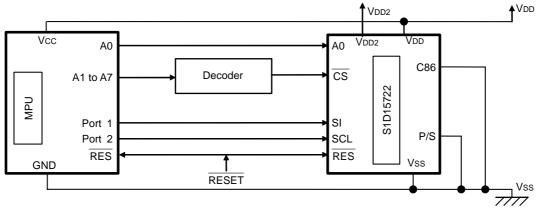
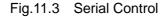




Fig.11.2 68 Series

(3) Serial Interface

13. CONNECTION BETWEEN LCD DRIVERS (REFERENCE EXAMPLE)

Sharing this IC with multiple chips makes it easy to enlarge the liquid crystal display area. Set both master and slave the same number of display line using the command.



Fig 13.1 Connection between Master and Slave

Set VDIS of master = HIGH, VDIS of slave = Low, to supply VDI generated by master to slave.

14. LCD PANEL CONNECTION (REFERENCE EXAMPLE)

Sharing this IC with multiple chips makes it easy to enlarge the liquid crystal display area.

(1) Example of 1 chip configuration

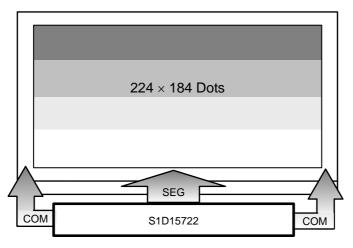


Fig.14.1 Example of 1 Chip Drive

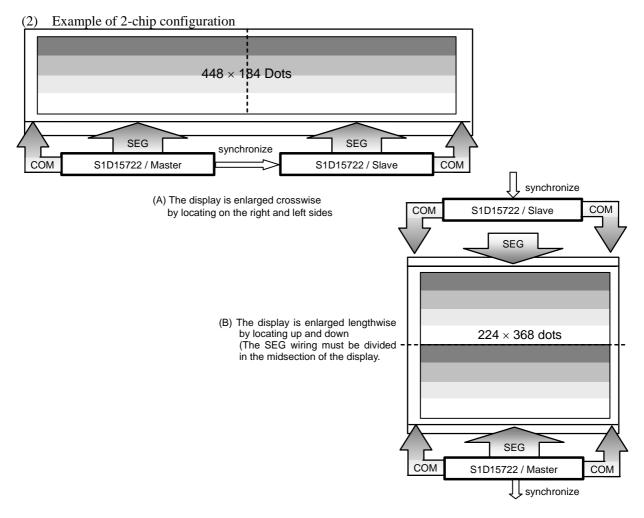


Fig.14.2 Example of 2-chip Drive

15. PRECAUTIONS

When using this development specification, the following points should be noted.

- 1. This development specification is subject to change without notice for improvement.
- 2. This development specification does not permit and guarantee the implementation and/or use of the patent properties and other intellectual property rights the third party or SEIKO EPSON owns. The applications provided in this development specification are for understanding of our products, and we are not responsible for any circuit problems that may occur when using them. "Large" or "Small" in the characteristics table in this development specification refers to the relationship on a numbered line.
- 3. No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson.

When using semiconductor chips, the following points should be noted.

[Precautions in Handling the IC against the Light]

If semiconductor chips are exposed to the strong light, their characteristics may change. Therefore, the IC may malfunction if exposed to the light. To protect the ICs, the following general requirements must be satisfied for IC mount boards and products.

- (1) Do not expose the ICs to the light before they are mounted in the board design and IC mounting phases.
- (2) Also, do not expose the ICs to the light in the inspection phase.
- (3) Take all surfaces, top, bottom and sides, of the IC chip into consideration when blocking out light.

REVISION HISTORY

Date	Rev.	Page	Туре	Description
2008/1/9	1.0	All	new	New enactment.
2008/6/11	1.1	P3	Corrected	In 3. Blockdiagram, change arrow direction at VDI pin from bi-directional to one-way.
		P27	added	In 6.8 Reset circuit, add bit "D4" at MLS driving select register.
		D42 to 42	A dela d	IIn 7. Command at (26) "Select MLS drive" command, add bit P4 and the description.
		P42 to 43	Added	P4=0: n-line frame inversion overlap OFF
				P4=1: n-line frame inversion overlap ON
		P45	Added	In 7.2 Command table, at (26) Select MLS Drive command, add a bit P4.

<u>EPSON</u>

AMERICA

EPSON ELECTRONICS AMERICA, INC.

 HEADQUARTERS

 2580 Orchard Parkway

 San Jose , CA 95131,USA

 Phone: +1-800-228-3964

 FAX: +1-408-922-0238

SALES OFFICES

 Northeast

 301 Edgewater Place, Suite 210

 Wakefield, MA 01880, U.S.A.

 Phone: +1-800-922-7667
 FAX: +1-781-246-5443

EUROPE

EPSON EUROPE ELECTRONICS GmbH HEADQUARTERS

Riesstrasse 15 Muenchen Bayern, 80992 GERMANY Phone: +49-89-14005-0 FAX: +49-89-14005-110

International Sales Operations

ASIA

 EPSON (CHINA) CO., LTD.

 7F, Jinbao Bldg.,No.89 Jinbao St.,

 Dongcheng District,

 Beijing 100005, China

 Phone: +86-10-6410-6655

 FAX: +86-10-6410-7320

SHANGHAI BRANCH

7F, Block B, Hi-Tech Bldg., 900, Yishan Road, Shanghai 200233, CHINA Phone: +86-21-5423-5522 FAX: +86-21-5423-5512

EPSON HONG KONG LTD.

20/F., Harbour Centre, 25 Harbour Road Wanchai, Hong Kong Phone: +852-2585-4600 FAX: +852-2827-4346 Telex: 65542 EPSCO HX

EPSON (CHINA) CO., LTD. SHENZHEN BRANCH

12/F, Dawning Mansion, Keji South 12th Road, Hi- Tech Park, Shenzhen Phone: +86-755-2699-3828 FAX: +86-755-2699-3838

EPSON TAIWAN TECHNOLOGY & TRADING LTD.

14F, No. 7, Song Ren Road, Taipei 110 Phone: +886-2-8786-6688 FAX: +886-2-8786-6660

EPSON SINGAPORE PTE., LTD.

1 HarbourFront Place, #03-02 HarbourFront Tower One, Singapore 098633 Phone: +65-6586-5500 FAX: +65-6271-3182

SEIKO EPSON CORPORATION KOREA OFFICE

50F, KLI 63 Bldg., 60 Yoido-dong Youngdeungpo-Ku, Seoul, 150-763, KOREA Phone: +82-2-784-6027 FAX: +82-2-767-3677

GUMI OFFICE

2F, Grand B/D, 457-4 Songjeong-dong, Gumi-City, KOREA Phone: +82-54-454-6027 FAX: +82-54-454-6093

SEIKO EPSON CORPORATION SEMICONDUCTOR OPERATIONS DIVISION

IC Sales Dept.

IC International Sales Group 421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-42-587-5814 FAX: +81-42-587-5117