NT7573

Data Sheet

132RGB X 132 RAM-Map STN LCD Controller/Driver for 65K Colors

> V0.03 Preliminary

NOVATEK 聯 詠 科 性

Features

- 132RGB x 132-dot graphics display LCD controller/driver for 65,536 STN colors
- RAM capacity: 132 x 16 x 132 = 278,784 bits
- 8-bit/16-bit parallel bus interface for both 8080 and 6800 series, 3-wire/4-wire Serial Peripheral Interface (SPI)
- 65,536 colors can be displayed at the same time by PWM and FRC
- Data output scan direction controlled by software commands
- Shift change of common drivers
- RAM addressing direction control (vertical and horizontal)
- Power supply voltage:
 - VDDIO = $1.2 \sim 3.6 \text{ V}$ (power supply for interface circuit)
 - = 1.65 ~ 1.95 V (power supply for digital circuit) - VDD
- VIN1/VIN1A//VIN1R = 2.4 ~ 3.6 V (power supply for 1st booster circuit, VM Amp and regulator.)
- V1 = $2.0 \sim 3.3$ V (power supply for Segment Driver)
- = 19.8 V Max.(power supply for Common Driver) - VCC-VEE
- On chip LCD driving voltage generator or external power supply selectable
- 256-step contrast adjuster and on chip voltage follower
- Programmable drive duty ratios (1/33, 1/66, 1/96, 1/108, 1/120, 1/132) and bias values (1/4-1/6)
- Programmable partial display, screen scrolling
- N-block inversion AC liquid-crystal drive
- On chip oscillation and hardware reset
- Multi-Time Programming (2 times) for V1 voltage
- Available in COG form
- CMOS process

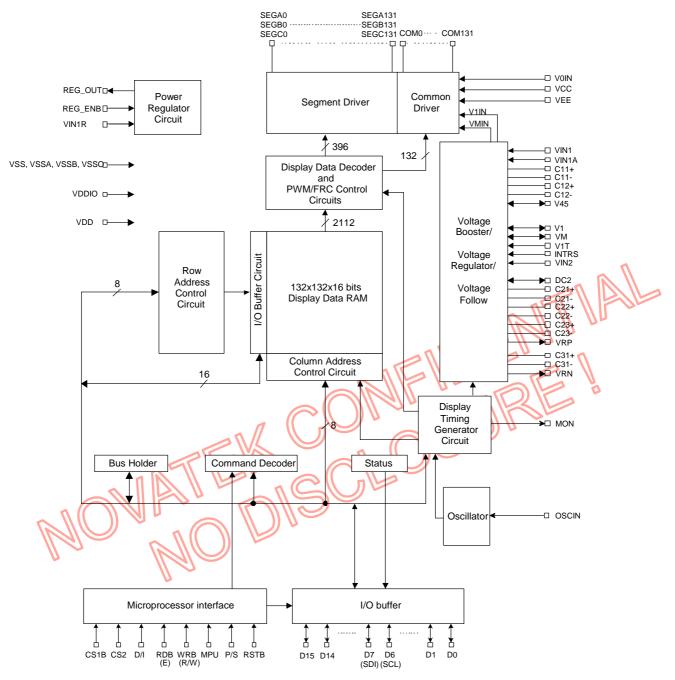
General Description

The NT7573 is a single-chip LCD controller/driver LSI for color-graphics, which displays 132 x 132-dot graphics for 65,536 STN colors. It accepts display data through 8-bit/16-bit parallel (8080 or 6800 series) or serial (3-wire or 4-wire) interface directly sent from a µC and stores it in an on-chip display data RAM.

The NT7573 contains 132 common output circuits and 132 x 3 segment output circuits. The capacity of the on-chip display data RAM is 132 x 132 x 16 bits and every 16-bit corresponds to one pixel (include RGB) LCD panel. It generates an LCD drive signal independent of the MPU clock.

No external operation clock is required for RAM read/write operations. Accordingly, this driver can be operated with a minimum current consumption. It can implement a high-performance handy display system with minimum current consumption and the smallest LSI configuration.

NT7573


Pad Configuration

2006/03/23

Block Diagram

2006/03/23

Pad Descriptions

Power Supply

Pad No.	Designation	I/O	Description							
134~136	VDDIO	Supply	Main power supply							
10, 20, 35, 120	VDDIO	0	Main power supply for pad option							
126~130	VDD	Supply	Power supply for internal digital and DDRAM block This pin is connected to REG_OUT with stabilization capacitor When internal regulator is not used, connect VDD to VDDIO							
5~7, 257~259, 107~111	VSS									
112~116	VSSA	Supply	Ground. All pads must be connected to ground							
102~106	VSSB									
99~101	VSSO									
13, 28, 117, 125	VSS	0	Ground for pad option							
137~140	VIN1R	Supply	Internal regulator power supply							
141~145	VIN1		Power supply for 1 st booster circuit and VM amplifier							
146~148	VIN1A	I	Tower supprision poosier circuit and war anipinter							
149~152	VIN2		Power supply for DC2 amplifier							
153~156	V45	0	1 st booster output pin, and Multi-Time Programming pin							
100~100			Power supply for V1 (1 st booster off)							
181~184) V1	0	LCD segment high driving voltage output							
101~104		((1))	LCD segment high driving voltage input (OP AMP off)							
187~190	VM	00	LCD common non-selected driving voltage output							
107~190	V IVI V	Ι	LCD common non-selected driving voltage input (OP AMP off)							
192~196	DC2	0	Power output pin for 2 nd booster circuit input							
192~190	002	Ι	Power supply for 2 nd booster circuit (OP AMP off)							
2~4, 260~262	V0IN	Ι	LCD segment low driving voltage input							
233~235	VRP	0	LCD common high selected driving voltage output							
236~238	VCC		LCD common high selected driving voltage input							
251~253	VRN	0	LCD common low selected driving voltage output							
254~256	VEE	Ι	LCD common low selected driving voltage input							

2006/03/23

Power Supply (continuous)

Pad No.	Designation	I/O	Description
157~162, 163~168, 169~174, 175~180	C11+, C11-, C12-, C12+	0	External capacitor connection pins used for 1 st booster circuit
197~202, 203~208, 209~214, 215~220, 221~226, 227~232	C21+, C21-, C22-, C22+, C23+, C23-	0	External capacitor connection pins used for 2 nd booster circuit
239~244, 245~250	C31+, C31-	0	External capacitor connection pins used for 3 rd booster circuit
185, 186	V1T	I	Thermistor resistor connection pin

Note: The IN / OUT settings of V45, DC2, V1, VM are controlled by DC/DC and AMP ON/OFF Set command.

* Make sure of the relationship of LCD driving voltage as follows:

(1) VCC > V1 > VM > V0IN (=VSS) > VEE

LCD Driver Pads

(1) $VCC > VT > VM > VON (= VS3) > VEE$ (2) $VCC - VM = VM - VEE, V1 - VM = VM - VOIN$ LCD Driver Pads										
Pad No.	Designation	I/O	Description							
	SEGA0 ~ SEGA131	0	Segment signal outputs for LCD display (Red or Blue)							
333~728	SEGB0 ~ SEGB131	0	Segment signal outputs for LCD display (Green)							
	SEGC0~ SEGC131	0	Segment signal outputs for LCD display (Blue or Red)							
265~288, 290~331, 730~771, 773~796	COM0~23 COM24~65 COM131~90 COM89~66	Q	Common signal outputs for LCD display							

Configuration Pads

Pad No.	Designation	I/O	Description
121, 122	INTRS	I	External resistor select for temperature compensation circuit INTRS ="L" : external resistor mode INTRS ="H" : internal resistor mode

2006/03/23

Ver 0.03 With respect to the information represented in this document, Novatek makes no warranty, expressed or implied, including the warranties of merchantability, fitness for a particular purpose, non-infringement, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any such information.

System Bus Connection

Pad No.	Designation	I/O	Description				
23, 24	RSTB	I	Reset input pin. When RSTB is set to "L", the settings are initialized.				
8, 9	P/S	I	MPU interface select pin. When P/S is "H" MPU = "L": 8080 series MPU interface MPU = "H": 6800 series MPU interface				
11, 12	MPU	I	When P/S is "L" MPU = "L": 3 pin SPI (Write only) MPU = "H": 4 pin SPI (Write only)				
14~16	CS1B	I	Chip select input pin. When CS1B is "L" and CS2 is "H", the data / command I/O is				
17~19	CS2	I	enabled. When chip select is non-active, D0 to D15 are high impedance				
25~27	D/I	I	Data / Command select input pin. D/I = "H": Indicates that D0 to D15 are display data D/I = "L": Indicates that D0 to D15 are control data				
29~31	WRB (R/W)	I	When 6800 series MPU is selected, this is the read / write control input pin. R/W = "H": read R/W = "L": write When 8080 MPU is selected, this is the write enable clock input pin. The data on D0 to D15 are latched at the rising edge of the WRB signal.				
32~34			 When 6800 series MPU is selected, this is the enable control input pin. R/W = "H": D0 to D15 are in output status when E is "H". R/W = "L": The data on D0 to D15 are latched at the falling edge of WRB signal When 8080 MPU is selected, this is the read enable clock input pin. The data on D0 to D15 are in output status when RDB is "L". 				
36~83	D15 ~ D8 D7 (SDI) D6 (SCL) D5 ~ D0	I/O	 When parallel interface is selected, D15 to D0 (D7 to D0) are serves as the 16-bit (8-bit) bi-directional data bus. When the serial interface is selected, D7 (SDI): serial data input pin. The data is latched at the rising edge of SCL signal. D6 (SCL): serial clock input pin. 				

Timing Signal for Monitor

Pad No.	Designation	I/O	Description
21, 22	MON	0	Monitor signal output pin. (CL, FR, PM, SYNC)

Oscillator and Internal Regulator

Pad No.	Designation	I/O	Description						
123, 124	OSCIN	I	External clock input pin when external clcok is used When the internal RC oscillator is used, fixed this pin to VDDIO or VSS						
118, 119	REG_ENB	I	Internal regulator enable pin REG_ENB = "L": Enable internal regulator REG_ENB = "H": Disable internal regulator						
131~133	REG_OUT	0	Internal regulator output pin This output voltage is used as a power supply for the internal digital and DDRAM block via VDD pin						

Test Pads

Pad No.	Designation	I/O	Description
84~86	TEST0	0	Test pads. No connection
87~98	TEST1 ~ 4	Ι	Test pads. Must be connected to VSS
No Connec	ted Pads		

No Connected Pads

Pad No.	Designation	I/O	Description
1, 191, 263, 264, 289, 332, 729, 772, 797	DUMMY0 ~ DUMMY8	-	Dummy pads. No connection
M	ONA N		A SCLOSE DISCLOSE

"-" Must always be VDDIO or VSS

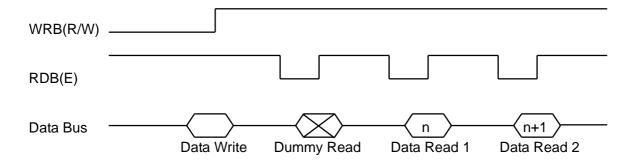
Functional Descriptions

Microprocessor Interface

The NT7573 can transfer data via 16-bit bi-directional data bus (D15 to D0) or via serial data input (SDI). When high or low is selected for the parity of P/S, MPU pads and command bit 16B, either 8-bit/16-bit parallel data input or serial data input can be selected as shown in Table 1. When serial data input is selected, the RAM data cannot be read out.

P/S	MPU	16B	Туре	CS1B	CS2	D/I	RDB (E)	WRB (R/W)	D15 to D8	D7	D6	D5 to D0
	L	-	3-wire SPI	CS1B	CS2	-	-	-	-	SDI	SCL	-
	Н	-	4-wire SPI	CS1B	CS2	D/I	-	-	-	SDI	SCL	-
	L	L	8080 series 8-bit	CS1B	CS2	D/I	RDB	WRB	-	D7	D6	D5 to D0
Н	L	Н	8080 series 16-bit	CS1B	CS2	D/I	RDB	WRB	D15 to D8	D7	D6	D5 to D0
	Н	L	6800 series 8-bit	CS1B	CS2	D/I	Е	R/W	-	D7	D6	D5 to D0
	Н	Н	6800 series 16-bit	CS1B	CS2	D/I	Е	R/W	D15 to D8	D7	D6	D5 to D0

Table 1. Data Bus Interface Selection Mode


Parallel Interface

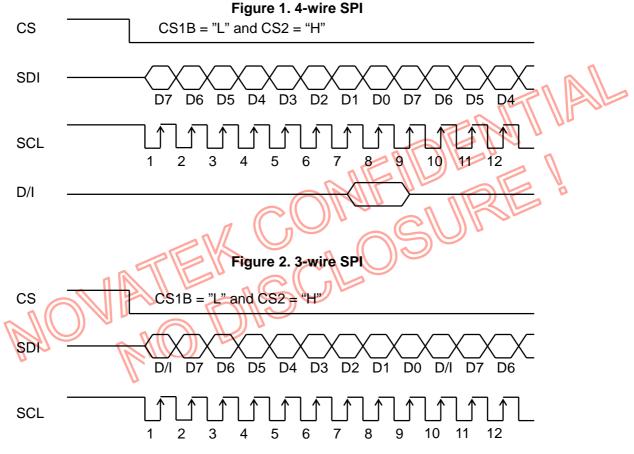
When the NT7573 selects parallel interface (P/S is high), the type of MPU interface is determined by MPU pad as shown in Table 1. The NT7573 identifies the data bus signal according to D/I, RDB (E), WRB (R/W) signals as shown in Table 2.

Control	6800 pr	ocessor	8080 pr	ocessor	Function
D/I	Е	R/W	RDB	WRB	I unclion
0			0		Reads status
0	(1)	N N		0	Writes instruction data
1	1	R	0	1	Reads display data
1	1	0	1	0	Writes display data

Table 2. Parallel Interface Read/Write Status

A dummy read is required before the first actual display data read for parallel interface.

2006/03/23



Serial Interface

When the serial interface has been selected (P/S is low), the 3-wire or 4-wire SPI can be selected by causing the MPU pad to go high or low.

In the 4-wire SPI, the serial data is read from the serial data input pin on the rising edge of the serial clocks in the order of D7, D6, D5,, D0. This data is converted to 8-bit parallel data on the rising edge of the eighth serial clock for processing. The D/I input is read on every 8th rising edge of the serial clock and used to determine whether the serial data input is specified as command or display data.

In the 3-wire SPI, the D/I pin is not used. The serial data is read from the serial data input pin on the rising edge of the serial clocks in the order of D/I, D7, D6, D5,, D0. This data is converted to 8-bit parallel data on the rising edge of the ninth serial clock for processing as command or display data that is determined by the first bit D/I.

Note:

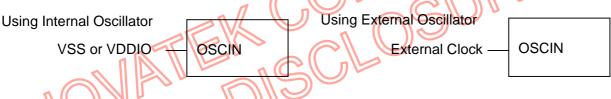
- 1. When the chip is not active, the shift registers and the counter is reset to their initial states.
- 2. Reading is not possible while in serial interface mode.
- 3. Caution is required on the SCL signal when it comes to line-end reflections and external noise. We recommend the operation be rechecked on the actual equipment.

2006/03/23

The display data RAM (DDRAM) is RAM that stores the dot data for the display. It has a 132 x 132 x 16 bit structure. The 16 bits of data are stored into the DDRAM to display one dot (Red: 5 bits, Green: 6 bits, Blue: 5 bits) for 65,536 colors. It is controlled by row and column addresses. RAM area selection and automatic address count modes are achieved by Row/Column Address Set and Entry Mode Set commands. Figure 3 shows the DDRAM addressing maps for the 8-bit parallel mode and 16-bit parallel mode.

Moreover, reading from and writing to the DDRAM from the MPU side is performed through the I/O buffer, which is an independent operation from signal reading for the liquid crystal driver.

Access to DDRAM and Internal Registers


The NT7573 can perform a series of pipeline processes between LSI's using the bus holder of the internal data bus in order to match the operating frequency of DDRAM and internal registers with the MPU. Also, the MPU temporarily stores display data in the bus holder, and stores it in DDRAM until the next data write cycle starts.

When viewed from the MPU, the NT7573 access speed greatly depends on the cycle time rather than access time to the DDRAM (tacc). This view shows that the data transfer speed to/ from the MPU can increase. If the cycle time is inappropriate, the MPU can insert the NOP instruction that is equivalent to the wait cycle setup.

However, when an address is set, the specified address data is not output immediately following the read instruction. The address data is output during the second data read. A single dummy read must be inserted after address setup and after the write cycle (refer to the Parallel Interface description).

The Oscillator Circuit

The internal oscillator can produce the system clock. The oscillator circuit is only enabled when EXT=0. When EXT=1, the oscillation stops and the system clock is input through the OSCIN terminal.

Display Timing Generator Circuit

The display timing generator circuit generates the timing signal to the row address circuit and the display data decoder circuit using the system clock. Reading to the display data liquid crystal driver circuits is completely independent of access to the DDRAM by the MPU.

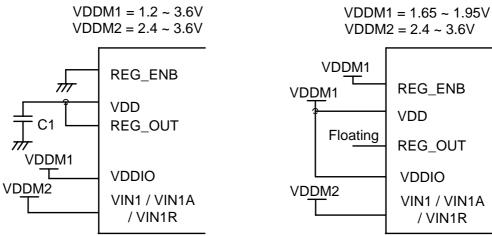
Moreover, the display timing generator circuit generates 4 type monitor signals from the system clock by setting Monitor Signal Control command. The 4 type monitor signals are common timing (CL), liquid crystal alternating current signal (FR), Field delimiter signal (PM), and Frame delimiter signal (SYNC).

NT7573

Figure 3. Relationship Between DDRAM and Address

	16-bit Data Bus Mode	D15 D14 D13 D12 D11	D10 D9 D8 D7 D6 D5	D4 D3 D2 D1 D0	D15 D14 D13 D12 D11	D10 D9 D8 D7 D6 D5	D4 D3 D2 D1 D0		D15 D14 D13 D12 D11	D10 D9 D8 D7 D6 D5	D4 D3 D2 D1 D0	D15 D14 D13 D12 D11	D10 D9 D8 D7 D6 D5	D4 D3 D2 D1 D0	SWP = 0					
	8-bit Data Bus Mode	D7 D6 D5 D4 D3	D2 D1 D0 D7 D6 D5	D4 D3 D2 D1 D0	D7 D6 D5 D4 D3	D2 D1 D0 D7 D6 D5	D4 D3 D2 D1 D0		D7 D6 D5 D4 D3	D2 D1 D0 D7 D6 D5	D4 D3 D2 D1 D0	D7 D6 D5 D4 D3	D2 D1 D0 D7 D6 D5	D4 D3 D2 D1 D0						
	16-bit Data Bus Mode	D4 D3 D2 D1 D0	D10 D9 D8 D7 D6 D5	D15 D14 D13 D12 D11	D4 D3 D2 D1 D0	D10 D9 D8 D7 D6 D5	D15 D14 D13 D12 D11		D4 D3 D2 D1 D0	D10 D9 D8 D7 D6 D5	D15 D14 D13 D12 D11	D4 D3 D2 D1 D0	D10 D9 D8 D7 D6 D5	D15 D14 D13 D12 D11	SWP = 1					_
COM Output (CDR = 1)	8-bit Data Bus Mode	D4 D3 D2 D1 D0	D2 D1 D0 D7 D6 D5	D7 D6 D5 D4 D3	D4 D3 D2 D1 D0	D2 D1 D0 D7 D6 D5	D7 D6 D5 D4 D3		D4 D3 D2 D1 D0	D2 D1 D0 D7 D6 D5	D7 D6 D5 D4 D3	D4 D3 D2 D1 D0	D2 D1 D0 D7 D6 D5	D7 D6 D5 D4 D3			COM (CDR	Output = 0)		
DL[1,0] DL[1,0] DL[1,0] DL[1,0] = 11 = 10 = 01 = 00	Row Address MY = 1	R	G	В	R	G	в		R	G	В	R	G	в	Row Address MY = 0	DL[1,0] = 00	DL[1,0] = 01	DL[1,0] = 10	DL[1,0]	
COM131 COM125 COM119 COM113	131														0	COM0	COM0	COM0	СОМО	
COM130 COM124 COM118 COM112 : : : : :	130														1	COM1	COM1 :	COM1	COM1	2
: : : : : COM84 COM78 COM72 COM66	: 84														:	: COM47	COM47	COM47	: COM47	-
COM83 COM77 COM71 COM47	83														48	COM66	COM48	COM48	COM48	
: : : : : COM78 COM72 COM66 COM42	: 78											25			; 53	COM71	: COM53	: COM53	: COM53	-
COM77 COM71 COM53 COM41	77									1	1	1			54	COM72	COM66	COM54	COM54	
	:							6	<u>_</u>	\mathcal{I}			U		:		:		:]
COM72 COM66 COM48 COM36 COM71 COM59 COM47 COM35	72 71							s ((\mathcal{H}		5			n	59 60	COM77 COM78	COM71 COM72	COM59 COM66	COM59 COM60	-
: : : :	:				1	(ノ	2				21			:	:	:	
COM66 COM54 COM42 COM30 COM65 COM53 COM41 COM29	66 65			L				リー			ſ)	65 66	COM83 COM84	COM77 COM78	COM71 COM72	COM65 COM66	-
: : : :	00	21		2 \	\sim	2		6	59		\mathcal{J}		0		:	:	:	:	:	-
: : : : : COM37 COM25 COM13 COM1	37							<u>s ((</u>			2				: 94	: COM112	: COM106	: COM100	: COM94	-
COM36 COM24 COM12 COM0	36	U				1	J	もし	ノ						95	COM113	COM107	COM101	COM95	
: : : COM31_COM19_COM7	: 31			-{{		\mathcal{H}	6	ノ							: 100		: COM112	: COM106	: COM100	-
COM30 COM18 COM6	30	$\left(\right)$				<u> </u>									100		COM113		COM101	-
			J												:		:	:	:]
COM25 COM13 COM1 COM24 COM12 COM0	25 24														106 107				COM106 COM107	-
: :	V														:			:	:	
COM19 COM7 COM18 COM6	19 18														112 113				COM112 COM113	-
	:														:			:	:	_
COM13 COM1	13														118			COM124		-
COM12 COM0 :	12														119 :			COM125	COM119 :	-
COM7	7														124				COM124	-
COM6 :	6 :														125				COM125 :	i
COM1	. 1														130				COM130)
СОМО	0		_							40-			40		131				COM131]
Column Address	MX = 0 MX = 1	-	0 131			1 130				130 1			131 0							
SEG		SEGAO	SEGBO	SEGC0	SEGA1	SEGB1	SEGC1		SEGA130	SEGB130	SEGC130	SEGA131	SEGB131	SEGC131						

2006/03/23


With respect to the information represented in this document, Novatek makes no warranty, expressed or implied, including the warranties of merchantability, fitness for a particular purpose, non-infringement, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any such information.

Ver 0.03

The Power Regulator Circuit

The NT7573 has a regulator circuit for VDD supply. The on-chip regulator configuration is shown as follows:

The Voltage Regulator Circuit for V1

The NT7573 has an internal high-accuracy fixed voltage power supply with 256 steps electronic volume function for V1 OP-Amp. Through the use of V1 electronic volume function, the LCD driving voltage V1 can be controlled by Contrast Control (1) or (2) command to adjust the V1 voltage from 2.0V to 3.3V by 5.098mV per step which then makes it possible to adjust LCD brightness. The 1st booster circuit generates V45 used for power supply of internal OP-Amps.

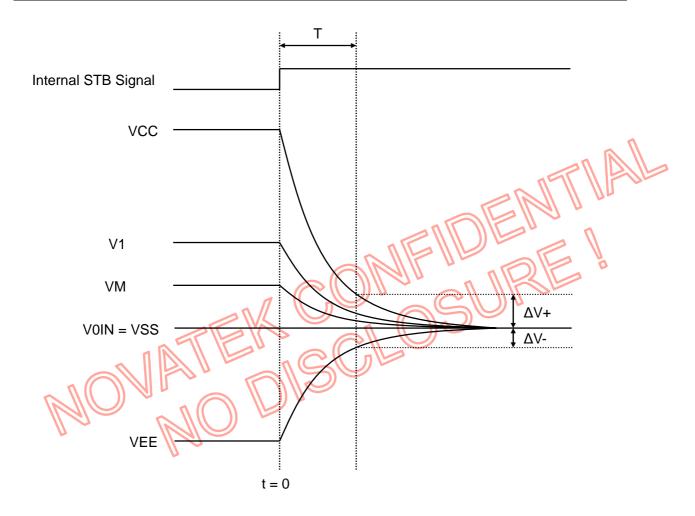
	C1[7:0] or C2[7:0]	Value	V1
	00000000		2.0
	00000001	1	2.005098
n R	00000010	2	2.010196
			:
ANO V	1111101	253	3.289804
la c	1111110	254	3.294902
	1111111	255	3.3

The Power Supply Circuit for VM, VRN and VRP

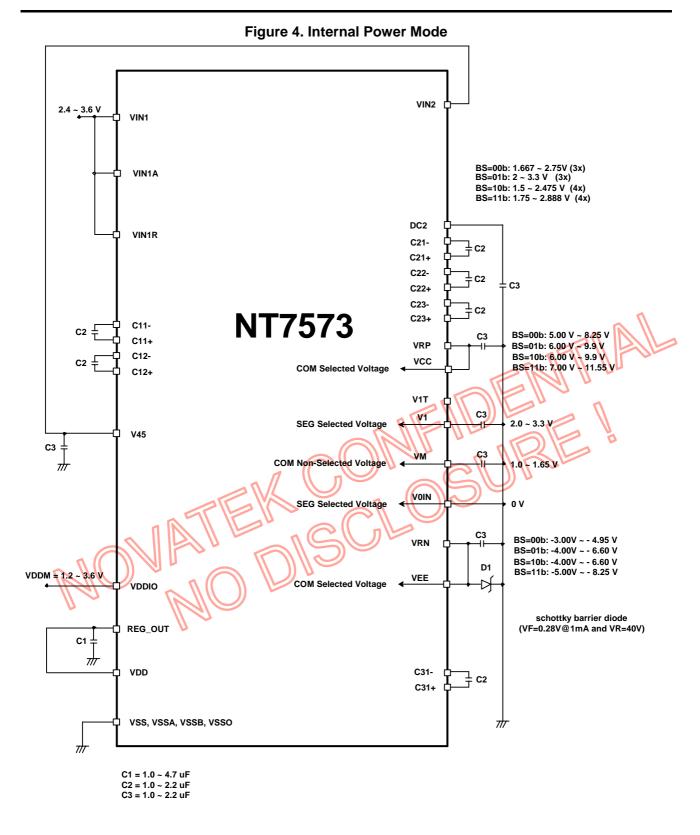
The common non-selected voltage VM is generated from V1 to keep V1 = $2 \times VM$. And through the DC2 OP-Amp and 2nd booster circuit. VRP can be controlled by Bias Set command and this keeps the relation VRP - VM = B x VM (bias ratio is 1/B). Finally, the 3rd booster circuit inverts the VRP that refers to VM to generate VRN. The VRN and VRP are both common selected voltages.

Multi-Time Programming (MTP) for V1 voltage

The NT7573 has a MTP function for V1 voltage calibration. Because the variation of LCD module in term of contrast level, the MTP (Multi-Time Program) can be used to achieve the best visual contrast of every LCD module by adjusting V1 voltage. The NT7573 provides only two times for V1 voltage programming. Refer to the Multi-Time Calibration Set and Multi-Time Programming Set command section.

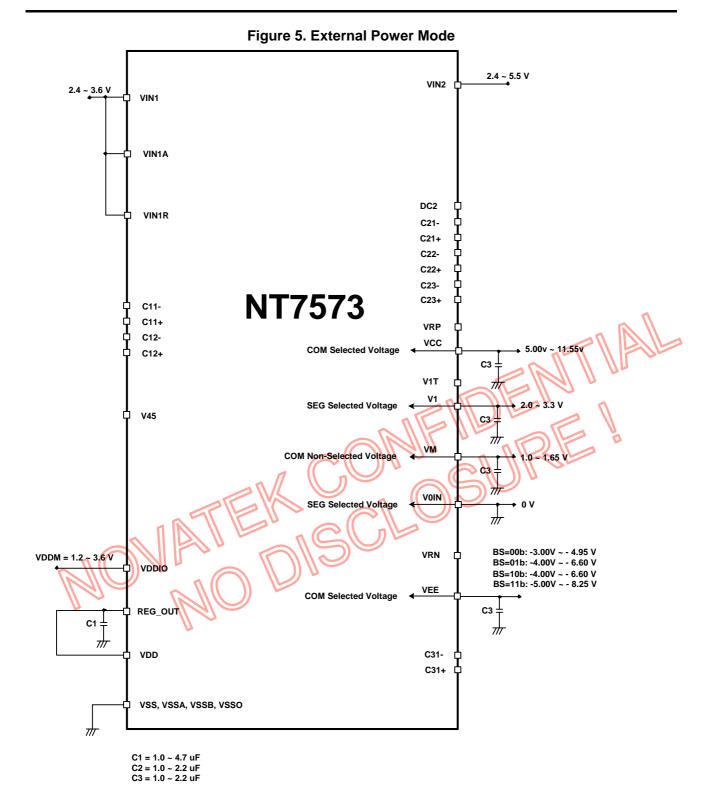

2006/03/23

The Discharge Circuit


When executing the command Standby Mode ON (STB is high), the driving voltage levels will be discharged. The relation between driving voltage levels and discharge time is as follows:

Driving Voltage	Condition	Т	ΔV+, ΔV-
	VCC = 11.55 V, V1 = 3.3V	100 ms	< 50 mV
VCC, V1, VM, VEE	VEE = -8.25 V, VM= 1.65 V at t = 0	300 ms	< 20 mV

NT7573



2006/03/23

With respect to the information represented in this document, Novatek makes no warranty, expressed or implied, including the warranties of merchantability, fitness for a particular purpose, non-infringement, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any such information.

Ver 0.03

NT7573

NTIAL

Reset Circuit

When the RSTB input falls to LOW, the NT7573 enter their default state shown as below:

- 1. Internal clock mode and internal oscillator OFF, EXT=0, OSCEN=1
- 2. Driving Output Mode
 - Display duty ratio 1/132, DL[1:0]=(1,1)
 - No swap for segment driver and normal common scan direction, SWP=CDR=0
- Monitor Signal Control SYNC, PM, CL and FR output VSS level, SYN=PM=CL=FR=0 SYNC output at the head of the 1st subframe, SY[1:0]=(0,0)
- 4. x1.5 time boost for 1^{st} booster circuit, DC[3:0]=(0,1,0,1)

1/4 bias ratio and x(3) time 2^{nd} boost for Partial mode 1 and 1/6 bias ratio and x(4) time 2^{nd} boost for Normal, Partial mode 0. BS[3:0]=(0,0,1,1)

- 5. DC/DC Clock Division
 - Clock division fOSC/8 for normal and partial display mode 0, DV[2:0] = (0,0,0)
 - Clock division fOSC/8 (1/66duty) or fOSC/32 (1/33duty) for partial display mode 1, DV[5:3] = (0,0,0)
- 6. All booster circuits and AMP circuit OFF, AMP=BT3=BT2=BT1=0
- 7. Temperature coefficient is -0.05%/°C, TC[1:0]=(0,1)
- 8. Contrast Control C1[7:0]=C2[7:0]=(0,0,0,0,0,0,0,0)
- 9. Standby Mode ON, STB=1
- 10. Addressing Mode
 - One extra dummy subgroup is none, DSG=1
 - Subgroup frame inversion ON, SGF=1
 - Subgroup is different phase by one pixel unit, SGP=1
- 11. Row vector increase by every subframe, INC=1
- 12. Frame inversion for AC driving, FIM=1 and NB[4:0]=(0,1,1,0,1)
- 13. Normal Frame Rate, LFS=0
- 14. Frame Frequency (1/132, 1/66, 1/33duty)=100Hz, FR[3:0]=(0,1,1,1)
- 15. Entry Mode
 - 8-bit parallel data bus mode, 16B=0
 - Memory data inversion OFF, MDI=0
 - Column/Row address count increment, MX=MY=0
 - Column address count first, Y/X=0
 - Read modify write mode OFF, RMW=0
- 16. Start row address YS[7:0]=(0,0,0,0,0,0,0,0), End row address YE[7:0]=(1,0,0,0,0,0,1,1)
- 17. Start column address XS[7:0]=(0,0,0,0,0,0,0,0,0), End column address XE[7:0]=(1,0,0,0,0,0,1,1)
- 18. LCD display OFF, DOF=0
- 19. Normal display pattern, DP[1:0]=(0,0)
- 20. Partial Display
 - Partial display mode OFF (Normal mode), PT=PDM=PDY=0
 - Partial display start line PS[7:0]=(0,0,0,0,0,0,0,0)
 - Partial display end line PE[7:0]=(0,0,0,0,0,0,0,0)
- 21. Area Scroll
 - Entire display scroll mode, SM[1:0]=(0,0)
 - Area scroll start line SS[7:0]=(0,0,0,0,0,0,0,0)
 - Area scroll end line SE[7:0]=(1,0,0,0,0,0,1,1)
 - Low fixed line number LF[7:0]=(0,0,0,0,0,0,0,0)
 - Start scroll line SL[7:0]=(0,0,0,0,0,0,0,0)
- 22. Internal status register is selected for Status Read command, SR[1:0]=(0,0)
- 23. MTP calibration function is turned ON, MOF=1

2006/03/23

With respect to the information represented in this document, Novatek makes no warranty, expressed or implied, including the warranties of merchantability, fitness for a particular purpose, non-infringement, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any such information.

Commands

1. Non Operation

This command is non-operation.

D/I	RDB	WRB	D7	D6	D5	D4	D3	D2	D1	D0	Hex
0	1	0	0	0	0	0	0	0	0	0	00h

2. Oscillation Mode Set

This command is used to select the internal or external clock. When external clock is selected, the internal system clock is halted and the external system clock can be input from OSCIN pin. The internal oscillator circuit can be enabled or disabled by setting bit OSC. This command is only for internal or external system clock selection used. Do not use this command for LCD display control.

D/I	RDB	WRB	D7	D6	D5	D4	D3	D2	D1	D0	Hex
0	1	0	0	0	0	0	0	0	1	0	02h
0	1	0	0	0	0	0	0	0	EXT	OSC	XX

The setting status is as follows:

EXT	OSC	Status	OSC pins
0	0	Internal oscillator OFF	Connect resisters between
0	1	Internal oscillator ON	OSC1, OSC2 and OSC3, OSC4
1	*	External clock mode	System clock input to OSCIN

3. Driver Output Mode Set

This command is for setting the scan direction of COM output allowing flexible ITO layout in LCD module assembly. The display will have an immediate effect once this command is executed, except the SWP function.

D/I	RDB	WRB	D7	D6	D5	D4	D3	D2	D1	D0	Hex
0		0 <	0	0	0	1	0	0	0	0	10h
0	1	0	SEQ	0	DL1	DL0	0	0	SWP	CDR	XX

The non-used common outputs are no scanning field and set to VM level.

SEQ	DL[1:0]	Duty	Scan Line	Common Ou	tput Pads
	טבני.טן	Ratio		CDR = 0	CDR = 1
	00	1/96	Line 0 ~ 95	COM[0-47], COM[66-113]	COM[113-66], COM[47-0]
0	01	1/108	Line 0 ~ 107	COM[0-53], COM[66-119]	COM[119-66], COM[53-0]
0	10	1/120	Line 0 ~ 119	COM[0-59], COM[66-125]	COM[125-66], COM[59-0]
	11	1/132	Line 0 ~ 131	COM[0-65], COM[66-131]	COM[131-66], COM[65-0]

050		Duty	Coop Line	Common C	Output Pads				
SEQ	DL[1:0]	Ratio	Scan Line	CDR = 0	CDR = 1				
			Line 0~47	COM[0-2], COM[66-68], COM[3-5],COM[69-71],	COM[122-120],COM[56-54], COM[119-117],COM[53-51],				
	00	1/96		COM[21-23], COM[87-89]	COM[101-99],COM[35-33]				
	00		., 50		1730	1/30	Line 48~95	COM[33-35], COM[99-101], COM[36-38],COM[102-104],	COM[89-87], COM[23-21], COM[86-84],COM[20-18],
				COM[54-56],COM[120-122]	COM[68-66], COM[2-0]				
			Line 0~53	COM[0-2], COM[66-68], COM[3-5],COM[69-71],	COM[125-123],COM[59-57], COM[122-120],COM[56-54],				
	01	1/108	1/100	4/400		COM[24-26], COM[90-92],	COM[101-99],COM[35-33]		
1	01	1/108	Line 54~107	COM[33-35],COM[99-101], COM[36-38],COM[102-104],	COM[92-90], COM[26-24], COM[89-87],COM[23-21],				
				, COM[57-59], COM[123-125]	COM[68-66], COM[2-0],				
			Line 0~59	COM[0-2], COM[66-68], COM[3-5],COM[69-71],	COM[128-126],COM[62-60], COM[125-124],COM[59-58],				
	10	1/120		COM[27-29], COM[93-95]	COM[101-99],COM[35-33]				
	~ 1		Line 60~119	COM[33-35],COM[99-101], COM[36-38],COM[102-104],	COM[95-93], COM[29-27], COM[92-90],COM[26-24],				
n	\mathbb{A}			COM[60-62], COM[126-128]	, COM[68-66], COM[2-0],				
Ma	11	1/132	Line 0~131	COM[0-2], COM[66-68], COM[3-5],COM[69-71],	COM[131-129],COM[65-63], COM[128-126],COM[62-60],				
				COM[63-65], COM[129-131]	COM[68-66], COM[2-0]				

The SEG output can be swapped as follows:

SWP=0: Normal (SEGAi is D15~D11, SEGBi is D10~D5 and SEGCi is D4~D0) SWP=1: Reverse (SEGAi is D4~D0, SEGBi is D10~D5 and SEGCi is D15~D11)

Monitor Signal Control 4.

This command is used to control the MON output signal for SYNC, PM, CL or FR.

ſ	D/I	RDB	WRB	D7	D6	D5	D4	D3	D2	D1	D0	Hex
	0	1	0	0	0	0	1	1	0	0	0	18h
	0	1	0	0	0	SY1	SY0	SYN	РМ	CL	FR	XX

The output status is shown as below:

Bit		Monitor Signal Status	Bit		Monitor Signal Status		
SYNC	0	SYNC is output VSS level	CL	0	CL is output VSS level		
SYNC	1	SYNC is operating	ΟL	1	CL is operating		
РМ	0	PM is output VSS level	FR	0	FR is output VSS level		
FIVI	1	PM is operating	ГК	1	FR is operating		

When SYN=1, the output timing of SYNC is set by SY[1:0] as follows.

SY[1:0]	SYNC signal output timing
00	Head of 1 st subframe
01	Head of 2 nd subframe
10	Head of 3 rd subframe
11	Head of 4 th subframe

FR: Polarity indicator signal.

CL: Shift clock signal

PM: Field delimiter signal.

SYNC: Frame delimiter signal.

Note: The priority of the monitor signal is: FR > CL > PM > SYNC.

DC/DC Select 5.

To select the boost times of the 1st booster circuit in normal display mode, partial display mode 0 and partial display mode 1.

D/I	RDB	WRB	D7	D6	D5	D4	D 3	D2	D1	D0	Hex
0	3	0	0	0	F	0	0	0	0	0	20h
0	1	0	8		DC3	DC2	0	0	DC1	DC0	XX

The boost times of 1st internal DC/DC converter circuit are set as follows:

In F	Partial Display Mode 1	In Normal, Partial Display Mode 0					
DC[3:2]	1 st Booster Circuit Set Up	DC[1:0]	1 st Booster Circuit Set Up				
00	x 1.0	00	x 1.0				
01	x 1.5	01	x 1.5				
10	x 2.0	10	x 2.0				
11	x 2.0	11	x 2.0				

2006/03/23

6. Bias Set

This command is the LCD driving bias ratio selection in normal display mode, partial display mode 0 and partial display mode 1.

ľ	D/I	RDB	WRB	D7	D6	D5	D4	D3	D2	D1	D0	Hex
	0	1	0	0	0	1	0	0	0	1	0	22h
I	0	1	0	0	0	BS3	BS2	0	0	BS1	BS0	XX

The boost times of the 2nd booster circuit and output voltage of DC2 are decided when the bias ratio is set.

	In Par	tial Display Mode 1	In Normal, Partial Display Mode 0					
BS[3:2]	Bias	2 nd Booster Circuit Set Up	BS[1:0]	Bias	2 nd Booster Circuit Set Up			
00	1/4	x (3.0)	00	1/4	x (3.0)			
01	1/5	x (3.0)	01	1/5	x (3.0)			
10	1/5	x (4.0)	10	1/5	x (4.0)			
11	1/6	x (4.0)	11	1/6	x (4.0)			

7. DC/DC Clock Division Set

To set the internal booster clock frequency to normal display mode, partial display mode 0 and partial display mode 1.

D/I	RDB	WRB	D7	D6	D5	D4	D3	D2	D1	DO	Hex	
0	1	0	0	0	1	0	0))\	0	0	24h	SF
0	1	0	0	DV5	DV4	DV3	0	DV2	DV1	D∀0	XX	

The booster clock frequency is set as follows:

In Pa	artial Display Mode 1		nal, Partial Display Mode 0
DV[5:3]	Booster Clock Frequency	DV[2:0]	Booster Clock Frequency
DV[5.5]	1/66, 1/33duty		1/132, 1/120, 1/108, 1/96duty
000	fOSC/8	000	fOSC/8
001	fOSC/16	001	fOSC/16
010	fOSC/32	010	fOSC/32
011	fOSC/64	011	fOSC/64
100	fOSC	100	fOSC
101	fOSC/2	101	fOSC/2
110	fOSC/4	110	fOSC/4
111	fOSC/8	111	fOSC/8

Note: 1. $fOSC = (Duty/3 + Dummy) \times 4 \times 8 \times frame frequency.$

2. The suitable frequency of the boost clock is in a range from 5kHz to 16kHz.

8. DC/DC and AMP ON/OFF Set

This command is to turn ON or OFF the internal OP-AMP and booster circuits.

	D/I	RDB	WRB	D7	D6	D5	D4	D3	D2	D1	D0	Hex
	0	1	0	0	0	1	0	0	1	1	0	26h
I	0	1	0	0	0	0	0	AMP	BT3	BT2	BT1	XX

The setting status is shown as below:

В	sit	Internal Power Circuit Status	Bit		Internal Power Circuit Status			
AMP -	0	Internal OP-AMP OFF	BT2	0	2 nd booster circuit OFF			
	1	Internal OP-AMP ON	DIZ	1	2 nd booster circuit ON			
BT1	0	1 st booster circuit OFF	BT3	0	3 rd booster circuit OFF			
ЫІ	1	1 st booster circuit ON	ыз	1	3 rd booster circuit ON			

9. Temperature Compensation Set

This command can select the average temperature compensation coefficients.

D/I	RDB	WRB	D7	D6	D5	D4	D3	D2	D1	D0	Hex
0	1	0	0	0	1	0	1	0	0	0	28h
0	1	0	0	0	0	0	0	0	TCS1	TCS0	XX

The four sets of temperature compensation coefficients can be selected as follows:

TCS[1:0]	Temperature Compensation Coefficient (at 25°C)
00	-0.00%/°C
01	-0.05%/°C
10	-0.10%/C
	-0.15%/°C

If external temperature compensation is needed, two resistors and one thermistor are connected as in the following circuit:

2006/03/23

With respect to the information represented in this document, Novatek makes no warranty, expressed or implied, including the warranties of merchantability, fitness for a particular purpose, non-infringement, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any such information.

Ver 0.03

10. Contrast Control (1) and Contrast Control (2)

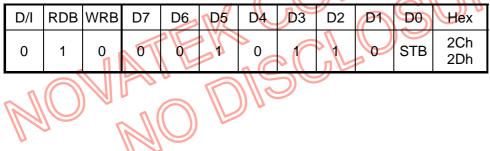
The command Contrast Control (1) is to set the contrast value C1[7:0] in normal display mode and partial display mode 0.

D/I	RDB	WRB	D7	D6	D5	D4	D3	D2	D1	D0	Hex
0	1	0	0	0	1	0	1	0	1	0	2Ah
0	1	0	C17	C16	C15	C14	C13	C12	C11	C10	XX

The command Contrast Control (2) is to set the contrast value C2[7:0] in partial display mode 1.

D/I	RDB	WRB	D7	D6	D5	D4	D3	D2	D1	D0	Hex
0	1	0	0	0	1	0	1	0	1	1	2Bh
0	1	0	C27	C26	C25	C24	C23	C22	C21	C20	XX

Both commands adjust V1 voltage from 2.0V to 3.3V, so the contrast resolution is 5.098mV in one step value.


11. Standby Mode ON/OFF Set

This command is used to set the IC to enter or exit the standby mode. When STB is high, the IC enters the standby mode to save the power consumption as in the following status:

- (1) All LCD driver outputs (common and segment): VSS level
- (2) Internal LCD driving power outputs (VRP, V1, VM and VRN); VSS level
- (3) Internal booster circuits (1st, 2nd and 3rd booster): OFF
- (4) Oscillator circuit: OFF

(5) The content of DDRAM is not cleared and the data can be written through the MPU interface.

Set standby mode off and display on commands for returning to the normal operation status.

12. Addressing Mode Set

This command is for setting the duty adjusts DSG, subgroup frame inversion mode SGF and subgroup phase mode SGP.

D/I	RDB	WRB	D7	D6	D5	D4	D3	D2	D1	D0	Hex
0	1	0	0	0	1	1	0	0	0	0	30h
0	1	0	0	0	0	DSG	SGF	0	SGP	0	XX

The setting function is shown as below:

В	Bit	Subgroup Function Status	В	it	Subgroup Function Status
DSG -	0	Dummy subgroup is one subgroup	SGP	0	Same phase in all pixel
036	1	Dummy subgroup is none		1	Different phase by 1 pixel unit
SGF	0	Subgroup frame inversion OFF			
30	1	Subgroup frame inversion ON			2

13. Row Vector Mode Set

Row \	/ector	Mode	Set									
This c	omma	nd is to	o set tl	he row	vecto	or upda	te me	thod.			~	NGT VENE
D/I	RDB	WRB	D7	D6	D5	D4	D3	D2	D1	D0	Hex	
0	1	0	0	0	1	1	0	0	1	0	32h	
0	1	0	0	0	0	0	0	0	INC	0	XX	

The row vector sequence is $R1 \rightarrow R2 \rightarrow R3 \rightarrow R4 \rightarrow R1 \rightarrow ...$ and updated as follows by setting INC.

В	Bit	Row Vector L	pdate
INC	0	Every subgroup	
	1	Every subframe	nCl

14. N-block Inversion Set

This command is for setting the N-block inversion for liquid crystal polarity alternation.

D/I	RDB	WRB	D7	D6	D5	D4	D3	D2	D1	D0	Hex
0	1	0	0	0	1	1	0	1	0	0	34h
0	1	0	FIM	0	0	NB4	NB3	NB2	NB1	NB0	XX

All the driver outputs will have polarity inversion as in the following setting:

FIM	NB[4:0]	Polarity Inversion Period	FIM	NB[4:0]	Polarity Inversion Period
0	00000	Frame Inversion	1	00000	Frame Inversion
0	00001	Every 1 block	1	00001	Every 1 block and every frame
0	:	:	1	:	:
0	11111	Every 31 block	1	11111	Every 31 block and every frame

15. Frame Frequency Set

This command can be set to low frame frequency for low power consumption. When the low frame rate is on (LFS is high), the frame frequency is set to 1/2x(normal frame frequency).

D/I	RDB	WRB	D7	D6	D5	D4	D3	D2	D1	D0	Hex
0	1	0	0	0	1	1	0	1	1	0	36h
0	1	0		FR[3:0]		0	0	0	LFS	XX

Note: fFR @(LFS=1) = fFR @(LFS=0) / 2

FR3	FR2	FR1	FR0	Oscillator (KHz)		Frame R	ate (Hz)		
113	1112	1 1 1 1	1 IXO		1/132 duty	1/120 duty	1/108 duty	1/96 duty	
0	0	0	0	91.52	65	71.5	79.444	89.375	
0	0	0	1	98.56	70	77	85.556	96.25	
0	0	1	0	105.6	75	82.5	91.667	103.125	4
0	0	1	1	112.64	80	88	97.778	110	
0	1	0	0	119.68	85	93.5	103.889	116.875	
0	1	0	1	126.72	90	99	110	123.75	
0	1	1	0	133.76	95	104.5	116.111	130.625	
0	1	1	1	140.8	100	110	122.222	137.5	
1	0	0	0	147.84	105	115.5	128.333	144.375	
1	0	0	1	154,88	110	121	134.444	151.25	
1	0	1	0	161.92	115	126.5	140.556	158.125	
1	0	11	1	168.96	120	132	146.667	165	
1		0	0	176	125	137.5	152.778	171.875	
		0	1	183.04	130	143	158.889	178.75	
Y	1	1	0	190.08	135	148.5	165	185.625	
1	1	1	J J	197.12	140	154	171.111	192.5	

16. Entry Mode Set

Setting the internal function mode.

I	D/I	RDB	WRB	D7	D6	D5	D4	D3	D2	D1	D0	Hex
	0	1	0	0	1	0	0	0	0	0	0	40h
	0	1	0	16B	0	0	MDI	MX	MY	Y/X	RMW	XX

The MDI is the memory data inversion setting for low power consumption.

_	MD	= 0	MDI = 1			
	Display Data Write	Display Data Read	Display Data Write	Display Data Read		
Data Bus	00h	00h	00h	FFh		
	\downarrow		\downarrow			
Memory	00h	00h	FFh	00h		

When entering the read modify write mode (RMW is high), the row/column address of DDRAM is not incremented in reading display data but is in writing display data.

В	Bit	Function Status	В	it	Function Status
16B	0	8-bit parallel data bus	MX	0	Column address increment
IOD	1	16-bit parallel data bus		F	Column address decrement
MDI	0	Memory data inversion OFF	MY	0	Row address increment
	1	Memory data inversion ON		1	Row address decrement
RMW	0	Read modify write OFF	Y/X	0	Column address count first
	1	Read modify write ON			Row address count first

The directions of display data stored into DDRAM are shown as follows:

Display Data Direction	MX = 0, MY = 0 (Normal)	MX = 0, MY = 1 (Y-Mirror)	MX = 1, MY = 0 (X-Mirror)	MX = 1, MY = 1 (X-Mirror, Y-Mirror)
Y/X = 0 (Normal)	Start End	Start End	End Start	End Start
Y/X = 1 (X-Y Exchange)	Start End	Start End	End Start	End Start

2006/03/23

Ver 0.03

17. Row Address Area Set

This command specifies the row address of DDRAM used to set a read/write area. In row address count mode (Y/X is high), the row address is incremented from the start address YS[7:0] to end address YE[7:0]. When the row address is equal to YE[7:0], the column address is automatically increased by 1 and the row address returns to the start address. Set the start address and the end address at the same time and the start address must be smaller than the end address.

D/I	RDB	WRB	D7	D6	D5	D4	D3	D2	D1	D0	Hex
0	1	0	0	1	0	0	0	0	1	0	42h
0	1	0	YS7	YS6	YS5	YS4	YS3	YS2	YS1	YS0	XX
0	1	0	YE7	YE6	YE5	YE4	YE3	YE2	YE1	YE0	XX

18. Column Address Area Set

This command specifies the column address of DDRAM used to set a read/write area. In column address count mode (Y/X is low), the column address is incremented from the start address XS[7:0] to end address XE[7:0]. When the column address is equal to XE[7:0], the row address is automatically increased by 1 and the column address returns to the start address. Set the start address and the end address at the same time and the start address must be smaller than the end address.

D/I	RDB	WRB	D7	D6	D5	D4	D3	D2	D1	D0	Hex	
0	1	0	0	1	0	0	0	0	H	Y	43h	
0	1	0	XS7	XS6	XS5	XS4	XS3	XS2	XS1	XS0	ХХ	
0	1	0	XE7	XE6	XE5	XE4	XE3	XE2	XE1	XE0	XX	SI

19. Display ON/OFF Control

This command is for turning the LCD display ON or OFF. When the display is off (DOF is low), all the common and segment outputs are set to VSS level and the internal booster circuits still operate.

D/I RDB	WRB	D7	D6	D 5	D4	D3	D2	D1	D0	Hex
0 1	0	0		0	1	0	0	0	DOF	50h 51h

20. Specified Display Pattern Set

This command sets the specified display patterns regardless of DDRAM data.

D/I	RDB	WRB	D7	D6	D5	D4	D3	D2	D1	D0	Hex
0	1	0	0	1	0	1	0	0	1	1	53h
0	1	0	0	0	0	0	0	0	DP1	DP0	XX

DP[1:0]	Display Pattern	DP[1:0]	Display Pattern
00	Normal Display	10	All Display OFF
01	Reverse Display	11	All Display ON

2006/03/23

Ver 0.03

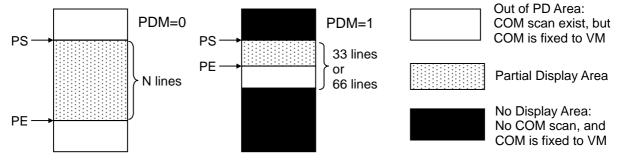
21. Partial Display Mode Set

This command enables to select the display mode. The IC enters into partial display when PT is high, then PDM and PDY decide the different partial display mode and different display duty shown as follows. This command does not change the contents of DDRAM.

D/I	RDB	WRB	D7	D6	D5	D4	D3	D2	D1	D0	Hex
0	1	0	0	1	0	1	0	1	0	1	55h
0	1	0	0	0	0	0	0	PDY	PDM	PT	XX

PT	PDM	PDY	Display Mode	Display Duty Ratio	Oscillator	
0	*	*	Normal Mode	Depend on DL[1:0]	OSC	
1	0	*	Partial Mode 0	(refer to "Driver Output Mode Set")	030	
1	1	0	Partial Mode 1	1/66	OSC/2	
1	1	1		1/33	OSC/4	

22. Partial Display Start Line Set and Partial Display End Line Set


These two commands set the display area from the start common line PS[7:0] to the end common line PE[7:0] at the time of partial display. Set the start line and the end line at the same time so that the common start must be smaller than the common end. The PS[7:0] and PE[7:0] are specified as the scan line number of common output, not DDRAM row address.

D/I	RDB	WRB	D7	D6	D5	D4	D3	D2	D1	DO	Hex	
0	1	0	0	1	0	1	0))1\`	1	0	56h	$\langle \rangle$
0	1	0	PS7	PS6	PS5	PS4	PS3	PS2	PS1	PS0	X	
			4		2 (2	6	5//				

0 1 0 1 0 1 1 1 57h 0 1 0 PE7 PE6 PE5 PE4 PE3 PE2 PE1 PE0 XX	D/I	RDB	WRB	D7	D6	D5	DĄ	D3	D2	D1	D0	Hex
0 1 0 PE7 PE6 PE5 PE4 PE3 PE2 PE1 PE0 XX	0		9	0	1	D) ぐ		1	1	1	57h
	0		0	PE7	PE6	PE5	PE4	PE3	PE2	PE1	PE0	XX

Note:

- 1. Partial Display Start Line PS[7:0] ≤ Partial Display End Line PE[7:0] ≤ Duty Ratio 1.
- 2. Partial Display End Line PE[7:0] Partial Display Start Line PS[7:0] ≤ Duty Ratio 1.
- 3. When PDM=1, PS[7:0] should be 3n. If you don't set PS[7:0]=3n and PE[7:0] PS[7:0] > 33 or 66 (depend on PDY), you will get less than 33 or 66 display lines.

2006/03/23

2

Partial Display Mode 0 (PDM=0)

On scanning except partial display area

- SEG output V0 or V1 levels depend on FR value and all of COM output is fixed to VM level.

On scanning partial display area

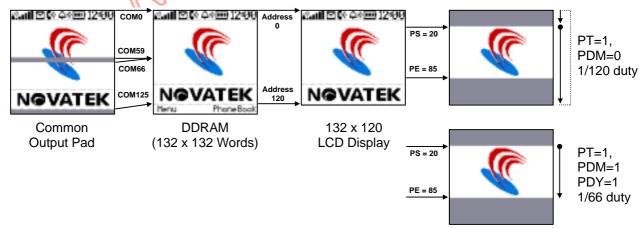
- It is equal to the normal mode

Item	Partial Display Area	Out of Partial Display Area					
COM Output level	VCC, VEE or VM	VM					
SEG Output level	Normal Display	V1 or V0 depends on FR					
Duty Ratio	DL[1:0] (1/96, 1/108, 1/120 or 1/132)						
Contrast Control	Contrast Control (1)						
Bias	Bias Depends on Bias Set BS[1:0]						
Oscillator OSC1 and OSC2 for internal oscillator, OSCIN for external oscillator							

Partial Display Mode 1 (PDM=1)

Display area is from partial start line (PS) to partial end line (PE) and only max. 66-line (PDY=0) or 33-lines (PDY=1) output COM signal.

On scanning except partial display area


- SEG output V0 or V1 levels depend on FR value and all of COM output is fixed VM level.

On scanning partial display area

- It is equal to 33-line or 66-line output.

ltem	Partial Display Area C	Out of Partial Display Area	Out of Display Area				
COM Output level	VCC, VEE or VM	VM (with scan field)	VM (without scan field)				
SEG Output level	Normal Display	V1 or V0 depends on FR	<u> </u>				
Duty Ratio	Depends on Partial Disp	lay Mode Set PDY (1/66, 1	/33)				
Contrast Control	Contrast Control (2)						
Bias	Depends on Bias Set BS[3:2]						
Oscillator	OSC3 and OSC4 for inte	ernal oscillator, OSCIN for e	external oscillator				

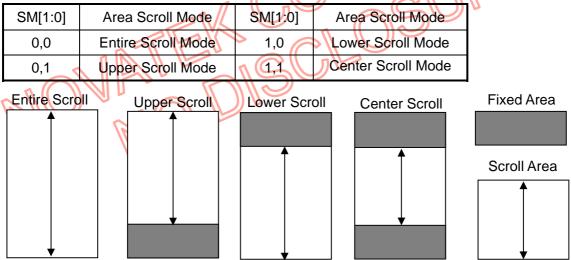
Example: 132x120 LCD display (DL[1:0]=10, 1/120 duty), PS[7:0]=14h, PE[7:0]=55h

2006/03/23

23. Area Scroll Set

This command specifies the portion of the screen for scrolling. The command sets the scroll area start line SS[7:0], scroll area end line SE[7:0], specific lower fixed number LF[7:0] and the area scroll mode SM[1:0] of the area scrolling.

D/I	RDB	WRB	D7	D6	D5	D4	D3	D2	D1	D0	Hex
0	1	0	0	1	0	1	1	0	0	1	59h
0	1	0	0	0	0	0	0	0	SM1	SM0	XX
0	1	0	SS7	SS6	SS5	SS4	SS3	SS2	SS1	SS0	XX
0	1	0	SE7	SE6	SE5	SE4	SE3	SE2	SE1	SE0	XX
0	1	0	LF7	LF6	LF5	LF4	LF3	LF2	LF1	LF0	XX

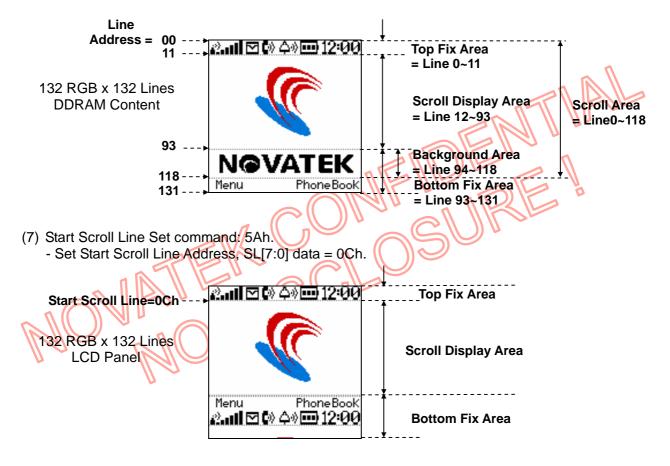

The set area scroll function is divided into four parts.

Part I – Specify the number of top fixed area lines = scroll area start line SS[7:0]. If in the upper screen scroll or the entire screen scroll mode, specify the 0th line for the top fixed area address.

- Part II Specify number of scroll display area lines = scroll area end line SE[7:0].
- Part III Specify the number of bottom fixed area lines = display line number DL[1:0] lower fixed number LF[7:0] 1. If in the lower screen scroll or the entire screen scroll mode, specify the 0 line for the lower fixed number. When the lower scroll or entire screen scroll is chosen, the resulted value is identical to the value = 0.

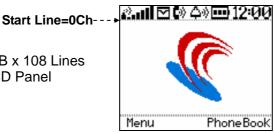
Part IV – Specify the area scroll mode. There are four types of area scroll modes.

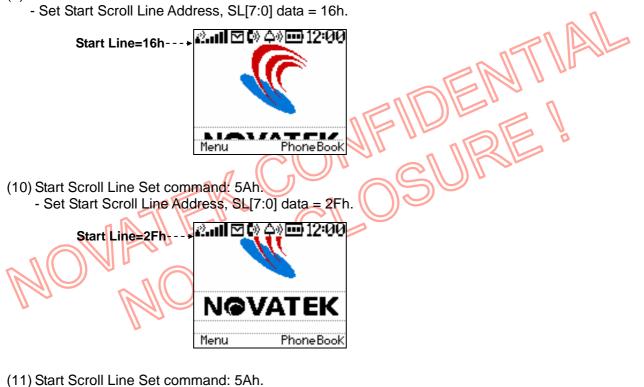
The area scroll function is executed by the prompt in the set area scroll command followed by changing the scroll start line address by the "Scroll Start Line Set" command.


Note:

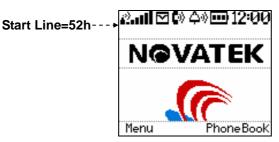
- 1. The scroll area start line SS[7:0] must be smaller than the scroll area end address SE[7:0].
- 2. In lower and center scroll mode, scroll area end line SE[7:0) must be smaller than duty ratio subtract low fixed number LF[7:0].

Example: In the Center screen scroll with the partial display mode 0.

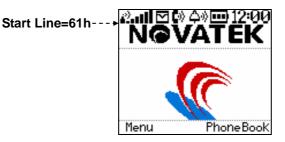

- (1) Area Scroll Set command: 59h.
- (2) Set Area Scroll Mode is center screen scroll mode, SM[1:0] = 03h.
- (3) $0^{th} \sim 11^{th}$ line (12 lines) are specified for the number of top fixed area line. Scroll area start line SS[7:0] = 0Ch.
- (4) 0th ~ 118th line (119 lines) are specified the number of scroll area line.
 Scroll area end line SE[7:0] = 76h (118).
- (5) $93^{rd} \sim 131^{st}$ line (38 lines) are specified for the number of bottom fixed area line. LF[7:0] = 25h (131 - 93 - 1 = 37).
- (6) $94^{\text{th}} \sim 118^{\text{th}}$ line (25 lines) are specified the background areas.



(8) Partial Display Mode Set command: 55h and 01h. Partial Display Start Line Set command: 56h. - Set Partial Display Start Line PS[7:0] = 00h. Partial Display End Line Set command: 57h. - Set Partial Display End Line PE[7:0] = 6Bh (107).


132 RGB x 108 Lines LCD Panel

(9) Start Scroll Line Set command: 5Ah. - Set Start Scroll Line Address, SL[7:0] data = 16h.


- Set Start Scroll Line Address, SL[7:0] data = 52h.

2006/03/23

- (12) Start Scroll Line Set command: 5Ah.
 - Set Start Scroll Line Address, SL[7:0] data = 61h.

(13) Start Scroll Line Set command: 5Ah. - Set Start Scroll Line Address, SL[7:0] data = 0Ch.

Menu

This command specifies the scroll starting line address SL[7:0] of the area scrolling then executes the area scroll by changing the start line address dynamically after the Scroll Start Line Set command is executed. 1

PhoneBook

D/I	RDB	WRB	D7	D6	D5	D4	D3	D2	D1	DO	Hex
0	1	0	6	1	0	10		70	1	0	5Ah
0	(1)	0	SL7	SL6	SL5	SL4	SL3	SL2	SL1	SL0	XX
Note:			. 1	()							

1. Scroll Area Start Line SS[7:0] ≤ Start Scroll Address SL[7:0] ≤ Scroll Area End Line SE[7:0].

- 2. DLN LFN < SS[7:0]
- 3. DLN = 132, 120, 108, 96, 66, or 33.

25. CR Volume Up/Down

This command to count the register value of contrast control (1) or (2) up/down.

CUD = 0, contrast control (1) or (2) depending on display mode at present is increased by 1. If register value is FFh, then register value becomes 00h after issuing this command.

CUD = 1, contrast control (1) or (2) depending on display mode at present is decreased by 1 If the register value is 00h, then the register value becomes FFh after issuing this command.

D/I	RDB	WRB	D7	D6	D5	D4	D3	D2	D1	D0	Hex
0	1	0	0	1	1	1	0	0	0	CUD	70h 71h

26. Status Read Mode Set and Status Read

The Status Read Mode Set command is used to select status content for reading.

D/I	RDB	WRB	D7	D6	D5	D4	D3	D2	D1	D0	Hex	
0	1	0	0	1	1	1	1	1	1	1	7Fh	
0	1	0	0	0	0	0	0	0	SR1	SR0	XX	A A
	SR[1:0)]		Sta	itus Re	ead						
	00				Status	;						la .
	01		Contrast Control (1), C1[7:0]								J	
	10		Cont	rast C	ontrol	(2), C2	2[7:0]	A.		11E		
	4.4			D	overed	a 6	511	\\\\`	40	1		KIP I

SR[1:0]	Status Read
00	Status
01	Contrast Control (1), C1[7:0]
10	Contrast Control (2), C2[7:0]
11	Reversed

The Status Read command read out the following status on D7 to D0 according to SR[1:0].

D/I	RDB	WRB	D7	D6	D5	D4	D3	D2	D1	D0	Hex
0	0	1	PM2	PM1	Y/X	PDM	PT	STB	REV	DOF	XX
0	0	N	C17	C16	C15	C14	C13	C12	C11	C10	XX
0	0	1	C27	C26	C25	C24	C23	C22	C21	C20	XX
U			$\ A\ $								

В	lit	Internal Status	В	it	Internal Status
PM2	0	MTP 2 is not programmed	PT	0	Partial display mode OFF status
	1	MTP 2 is programmed	ГІ	1	Partial display mode ON status
PM1	0	MTP 1 is not programmed	STB	0	Standby mode OFF status
	1	MTP 1 is programmed	315	1	Standby mode ON status
Y/X	0	Column address count mode	REV	0	Display image non-reversing
1/~	1	Row address count mode	NE V	1	Display image reversing
PDM	0	In Partial display mode 0	DOF	0	Display OFF status
FDIVI	1	In Partial display mode 1	DOF	1	Display ON status

2006/03/23

This command is for writing display data in display data RAM. When this command is executed, the row address and column address turn into the start address. After the display data byte WD[15:0] is written to DDRAM, the row address or column address is increased by 1 depending on Y/X bit is high or low that set by Entry Mode command. Input any other command to get out of the status set by this command.

D/I	RDB	WRB	D15	D14	D13	 D2	D1	D0	Hex
1	1	0	WD15	WD14	WD13	 WD2	WD1	WD0	XX
1	1	0	:	:	:	 :	:	:	:

28. Read Display Data

This command is for reading display data from display data RAM. When this command is executed, the read status becomes available and the row address and column address are set to the start address. After the content of DDRAM is read to register RD[15:0], the row address or column address is increased by 1 depending on Y/X bit is high or low that is set by Entry Model command. Input any other command to get out of status set by this command.

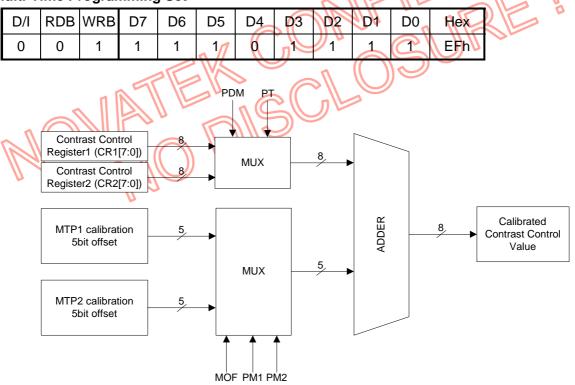
D/I	RDB	WRB	D15	D14	D13	 D2	D1	D0	Hex
1	0	1	RD15	RD14	RD13	 RD2	RD1	RD0	XX
1	0	1	:	:	:	 :	:	.((

Note: In 8-bit mode, you should read or write twice (two bytes) and address counter will be increased by 1.

29. MTP Calibration ON/OFF Control

This command is for turning the MTP Calibration ON or OFF. When MTP Calibration is OFF (MOF is low), the function will be disabled. After reset operation, MTP Calibration is ON (MOF is high).

D/I	RDB	WRB	D7	D6	D5	D4	D3	D2	D1	D0	Hex
0		0		1	í (C	To C			1	MOF	EAh EBh
R		5		\bigcirc		<u>ש</u> י					

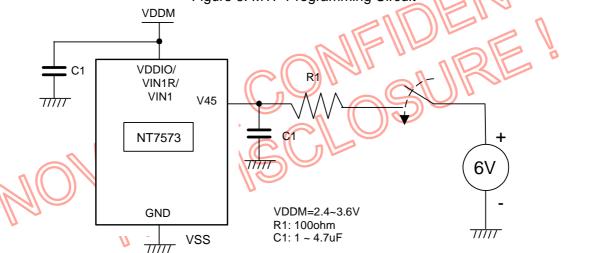

30. Multi-Time Calibration Set

D/I	RDB	WRB	D7	D6	D5	D4	D3	D2	D1	D0	Hex
0	0	1	1	1	1	0	1	1	0	1	EDh
0	0	1	0	0	0	MT4	MT3	MT2	MT1	MT0	XX

The Setting of the offset value of contrast

MT[4:0]	Offset Value						
00000	Original	01000	+16 step	10000	Original	11000	-16 step
00001	+2 step	01001	+18 step	10001	-2 step	11001	-18 step
00010	+4 step	01010	+20 step	10010	-4 step	11010	-20 step
00011	+6 step	01011	+22 step	10011	-6 step	11011	-22 step
00100	+8 step	01100	+24 step	10100	-8 step	11100	-24 step
00101	+10 step	01101	+26 step	10101	-10 step	11101	-26 step
00110	+12 step	01110	+28 step	10110	-12 step	11110	-28 step
00111	+14 step	01111	+30 step	10111	-14 step	11111	-30 step

31. Multi-Time Programming Set


2006/03/23

Preliminary

This contrast adjustment function should include the following two steps:

- (1) Find the offset value
 - 1) Set hardware reset and send the original initialization settings to display properly (fix a specified electronic volume)
 - 2) Read Status bit PM1 and PM2 (refer to Status Read Mode Set and Status Read command), and check had MTP1 and MTP2 programmed. If PM1 and PM2 = 1, it means that you can't do the MTP procedure anymore.
 - 3) Set golden test patterns to judge the contrast is best or not by vision
 - 4) Adjust the electronic volume value by Multi-Time Calibration Set command (MT[4:0]), until there is the best visual contrast.
- (2) Programming the offset value
 - 5) Set Display OFF (0x50) and Set DC/DC and AMP ON/OFF Set command (0x26) to 01h (1st Pump ON only)
 - 6) Connect an external voltage about 6V to V45 pin.
 - 7) Execute the Multi-Time Program command.
 - 8) Wait at lease 2 seconds and remove the high voltage from V45 pin
- (3) Check the display contrast
 - 9) Set DC/DC and AMP ON/OFF Set command to FFh and Set Display ON
 10) Check the contrast is the same with golden LCM sample by vision immediately.
 Figure 6. MTP Programming Circuit

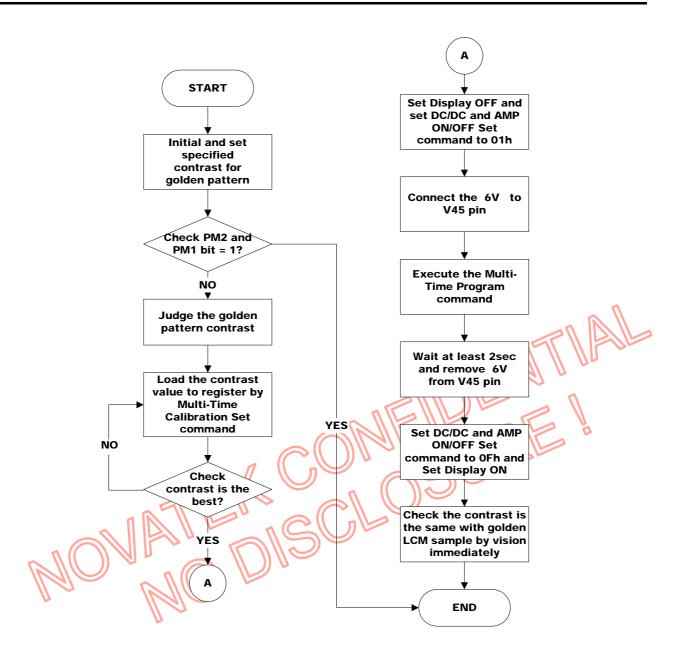
Note:

1. R1 is current limitation resister.

32. Test Mode

These commands (F9h to FBh and FDh to FFh) are for IC tests only. If executed, it has to be reset.

D/I	RDB	WRB	D7	D6	D5	D4	D3	D2	D1	D0	Hex
0	1	0	1	1	1	1	*	*	*	*	XX


2006/03/23

With respect to the information represented in this document, Novatek makes no warranty, expressed or implied, including the warranties of merchantability, fitness for a particular purpose, non-infringement, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any such information.

Ver 0.03

NT7573

2006/03/23

						••••	•	nano		010					
								Co	de						
Command	D/I	RDB	WRB	D15 ~ D8	D7	D6	D5	D4	D3	D2	D1	D0	Hex	Function	
(1) Non Operation	0	1	0	*	0	0	0	0	0	0	0	0	00h	Non operation	
(2) Oppillation Made Cot	0	1	0	*	0	0	0	0	0	0	1	0	02h	Set oscillator mode	
(2) Oscillation Mode Set	0	1	0	*	0	0	0	0	0	0	EXT	OSC	-		
(3) Driver Output Mode	0	1	0	*	0	0	0	1	0	0	0	0	10h	Set the display direction	
Set	0	1	0	*	SEQ	0	DL1	DL0	0	0	SWP	CDR	-		
	0	1	0	*	0	0	0	1	1	0	0	0	18h	Timing signal monitor control	
(4) Monitor Signal Control	0	1	0	*	0	0	SY1	SY0	SYN C	РМ	CL	FR	-		
(5) DC/DC Select	0	1	0	*	0	0	1	0	0	0	0	0	20h	Select boosting times of 1 st	
	0	1	0	*	0	0	DC3	DC2	0	0	DC1	DC0	-	booster circuit	
(6) Bias Set	0	1	0	*	0	0	1	0	0	0	1	0	22h	Set LCD bias ratio	
	0	1	0	*	0	0	BS3	BS2	0	0	BS1	BS0	-		
(7) DC/DC Clock Division	0	1	0	*	0	0	1	0	0	1	0	0	24h	Set internal booster clock	
Set	0	1	0	*	0	DV5	DV4	DV3	0	DV2	DV1	DV0	-	frequency	
(8) DC/DC and AMP	0	1	0	*	0	0	1	0	0	1	1	0	26h	DC/DC converter and AMP	
ON/OFF Set	0	1	0	*	0	0	0	0	AMP	BT3	BT2	BT1	-	ON/OFF set up	
(9) Temperature	0	1	0	*	0	0	1	0	1	0	0	0	28h	Set driving voltage slope for	
Compensation Set	0	1	0	*	0	0	0	0	0	0	TC1	TC0	2	temperature compensation	
	0	1	0	*	0	0	1	0	1	0	1	0	2Ah	Set V1 output voltage for	
(10)Contrast Control(1)	0	1	0	*	C17	C16	C15	C14	C13	C12	C1 1	C10		normal and partial display mode 0	
(11)Contrast Control(2)	0	1	0	*	0	0	1	0	1	0	N	1	2Bh	Set V1 output voltage for	
	0	1	0	*	C27	C26	C25	C24	C23	C22	C21	C20	U I	partial display mode 1	
(12)Standby Mode ON/OFF Set	0	1	0	* \$	0	0	K	0	1	1	0	STB		Release/Enter the standby mode	
(13)Addressing Mode	0	1	0	*	0	0	1	1	0	0	0	0	30h	Set the DDRAM addressing	
Set	0	5	0	*	0	0	0	DSG	SGF	9	SGP	0	-	mode	
(14)Row Vector Mode	0	1	0	*	0	0	211	1	0	0	1	0	32h	Set row vector function	
Set	0	1	0	*	0	0	0	0	0	0	INC	0	-		
(15)N-block Inversion	0	1	0	*	0	0	1	1	0	1	0	0	34h	Set N-block inversion for LCE	
Set	0	1	0	*	FIM	0	0	NB4	NB3	NB2	NB1	NB0	-	AC driving	
(16)Frame Frequency Set	0	1	0	*	0	0	1	1	0	1	1	0	36h	Set frame frequency	
(10) Frame Frequency Set	0	N	0	*	FR3	FR2	FR1	FR0	0	0	0	LFS	-		
(17) Entry Made Cat	0	1	0	*	0	1	0	0	0	0	0	0	40h	Set internal function	
(17)Entry Mode Set	0	1	0	*	16B	0	0	MDI	MX	MY	Y/X	RMW	-		
	0	1	0	*	0	1	0	0	0	0	1	0	42h	Set row address area of	
(18)Row Address Area Set		1	0	*	YS7	YS6	YS5	YS4	YS3	YS2	YS1	YS0	-	DDRAM	
500	0	1	0	*	YE7	YE6	YE5	YE4	YE3	YE2	YE1	YE0	-		
	0	1	0	*	0	1	0	0	0	0	1	1	43h	Set column address area of	
(19)Column Address Area Set	0	1	0	*	XS7	XS6	XS5	XS4	XS3	XS2	XS1	XS0	-	DDRAM	
71100 001	0	1	0	*	XE7	XE6	XE5	XE4	XE3	XE2	XE1	XE0	-	1	
(20)Display ON/OFF Control	0	1	0	*	0	1	0	1	0	0	0	DOF	50h 51h	Turn the display off/on	
(21)Specified Display	0	1	0	*	0	1	0	1	0	0	1	1	53h	Set the display pattern status	
Pattern Set		1							l						

Table 3. Command Table

2006/03/23

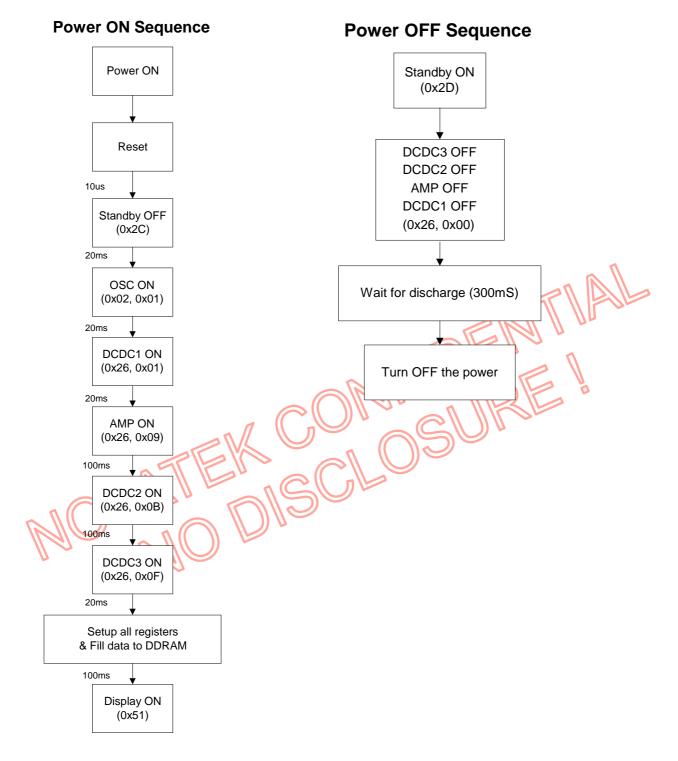
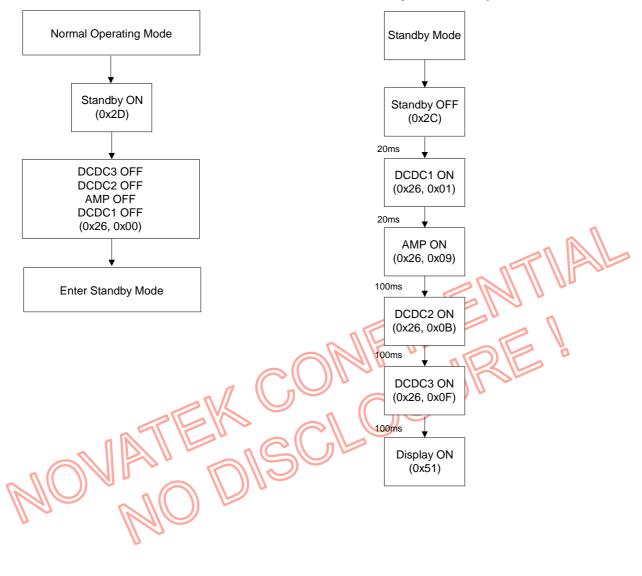

								Co	de					
Command	D/I	RDB	WRB	D15 ~ D8	D7	D6	D5	D4	D3	D2	D1	D0	Hex	Function
(22)Partial Display	0	1	0	*	0	1	0	1	0	1	0	1	55h	Set partial display mode
Mode Set	0	1	0	*	0	0	0	0	0	PDY	PDM	PT	-	
(23)Partial Display Start	0	1	0	*	0	1	0	1	0	1	1	0	56h	Set start line for partial display
Line Set	0	1	0	*	PS7	PS6	PS5	PS4	PS3	PS2	PS1	PS0	-	area
(24)Partial Display End	0	1	0	*	0	1	0	1	0	1	1	1	57h	Set end line for partial display
Line Set	0	1	0	*	PE7	PE6	PE5	PE4	PE3	PE2	PE1	PE0	-	area
	0	1	0	*	0	1	0	1	1	0	0	1	59h	Set area scroll field
	0	1	0	*	0	0	0	0	0	0	SM1	SM0	-	
(25)Area Scroll Set	0	1	0	*	SS7	SS6	SS5	SS4	SS3	SS2	SS1	SS0	-	
	0	1	0	*	SE7	SE6	SE5	SE4	SE3	SE2	SE1	SE0	-	
	0	1	0	*	LF7	LF6	LF5	LF4	LF3	LF2	LF1	LF0	-	
	0	1	0	*	0	1	0	1	1	0	1	0	5Ah	Set the start scroll line
(26)Scroll Start Line Set	0	1	0	*	SL7	SL6	SL5	SL4	SL3	SL2	SL1	SL0	-	
(27)CR Volume Up/Down	0	1	0	*	0	1	1	1	0	0	0	CUD		Count up/down the value of contrast control (1) or (2)
(28)Status Read Mode	0	1	0	*	0	1	1	1	1	1	1	1	7Fh	Select the content that read by
Set	0	1	0	*	0	0	0	0	0	0	SR1	SR0	-	command "Read Status
	0	0	1	0	PM2	PM1	Y/X	PDM	PT	STB	REV	DP		Indicate the internal status of
(29)Status Read	0	0	1	0	C17	C16	C15	C14	C13	C12	C11	C10		register
	0	0	1	0	C27	C26	C25	C24	C23	C22	C21	C20		
(30)Display Data Write	1	1	0				V	/D[15:	0]		, // .		-	Write display data to DDRAM
(31)Display Data Read	1	0	1			6	R	:D[15:0	2]	70		n	1-1	Read display data from DDRAM
(32)MTP Calibration ON/OFF Control	0	1	0	\$	1	1	7	0	1	0		MOF		Turn MTP Calibration function OFF/ON
(33)Multi-Time	0	1	0	*	1	1	1	0	1	1	0	2	EDh	Use for V1 voltage calibration
Calibration Set	0	1	0	*	0	0	0	MT4	MT3	MT2	MT1	MT0	-	
(34) Multi-Time Programming Set	0	N.	0	*		E			1	1	1	1	EFh	Use for V1 voltage programming
(35)Test Mode	0	1	0	*	1	Re	1	1	1	*	*	*	-	Use for IC test (F9h~FBh, FDh~FFh)
Note: "*" is don't care	R		\bigcirc											

Table 4. Command Table (continued)

2006/03/23

Power ON/OFF Sequence


2006/03/23

Exit Standby Mode Sequence

Enter/Exit Standby Mode Sequence

Enter Standby Mode Sequence

With respect to the information represented in this document, Novatek makes no warranty, expressed or implied, including the warranties of merchantability, fitness for a particular purpose, non-infringement, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any such information.

Ver 0.03

Preliminary

Absolute Maximum Rating

DC Supply Voltage (VDDIO)	
DC Supply Voltage (VIN1, VIN1A, VIN1R)	0.3V to +3.6V
DC Supply Voltage (VDD)	0.3V to +1.95V
DC Supply Voltage (VCC-VEE)	0.3V to +19.8V
Input Voltage (Vin)	-0.3V to VDDIO
Operating Ambient Temperature	40°C to +85°C
Storage Temperature	55°C to +125°C

*Comments

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to this device. These are stress ratings only. Functional operation of this device under these or any other conditions above those indicated in the operational sections of this specification is not implied or intended. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability.

NATEK CONFIDENTIAL NATESCLOSURE I NO DISCURSION

2006/03/23

Electrical Characteristics

DC Cha	aracteristics (1)	(VSS =	= 0V, VE	DDIO =	1.2 ~	3.6V, VIN1 = 2.4 ~ 3.6V, Ta = -40 ~ +85°C)
Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
VDDIO	Operating Voltage	1.2	-	3.6	V	
VDD	Operating Voltage	1.65	1.8	1.95	V	
VIN1	Operating Voltage	2.4	-	3.6	V	The booster times of 1 st booster set to 1x, 1.5x (VIN1=VIN1A=VIN1R)
VIINI	I1 Operating Voltage		-	2.75	V	The booster times of 1 st booster set to 2x (VIN1=VIN1A=VIN1R)
		1.66	-	2.75	V	1/4 bias, 2 nd booster X(3)
DC2	Operating Voltage	2.0	-	3.3	V	1/5 bias, 2 nd booster X(3)
DC2	Operating voltage	1.5	-	2.475	V	1/5 bias, 2 nd booster X(4)
		1.75	-	2.88	V	1/6 bias, 2 nd booster X(4)
VIN2	Operating Voltage	2.4	-	5.5	V	
V45	Operating Voltage	2.4	-	5.5	V	
2VR	Operating Voltage	4.0	-	19.8	V	2VR=VCC-VEE
VREG	Voltage Regulator Out Voltage	1.65	1.8	1.95	V	REG_OUT, Ta = 25°C
VCC		6.0	-	11.55	V	
V1	Driving Voltage Input	2.0	-	3.3	V	
VM	Range	1.0	-	1.65	External power supply mode	
VEE		-8.25	a (-4.0	V	
VIHC	High-level Input Voltage	0.8 x VDDIO		VDDIO	V	D/, RDB(E), WRB(R/W), CS1B, CS2, RSTB,
VILC	Low-level Input Voltage	VSS		0.2 x VDDIO	V	D0~D15, OSCIN, P/S, MPU
VOHC	High-level Output Voltage	0.8 x VDDIO		VDDIO	V	IOH=-0.5mA / VDDIO=1.65~3.6V IOH=-0.1mA / VDDIO=1.2~1.65V (D0~D15, CL, PM, SYNC, FR)
VOLC	Low-level Output Voltage	VSS	-	0.2 x VDDIO	V	IOL=0.5mA / VDDIO=1.65~3.6V IOL=0.1mA / VDDIO=1.2~1.65V (D0~D15, CL, PM, SYNC, FR)
ILI	Input Leakage Current	-1.0	-	1.0	μA	Vin=VDDIO or VSS (P/S, MPU, D/I, RDB(E), WRB(R/W), CS1B, CS2, RSTB)
IHZ	HZ Leakage Current	-3.0	-	3.0	μA	When the D0~D15 are in high impedance
fOSC	Oscillator Frequency Range (note 1)	97.52	-	197.12	kHz	In normal and partial display mode 0 and mode 1
ΔfOSC	Oscillator Frequency Tolerance (note 2)	126.72	140.8	154.88	kHz	In normal and partial display mode 0 and mode 1

Note: The condition of values for oscillator is based on 1/132 duty, 1/66duty, 1/33duty, no dummy subgroup (DSG =1) and the following is specified:

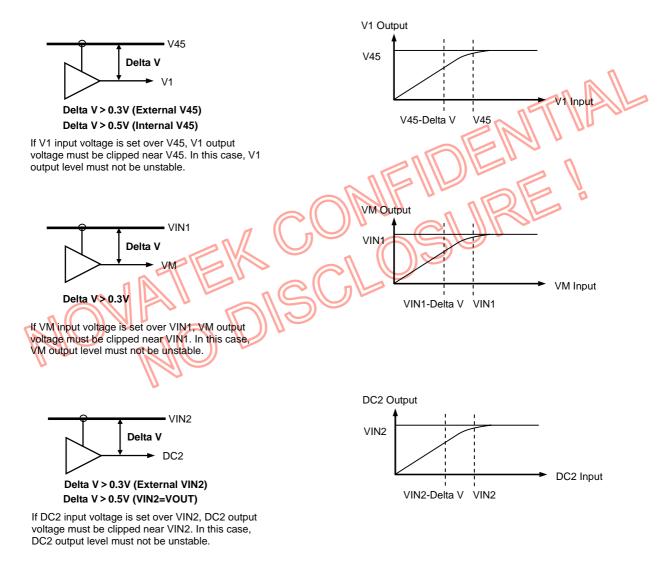
1. Minimum value of fOSC is defined at frame frequency = 65Hz

Maximum value of fOSC is defined at frame frequency = 140Hz

2. Typical value of Δ fOSC is defined at frame frequency = 100Hz

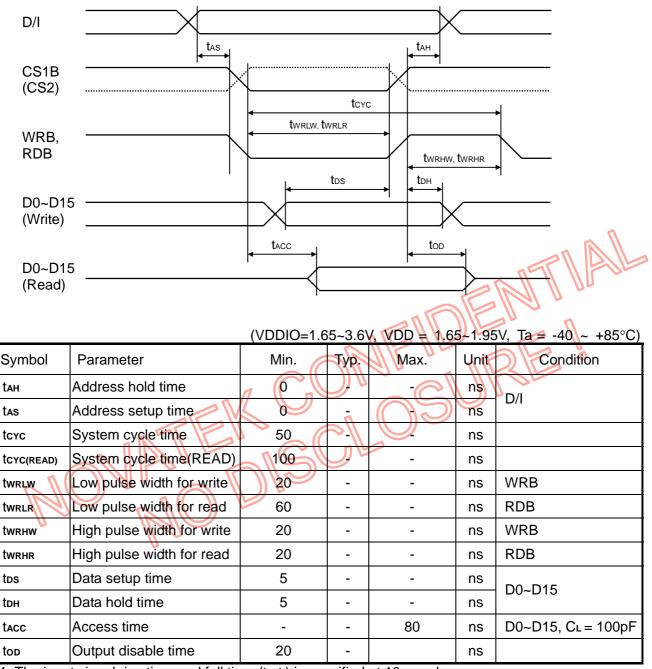
2006/03/23

DC Chara	acteristics (2)	VSS =	0V, VDI	DIO = 1	.2 ~	3.6V, VIN1 = 2.4 ~ 3.6V, Ta = -40 ~ +85°C)		
Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition		
RONC	LCD Driver ON Resistance for COM	-	1.0	1.5	KΩ	VCC=11.55V, VM=1.65V, VEE=-8.25V, lload=100µA, Ta=25°C		
RONS	LCD Driver ON Resistance for SEG	-	1.5	3.0	KΩ	V1=3.3V, VM=1.65V, V0IN=0V, Iload=100µA, Ta=25°C		
IDD	Current Consumption (without Regulator)	-	TBD	TBD	uA	VDDIO=VDD=1.8V, VIN1=2.4V, 1/6 bias, 1 st booster is x1.5, 132 display lines, fOSC=140.8 kHz, no load, no access, all white display pattern, CR=0xFF, Ta=25°C		
ששו	Current Consumption (with Regulator)	-	TBD	TBD		VDDIO=VIN1=3.0V, VDD=REG_OUT, 1/6 bias, 1 st booster is x1.5, 132 display lines, fOSC=140.8 kHz, no load, no access, all white display pattern, CR=0xFF, Ta=25°C		
ISB	Standby Current	-	15	TBD	uA	VDD=REG_OUT, VDDIO=VIN1=VIN1A= VIN1R=3.0V, Ta=25°C, REG_ENB=L \		
130	Standby Current	-	1.5	TBD	uA	VDD=1.8V, VDDIO=VIN1=VIN1A= VIN1R=3.0V, Ta=25°C, REG_ENB=H		
DC Chara	acteristics (3)	(VSS =	0V, VD	DIO =	1.2 ~	3.6V, VIN1 = 2.4 ~ 3.6V, Ta = -40 ~ +85°C)		
Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition		
$\Delta(VRP)$		-	-	150	mV	Isource=80µA		
$\Delta(VRN)$	Voltage Shift Range	-	-	150	mV	Isink=80µA		
$\Delta(VM)$	(note 1)	-	a - ((20	m∨	Isource,sink=250µA		
Δ(V1)			\	20	mV	Isource=250µA		
ΔVRP0	Tolerance of Bias	-100		100	mV	ΔVRP0=(VRP-VM)-VMxBias		
ΔVRN0	Ratio (no load)		26		л\	AVRN0=(VM-VRN)-VMxBias		
ΔVofs1	Offset Voltage			100	mV	lload=100μA (VRP) lload=-100μA (VRN)		
∆Vosf2	(note2)			50	mV	A. Iload=100μA (V1, VM) B. Iload=100μA (V1) Iload=-100μA (VM)		
A) /4		1.95	2.00	2.05	V	Contrast control=00h, Ta = 25°C		
ΔV1		3.25	3.30	3.35	V	Contrast control=FFh, Ta = 25°C		
A \ / A A	Voltage Range	0.95	1.00	1.05	V	Contrast control=00h, Ta = 25°C		
ΔVM		1.60	1.65	1.70	V	Contrast control=FFh, Ta = 25°C		
ΔVstep	Tolerance of Contrast Step of V1	2.549	5.098	7.647	mV	V1=3.3V		
ΔVt	Temperature Compensation Tolerance	-0.02	-	+0.02	%/ °C	VIN1=VIN1A=VIN1R=3.0V, Ta=-20 ~ +70°C		
V1	Output Voltage Level	2.0	-	3.3	V			
VM	(note 3)	1.0	-	1.65	V	1 st booster is x1.5		
DC2	-	1.67	-	2.75	V			


Notes:

Voltage Shift Range means output voltage difference between output current in loading and 1. unloading.

3. The definition of these three output voltage levels are shown as below.



2006/03/23

AC Characteristics

1. System Buses Read/Write Characteristics (for 8080 Series MPU)

*1. The input signal rise time and fall time (tr, tr) is specified at 10ns or less.

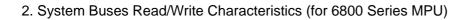
 $(t_r + t_f) < (t_{CYC} - t_{CSLW} - t_{CSHW})$ for write, $(t_r + t_f) < (t_{CYC} - t_{CSLR} - t_{CSHR})$ for read.

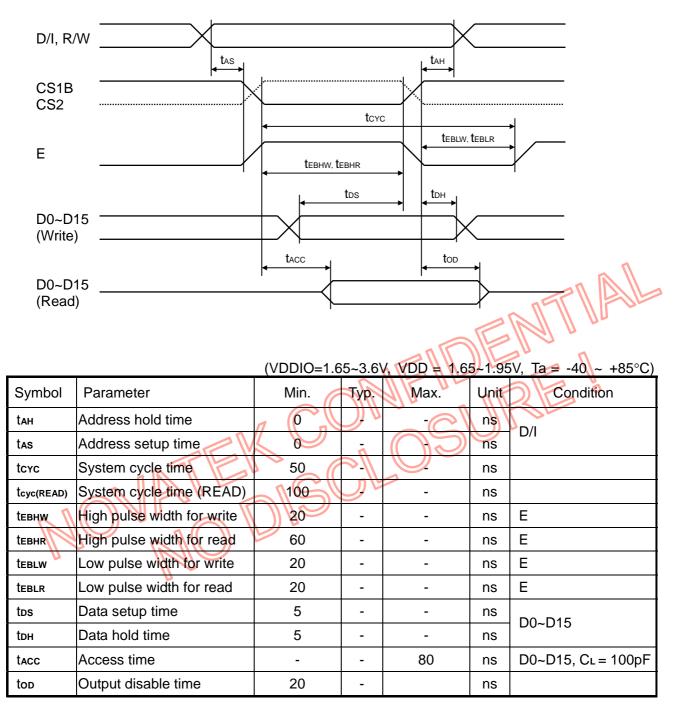
*2. All timing is specified using 20% and 80% of VDDIO as the reference.

*3. twr.Lw and twr.Lr are specified as the overlap interval when CS1B is low (CS2 is high) and WRB or RDB is low.

				,		,
Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
tан	Address hold time	TBD	-	-	ns	D/I
tas	Address setup time	TBD	-	-	ns	D/I
tcvc	System cycle time	TBD	-	-	ns	
tcyc(read)	System cycle time(READ)	TBD	-	-	ns	
twrlw	Low pulse width for write	TBD	-	-	ns	WRB
twrlr	Low pulse width for read	TBD	-	-	ns	RDB
twrнw	High pulse width for write	TBD	-	-	ns	WRB
twrhr	High pulse width for read	TBD	-	-	ns	RDB
tos	Data setup time	TBD	-	-	ns	D0~D15
tdн	Data hold time	TBD	-	-	ns	
tacc	Access time	-	-	TBD	ns	D0~D15, C∟ = 100pF
tod	Output disable time	TBD	-	-	ns	

(VDDIO=1.2~1.65V, VDD = 1.65~1.95V, Ta = -40 ~ +85°C)


*1. The input signal rise time and fall time (tr, tr) is specified at 10ns or less.


 $(t_r + t_f) < (t_{CYC} - t_{CSLW} - t_{CSHW})$ for write, $(t_r + t_f) < (t_{CYC} - t_{CSLR} - t_{CSHR})$ for read.

*2. All timing is specified using 20% and 80% of VDDIO as the reference

ATEK CLOS *3. twr.Lw and twr.Lr are specified as the overlap interval when CS1B is low (CS2 is high) and WRB or RDB is low.

*1. The input signal rise time and fall time (tr, tr) is specified at 10ns or less.

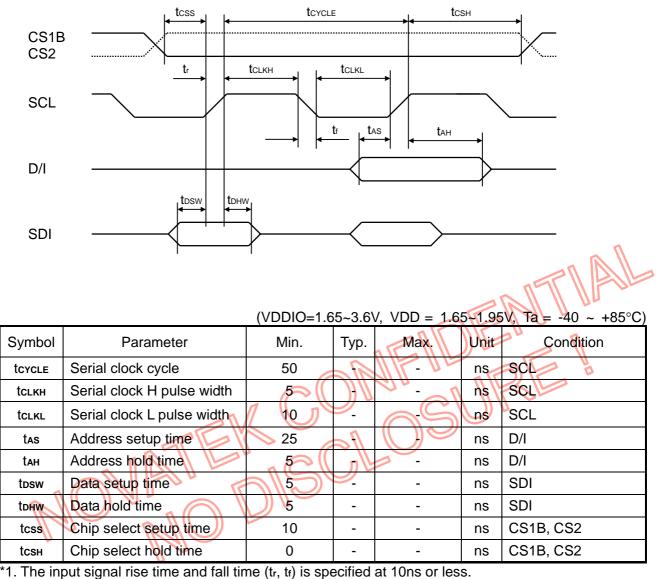
 $(t_r + t_f) < (t_{CYC} - t_{CSLW} - t_{CSHW})$ for write, $(t_r + t_f) < (t_{CYC} - t_{CSLR} - t_{CSHR})$ for read.

*2. All timing is specified using 20% and 80% of VDDIO as the reference.

*3. teвнw and teвнк are specified as the overlap interval when CS1B is low (CS2 is high) and E is high.

Preliminary

NT7573


		(VDDIO=1.2	2~1.65\	/, VDD = 1.6	5~1.95	5V, Ta = -40 ~ +85°C)
Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
tан	Address hold time	TBD	-	-	ns	D/I
tas	Address setup time	TBD	-	-	ns	
tcyc	System cycle time	TBD	-	-	ns	
tcyc(READ)	System cycle time (READ)	TBD	-	-	ns	
tевнw	High pulse width for write	TBD	-	-	ns	E
tевнк	High pulse width for read	TBD	-	-	ns	E
TEBLW	Low pulse width for write	TBD	-	-	ns	E
TEBLR	Low pulse width for read	TBD	-	-	ns	E
tos	Data setup time	TBD	-	-	ns	D0~D15
tdн	Data hold time	TBD	-	-	ns	00~015
tacc	Access time	-	-	TBD	ns	D0~D15, C∟ <mark> =</mark> 100pF
top	Output disable time	TBD	-	-	ns	AST ALL

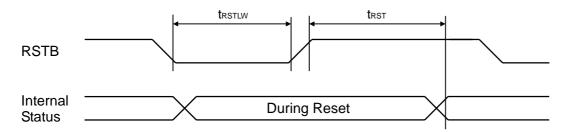
*1. The input signal rise time and fall time (tr, tr) is specified at 10ns or Jess.

- $(t_r + t_f) < (t_{CYC} t_{CSLW} t_{CSHW})$ for write, $(t_r + t_f) < (t_{CYC} t_{CSLR} t_{CSHR})$ for read.
- *2. All timing is specified using 20% and 80% of VDDIO as the reference.
- TERCE CSTB is lot *3. tEBHW and TEBHR are specified as the overlap interval when CS1B is low (CS2 is high) and E is high.

3. Serial Interface Timing

1. The input signal rise time and rait time (tr, tr) is specified at 101s of les

*2. All timing is specified using 20% and 80% of VDDIO as the standard.


	Parameter	Min.	Тур.	Max.	Unit	Condition
tcycle	Serial clock cycle	TBD	-	-	ns	SCL
tс∟кн	Serial clock H pulse width	TBD	-	-	ns	SCL
tськь	Serial clock L pulse width	TBD	BD ns SC		SCL	
tas	Address setup time	TBD	-	-	ns	D/I
tан	Address hold time	TBD	-	-	ns	D/I
tosw	Data setup time	TBD	-	-	ns	SDI
tdнw	Data hold time	TBD	-	-	ns	SDI
tcss	Chip select setup time	TBD	-	-	ns	CS1B, CS2
tcsн	Chip select hold time	TBD	-	-	ns	CS1B, CS2
			AC			RE

(VDDIO=1.2~1.65V, VDD = 1.65~1.95V, Ta = -40 ~ +85°C)

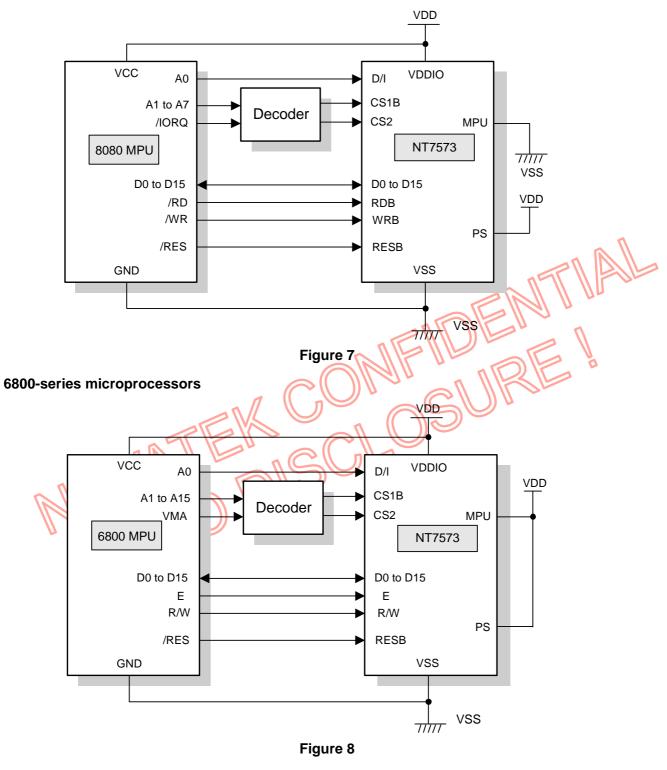
2006/03/23

4. Reset Timing

(VDDIO=1.65~3.6V, VDD = 1.65~1.95V, Ta = -40 ~ +85°C)

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
trstlw	Reset low pulse width	10	-	-	μs	RSTB
trst	Reset Time	-	-	1	μs	n
trrst	Reset Rise Time	-	-	1	ms	

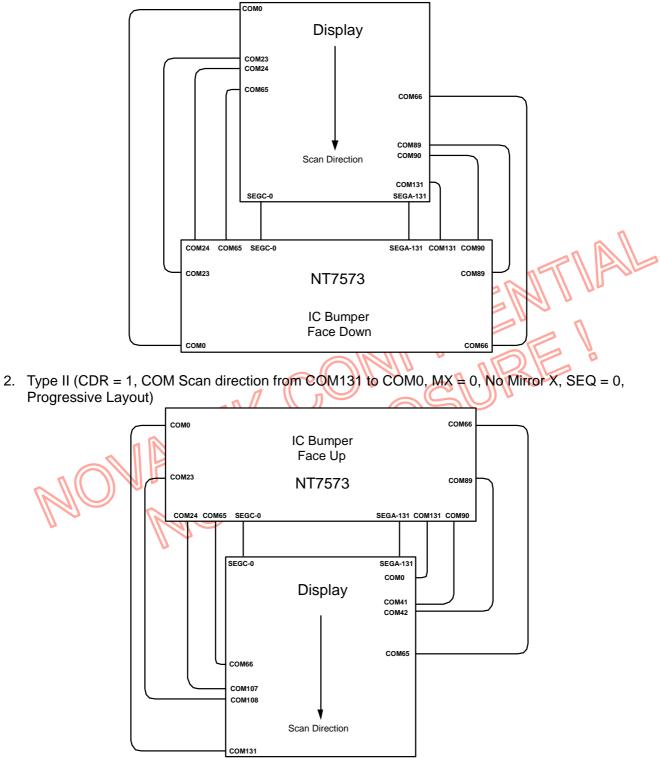
(VDDIO=1.2~1.65V, VDD = 1.65~1.95V) Ta = -40 ~ +85°C)


Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
trstlw	Reset low pulse width	TBD	$\widehat{\mathcal{M}}$		μs	RSTB
trst	Reset Time)}\	TBD	hs	STR.
trrst	Reset Rise Time			TBD	ms	
M	NATEN	DIS	<u>ار ج</u>			

2006/03/23

Microprocessor Interface (for reference only)

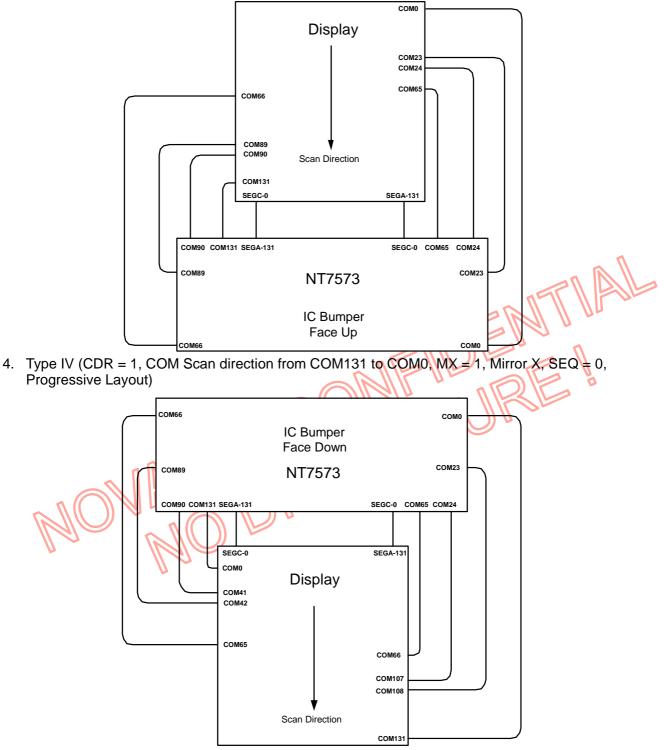
8080-series microprocessors



2006/03/23

Application information for LCD panel (for reference only)

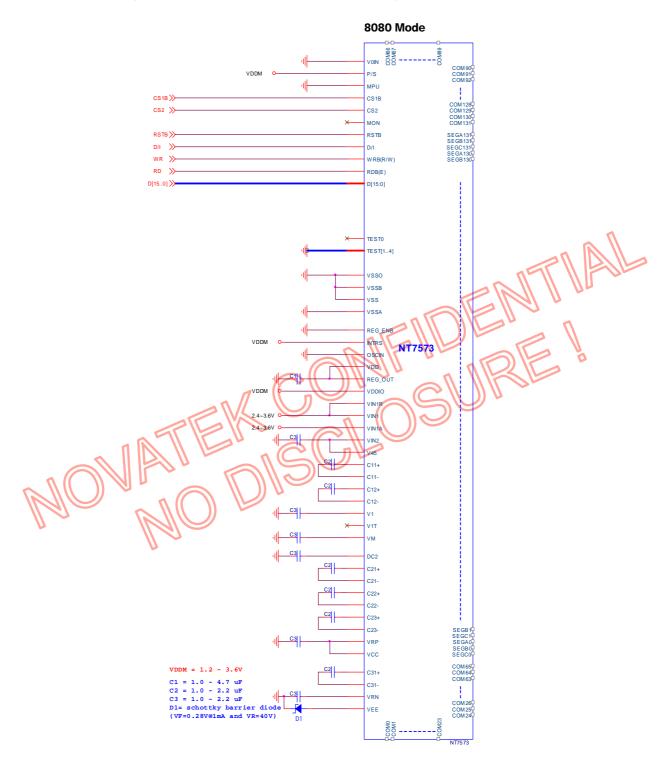
1. Type I (CDR = 0, COM Scan direction from COM0 to COM131, MX = 0, No Mirror X, SEQ = 0, Progressive Layout)



2006/03/23

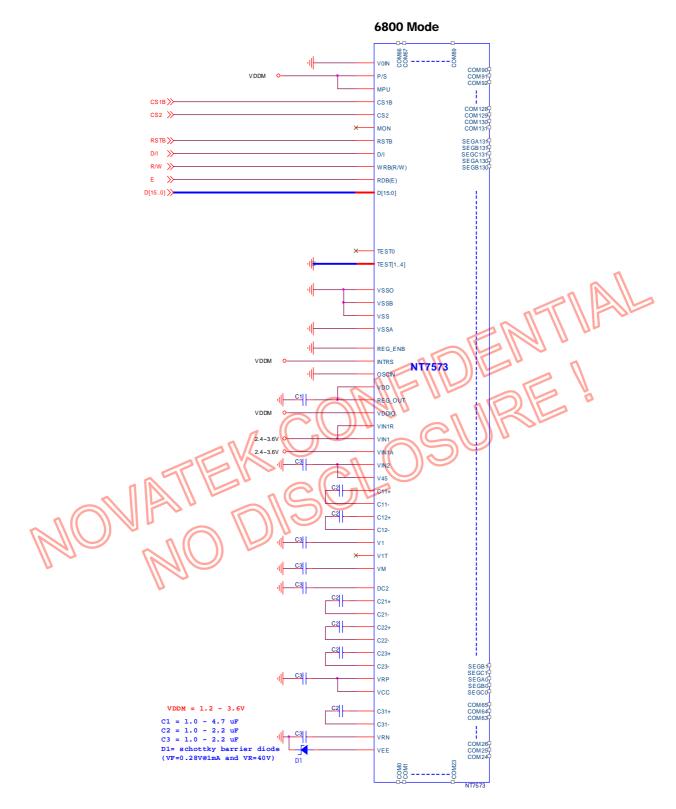
Preliminary

3. Type III (CDR = 0, COM Scan direction from COM0 to COM131, MX = 1, Mirror X, SEQ = 0, **Progressive Layout)**

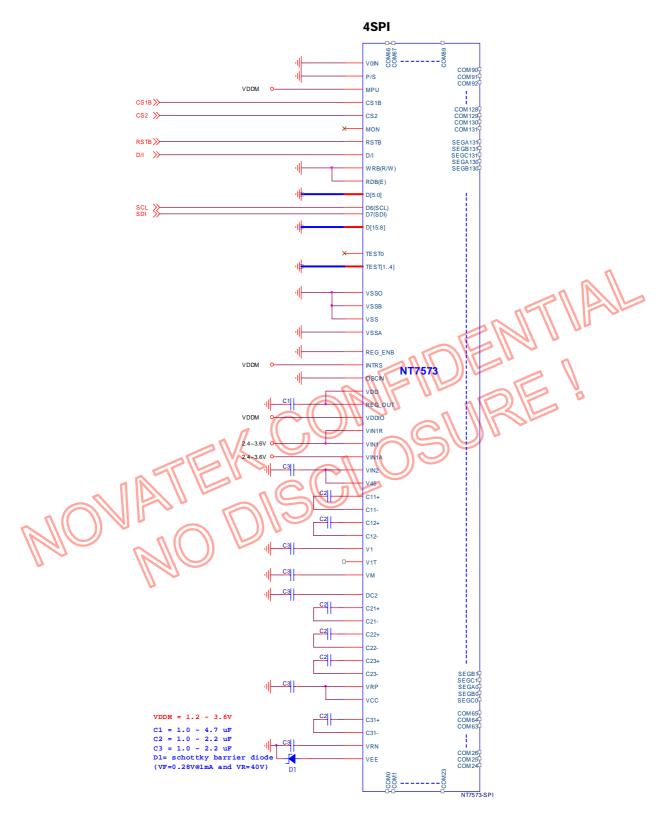


2006/03/23

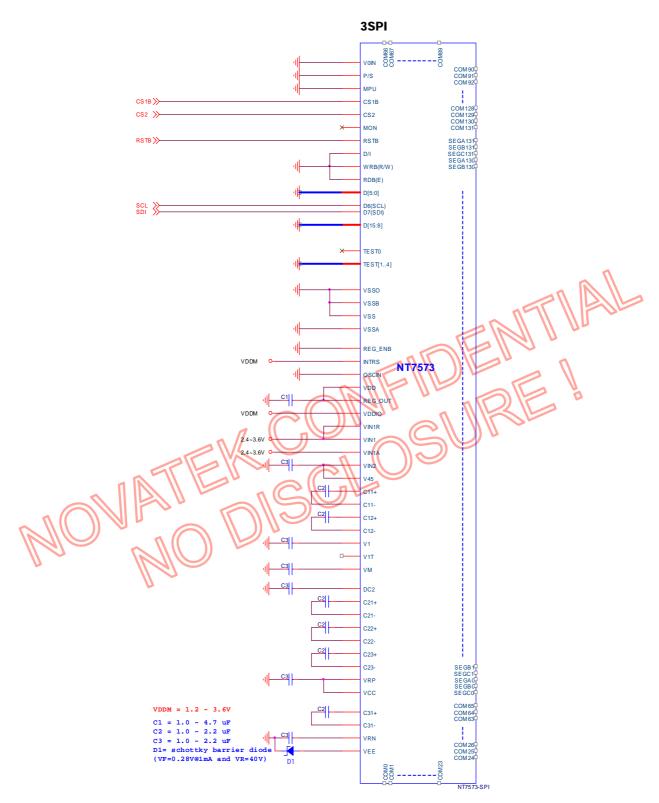
Application information for pin connection to MPU (for reference only)


1. 8080 MPU Mode: (P/S=H, MPU=L, REG_ENB=L, INTRS=H)

2006/03/23


2. 6800 MPU Mode: (P/S=H, MPU=H, REG_ENB=L, INTRS=H)

2006/03/23


3. 4-wire Serial Mode: (P/S=L, MPU=H, REG_ENB=L, INTRS=H)

2006/03/23

4. 3-wire Serial Mode: (P/S=L, MPU=L, REG_ENB=L, INTRS=H)

2006/03/23

Ordering Information

Part No.	Packages
NT7573H-BDT	Gold Bump on Chip Tray

Cautions

- 1. The contents of this document will be subjected to change without notice.
- 2. Precautions against light projection:

Light has the effect of causing the electrons of semiconductor to move; so light projection may change the characteristics of semiconductor devices. For this reason, it is necessary to take account of effective protection measures for the packages (such as COB, COG, TCP and COF, etc.) causing chip to be exposed to a light environment in order to isolate the projection of light on any part of the chip, including top, bottom and the area around the chip. Observe the following instructions in using this product:

- a. During the design stage, it is necessary to notice and confirm the light sensitivity and preventive measures for using IC on substrate (PCB, Glass or Film) or product.
- b. Test and inspect the product under an environment free of light source penetration.
- c. Confirm that all surfaces around the IC will not be exposed to light source.

NATEK CONFI NATEK NA