

12-CHARACTER 1-LINE DOT MATRIX LCD CONTROLLER DRIVER with SMOOTH SCROLL FUNCTION

■GENERAL DESCRIPTION

The NJU6624A/B is a Dot Matrix LCD controller driver for 12-character 1-line with icon display in single chip.

It contains bleeder resistance, general output port, keyscan circuit, CR oscillator, microprocessor interface circuit, instruction decoder controller, character generator ROM/RAM, high voltage operation common and segment drivers, and others.

The character generator ROM consisting of 7,840 bits stores 224 kinds of character Font, Each 1,120 bits CG RAM and Icon display RAM can store 32 kinds of special character displayed on the dot matrix display area or 60 kinds of Icon on the Icon display area.

The 8-common (7 for character, 1 for icon) and 71-segment drivers operate 12-character 1-line with 60 Icon LCD display and LED driver drives 4 LED which can use like as indicator.

The 16th display contrast control function is incorporated. Therefore, the contrast adjustment is operated easily by only simple power supply circuit on-chip.

The complete CR oscillator requires no external components.

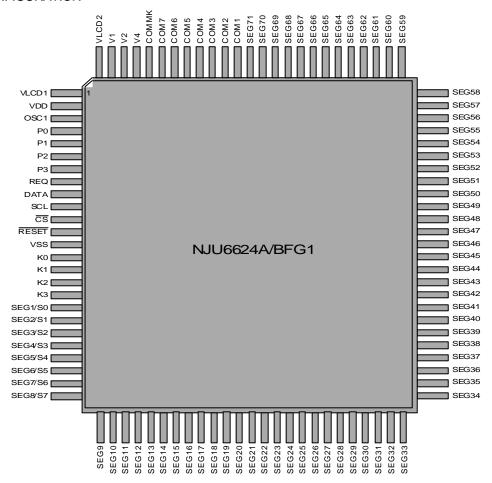
The serial interface which operates by 1MHz, communicates with external MCU.

As an outstanding feature, NJU6624A/B realizes the horizontal smooth scroll of characters by combination of instructions.

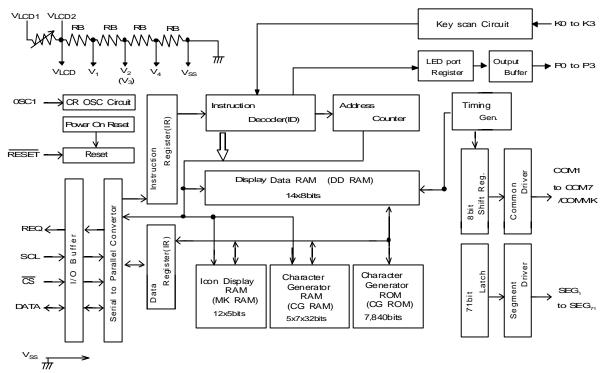
The combination of NJU6624A as the Master and NJU6624B as the slave drive the 12-character and 2-line LCD panel or 24-character 1line in 1/8 duty.

■PACKAGE OUTLINE

NJU6624A/BFG1


■FEATURES

- 12-character 1-line Dot Matrix LCD Controller Driver
- Maximum 60 Icon Display
- Serial Direct Interface with Microprocessor
- Display Data RAM - 14 x 8 bits : Maximum 12-character 1-line Display
- Character Generator ROM - 7,840 bits : 224 Characters for 5 x 7 Dots
- Character Generator RAM
- 1,120 bits : 32 Patterns(5 x 7 Dots)
- Icon Display RAM
- Maximum 60 Icons
- High Voltage LCD Driver
- : 8-common / 71-segment
- Duty and Bias Ratio
- : 1/8 duty, 1/4 bias
- Master/Slave Function
- :NJU6624A : Master, NJU6624B : Slave
- Useful Instruction Set
- : Clear Display, Address Home, Display ON/OFF Cont., Display Blink, Address Shift, Character Shift, Dot shift, Keyscan ON/OFF Cont. e.t.c.
- 32Key Input (4x8 keyscan)
- General output port (4 ports)
- Power On Initialization / Hardware Reset
- Bleeder Resistance on-chip
- Software contrast control(16 step)
- Oscillation Circuit on-chip
- Low Power Consumption
- Operating Voltage --- 2.4 to 5.5 V
- Package Outline — QFP 100
- C-MOS Technology


2004/04/19

■PIN CONFIGURATION

■BLOCK DIAGRAM

New Japan Radio Co., Ltd.

■TERMINAL DESCRIPTION

No.	SYMBOL	I/O	FUNCTION
2,13	VDD,VSS	-	Power Source:VDD=+5V,GND:VSS=0V
1	VLCD1	1	LCD driving voltage input terminal
100 99 98 97	VLCD2 V1 V2 V4	Ι	LCD driving voltage stabilization capacitor terminals. Connect the capacitor between VLCD2 and VSS, V1 and VSS, V2 and VSS, V4 and VSS. typ.: 0.1uF
3	OSC1	I	System clock input terminal This terminal should be open for internal clock operation.
11	CS	I	Chip select signal input of serial I/F.
10	SCL	I	Sift clock input of serial I/F.
9	DATA	I	Serial Data Input of serial I/F.
12	RESET	_	Reset Terminal. When the "L" level is input over than 1.2ms to this terminal, the system will be reset (at fosc 145KHz).
4-7	P0-P3	0	General output port LED driver drives LED as indicator on athers.
8	REQ	0	Key request signal output terminal.
14-17	K0-K3	-	Key scanning input terminals.
18-25	SEG1/S0 - SEG8/S7	0	LCD segment driving signal output / Key scanning output terminals.
26-88	SEG9-SEG71	0	LCD segment driving signal output terminals
89-95	COM1-COM7	0	LCD common driving signal output terminals
96	COMMK	0	Icon common driving signal output terminals

FUNCTIONAL DESCRIPTION

(1-1)Register

The NJU6624A/B incorporates two 8-bit registers, an Instruction Register(IR) and a Data Register(DR). The Register (IR) stores instruction codes such as "Clear Display" and "Cursor Shift" or address data for Display Data RAM(DD RAM), Character Generator RAM(CG RAM) and Icon Display RAM (MK RAM).

The Register(DR) is a temporary register, the data in the Register(DR) is written into the DD RAM, CG RAM or MK RAM.

The data in the Register(DR) written by the MPU is transferred automatically to the DD RAM, CG RAM or MK RAM by internal operation.

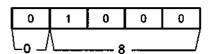
These two registers are selected by the selection signal RS as shown below.

(1-2)Address Counter (AC)

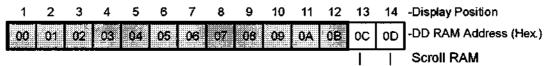
The address counter(AC) addresses the DD RAM, CG RAM or MK RAM.

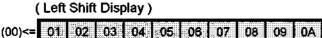
When the address setting instruction is written into the Register(IR), the address information is transferred from Register(IR) to the Counter(AC). The selection of either the DD RAM, CG RAM or MK RAM is also determined by this instruction.

After writing (or reading) the display data to (or from) the DD RAM, CG RAM or MK RAM, the Counter(AC) increments (or decrements) automatically.


(1-3) Display Data RAM (DD RAM)

The display data RAM (DD RAM) consist of 14x 8 bits stores up to 14-character display data represented in 8-bit code. (2 out of the 14characters are used for scroll RAM.)


The DD RAM address data set in the address counter(AC) is represented in Hexadecimal.


The relation between DD RAM address and display position on the LCD is shown below.

08 OC 0D

00

When the display shift is performed, the DD RAM address changes as follows:

(1-4)Character Generator ROM (CG ROM)

The Character Generator ROM (CG ROM) generates 5 x 7 dots character pattern represented in 8-bit character code.

The storage capacity is up to 224 kinds of 5 x 7 dots character pattern(available address is (20)_H through (FF)_H). The correspondence between character code and standard character pattern of NJU6624A/B is shown in Table 1, Table 2. User-defined character patterns (Custom Font) are also available by mask option.

Table 1. CG ROM Character Pattern (ROM version -02)

								Upp	er 4bit	(HEX	.)						
`		0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
	0	CG RAM (01)	(17)					••						::: ::	:::		
	1	(02)	(18)	••••				,::i	~:#			:::	::		•		
	2	(03)	(19)	::	· · · ·			<u>::</u> ::	:···			***	•	!!!	:: :	::::	
	3	(04)	(20)			: :	::	; <u></u> .	:::.		: :	:	•			: :: .	::::
	4	(05)	(21)	:	::							٠.			***	 :	
	5	(06)	(22)				!!	::::	ii		::::	**					
	6	(07)	(23)				I.,!		١٠	::::				···		; :	
(HEX.)	7	(08)	(24)	:	:			::::	1,:,1	::::		'';; :	:::::	.:: :		·	.::
Lower 4bit(HEX.)	8	(09)	(25)	÷.			; ; ;	! :	::::			·•;*	·::			. :	\mathbb{R}
	9	(10)	(26)			::	1	1	•:::			-::	•		11:	·· ;	`:::
	Α	(1.1)	(27)	:•:	##	:	:::.	i							 .·	٠:	-::
	В	(12)	(28)		::		:	! ::	•	1	:::	::i	∷			∷	.1
	С	(13)	(29)	;; ·	€.	<u></u>		:				†;	:::	:	: <u>;</u>	:::	
	D	(14)	(30)	••••				:	<u>;</u> :	:			.÷.	٠٠,	;	÷	
	Е	(15)	(31)	#	÷	ŀ.i	.···.	i"i	-:-			 i			···	: ^{::} :	
	F	(16)	(32)		.**;	: <u>"</u> :		: :	÷-			:::	٠ <u>.</u> .	***	:::	:: ::	

Table 2. CG ROM Character Pattern (ROM version-03)

abla								UPF	PER 4	4bit	(HEX	()					
Ľ	\setminus	0	1	2	3	4	5	6	7	8	9	Â	В	С	D	Е	F
	Ø								; ,	****		·			:::::		-==
	1			• • • • • • •	ğZ-								*****				
	2			•					**.								
	3			#			•••••	•	••••			#.·	•••				
	4				!-		100		:	- :	·* :i				•••		•
	5							=====		.• :•• •			- ;;			•	
EX)	6					:		-:	•.•		::::	•			••		
4bit(HEX)	7													jo 9	200		· : .
LOWER 4	8					: :		-":					 :			 -	
	9							1		•			•	<u>'</u>	•		:.":
	A				::	- ""		i	•••••				-				
	В				;		.		•				•		••••		
	С			:			••.										
	D			00100			!	r	.:			ŀ					•
	Ε			==			•====				1.						
	F			•••													

(1-5)Character Generator RAM (CG RAM)

The character generator RAM (CG RAM) can store any kind of character pattern in 5 x 7 dots written by the user program to display user's original character pattern. The CG RAM can store 32 kind of character in 5 x 7 dots mode.

To display user's original character pattern stored in the CG RAM, the address data (00)_H-(1F)_H should be written to the DD RAM as shown in Table 2.

Table 3. shows the correspondence among the character pattern, CG RAM address and Data.

Table 3. Correspondence of CG RAM address, DD RAM character code and CG RAM character pattern(5 x 7 dots)

					_	·
Character Code (DD RAM Data)	CG RAM A	∖ddress		haracte Pattern CG RAN Data)		
76543210	76543	3210	Upp	4 3 2 1	l 0	
Upperbit Lower bit	Upperbit	Lower bit			bit	
00000000	00000	0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 1		1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1	1 1 0 0 0	Character Pattern Example(1) <= Cursor Position
00000001	00001	0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1		0 0 1 0	0 1 0 1	Character Pattern Example(2) <= Cursor Position
		000				
: : :	: : : :	: : : :				·
00011111	11111					*=Don't care
		1 0 0 1 0 1 1 1 0 1 1 1				

Notes:

- 1. Character code bit 0 to 4 correspond to the CG RAM address bit 3 to 7(5bits:32 patterns).
- 2. CG RAM address 0 to 2 designate character pattern line position. The 8th line is Don't care line. In case of input CG RAM data continuously, invalid address are Cursor position automatically.
- 3. Character pattern row position correspond to the CG RAM data bits 0 to 4 are shown above.
- 4. CG RAM character patterns are selected when character code of DD RAM bits 5 to 7 are all "0" and these are addressed by character code bits 0 and 1.
- 5. "1" for CG RAM data corresponds to display On and "0" to display Off.

(1-6)Icon Display RAM (MK RAM)

The NJU6624A/B can display maximum 60 Icons.

The Icon Display can be controlled by writing the Data in MK RAM corresponds to the Icon.

The relation between MK RAM address and Icon Display position is shown below:

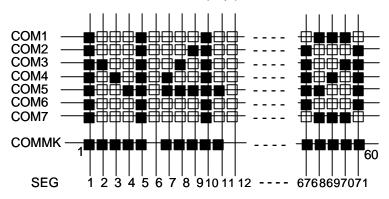


Table 4. Correspondence among Icon Position, MK RAM Address and Data

MK RAM Add	dress		В	its for	Icon D	isplay	Positio	n	
(10н-1Вн)	D ₇	D ₆	Dъ	D ₄	D₃	D ₂	D ₁	Do
1 0000	10н	0	0	0	"1"	"2"	"3"	"4"	"5"
1 0001	11н	0	0	0	"5"	"7"	"8"	"9"	"10"
1 0010	12 _H	0	0	0	"11"	"12"	"13"	"14"	"15"
1 0011	13н	0	0	0	"16"	"17"	"18"	"19"	"20"
:	:					:			
1 1011	1Вн	0	0	0	"56"	"57"	"58"	"59"	"60"

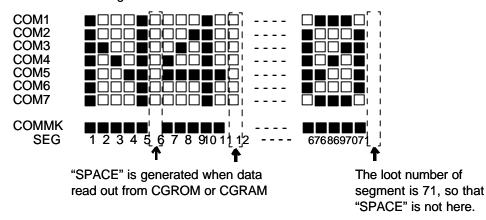
Notes: There is no icon, on the segment terminals which are six times number of tines. (6th, 12th, 18th, 24th....)

(1-7)Timing Generator

The timing generator generates a timing signals for the DD RAM, CG RAM and MK RAM and other internal circuits.

RAM read timing for the display and internal operation timing for MPU access are separately generated, so that they may not interfere with each other.

Therefore, when the data write to the DD RAM for example, there will be no undesirable influence, such as flickering, in areas other than the display area.


(1-8)LCD Driver

LCD Driver consists of 8-common driver and 71-segment driver.

The character pattern data are latched to the addressed Segment-register respectively. This latched data controls display driver to output LCD driving waveform.

Note) Display

The NJU6624A/B generate "SPACE" automatically on the segment terminals. Which are six times number of lines, regardless the smooth scroll function. In busy of the smooth scroll operation, this "SPACE" scrolls also with characters, there is no icon on the segment terminals which are six times number of lines.

(1-9)Keyscan circuit

The Keyscan circuit consists of a detector block of key pressing and a fetching block of key status. It scans 4x8 key matrix and fetches conditions of 32 keys. Furthermore, it operates correctly against the key roll over input.

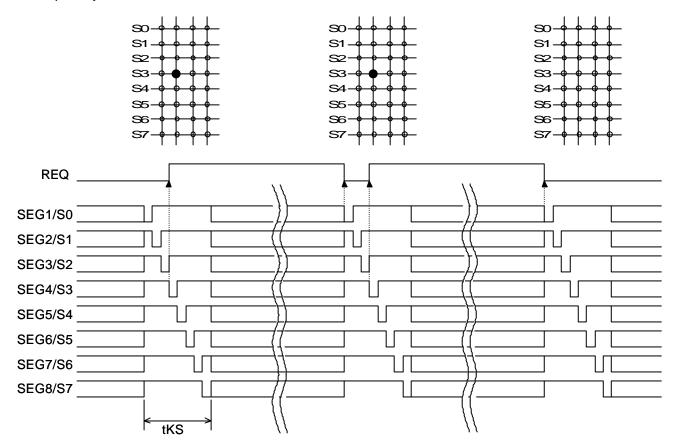
-Request signal output

When the NJU6624A/B detect the key-in by the key scan circuit, it outputs "H" signal as the request signal from the "REQ" terminal to notice the key pressing information to an application system.

The request signal resets to "L" level before 2 clock of next scanning.

-Contents of key register renewal

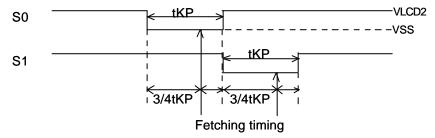
Contents of key register are "0000 0000" in case of no key operation. Contents of key register are not changed in busy of key data reading operation. Key data is fetched into the key register after 2 clock of the end of a keyscan cycle and kept by the start of next cycle.


-Key data input terminal and segment terminal

Keyscan signal output terminals operate as segment terminals (SEG1 to SEG8) also and keyscan signals are output in interval period of segment signals. Key data input terminals (K0 to K3) are pulled up to VDD in busy of keyscan operation (tKS). In this period, terminals of SEG9 to SEG71 output the voltage of V2 or VLCD2.

-Keyscan OFF mode

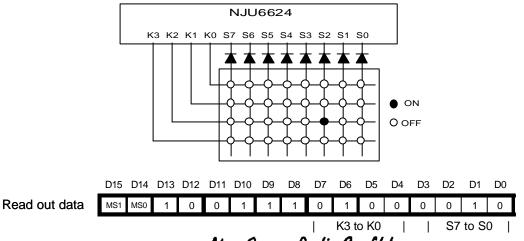
Keyscan operation is turned ON or OFF by the instruction. In case of keyscan OFF, the detector of key pressing is not operating and key data input terminals (K0 to K3) are not pulled up during the period of keyscan (tKS). In the period of keyscan (tKS), all of segment terminals (SEG1 to SEG71) output the voltage of V2 or VLCD2.


-Example Keyscan

-Key status fetching timing

Key status is fetched at third quarter of "L" period (tKP) of scan signals (S0 to S7) as shown below;

-Keyscan data format

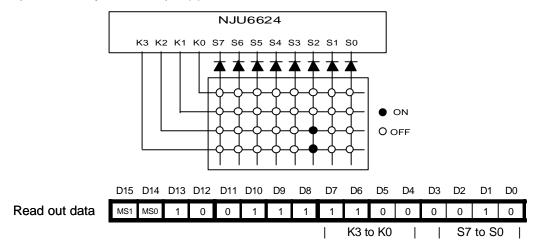

Scaned 8-bit data of key are read out through the srial I/F.

MS0	D15	D14	D13	D12	D11	D10	D9	D8	D/	D6	D5	D4	D3	D2	D1	D0
Keyscan output data KH2 KH1 KH0 S7 1 1 1 S6 1 1 0 S5 1 0 1 S4 1 0 0 S3 0 1 1 S2 0 1 0 S1 0 0 1	MS1	MS0	1	0	0	1	1	1	KL3	KL2	KL1	KL0	0	KH2	KH1	KH0
output data KH2 KH1 KH0 S7 1 1 1 S6 1 1 0 S5 1 0 1 S4 1 0 0 S3 0 1 1 S2 0 1 0 S1 0 0 1										K3 t	o K0	- 1	- 1	S7	to S	0
S6 1 1 0 S5 1 0 1 S4 1 0 0 S3 0 1 1 S2 0 1 0 S1 0 0 1						KH2	2	ŀ	KH1		KH)				
S5 1 0 1 S4 1 0 0 S3 0 1 1 S2 0 1 0 S1 0 0 1			S7			1			1		1					
S4 1 0 0 S3 0 1 1 S2 0 1 0 S1 0 0 1			S6			1			1		0					
S3 0 1 1 S2 0 1 0 S1 0 0 1			S5			1			0		1					
S2 0 1 0 S1 0 0 1			S4			1			0		0					
S1 0 0 1			S3			0			1		1					
			S2			0			1		0					
S0 0 0 0			S1			0			0		1					
			S0			0			0		0					

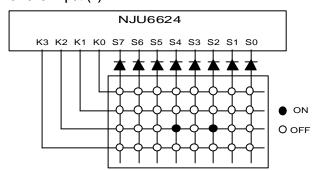
When a key on the key matrix is pressed, the bit corresponding to terminals (K3 to K0, S7 to S0) connected the switch goes to "1" and another bits go to "0".

In case of Example 1, when the switch connecting to K2 and S2 is pressed, bit(D6) corresponding to K2 and bit(D1) corresponding to S2 go to "1" but another bits go to "0".

Example 1. One key is pressed



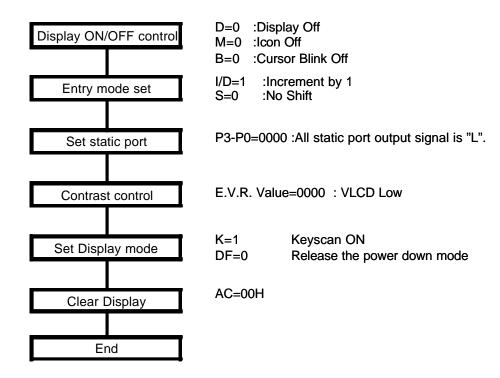
New Japan Radio Co. Ltd.



The key roll over input is the vertical line as shown below (Example 2) can be accepted with the keyscan circuit. But in case of Example 3, the key roll over input in the horizontal line can not be accepted. The key roll over input must be taken care for key data judgement.

Example 2. The key roll over input (1)

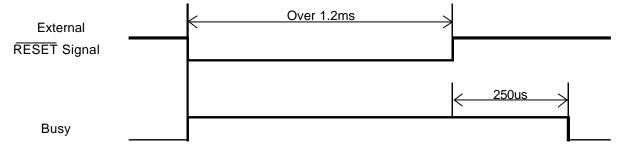
Example 3. The key roll over input (2)


Note: In case of can not read out correct.

(2) Power on Initialization by internal circuits

(2-1)Initialization By Internal Reset Circuits

The NJU6624A/B is automatically initialized by internal power on initialization circuits when the power is turned on. In the internal power on initialization, following instructions are executed. During the Internal power on initialization, the busy flag (BF) is "1" and this status is kept 1.5ms (fosc=145kHz) after V_{DD} rises to 2.4V. Initialization flow is shown below:



Note: If the condition of power supply rise time described in the Electrical Characteristics is not satisfied, the internal Power On Initialization Circuits will not operated and initialization will not performed. In this case the initialization by MPU software is required.

(2-2)Initialization By Hardware

The NJU6624A/B incorporates RESET terminal to initialize the all system. When the "L" level input over 1.2ms to the RESET terminal, reset sequence is executed. In this time, busy signal output during 250us (fosc=145kHz) after RESET terminal goes to "H". During this 250us period, any other instruction must not be input to the NJU6624A/B.

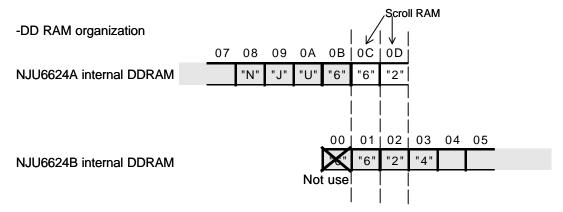
-Timing Chart

(3)Combination of NJU6624A(Master) and NJU6624B(slave)

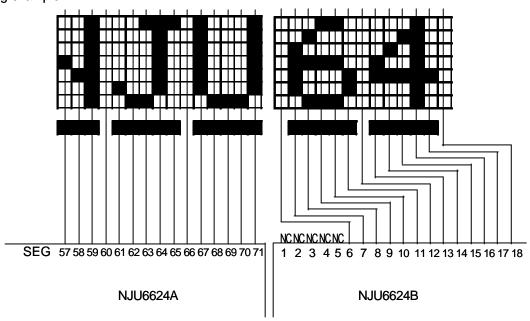
The combination of NJU6624A and B realizes 24character-1line display in 1/8 duty driving.

The instruction sets of version A and B are not so same (refer the instruction table) that the application does not need to separate the signal lines to MCU.

Therefore, minimum lines (only 5-wires) realize the separately control for version A and B in the combined application.


(3-1)A point to notice of master / slave connection

The NJU6624A of master LSI and the B of slave LSI don't synchronize the frame frequency, so that the timings of blinking between version A and B are not synchronized.


(3-2)Panel composition of master / slave mode at smooth scroll.

Though the NJU6624A/B generate the space for smooth scroll operation automatically, it does not generate a space at the right side position by 12th character. Therefore, when the scroll is operated on the 1-line LCD panel with normal wiring by one driver control, a space after the last character is lacked.

In case of combination application using NJU6624A and B, when the smooth scroll operate on the 1-line LCD, the data should be set to overlap the memory area which are (0C)H and (0D)H of A and (01)H and (02)H of B, and SEG1 to SEG5 of NJU6624B should not be wired on the LCD panel for the blank display between the character. Therefore, the maximum display size is 23-character 1-line in case of this application.

-Panel wiring example

Further more, detailed smooth scroll execution are shown at item (i) of instruction

(4)Instructions

The NJU6624A/B incorporates two registers, an Instruction Register (IR) and a Data Register(DR). These two registers store control information temporarily to allow interface between NJU6624A/B and MPU or peripheral ICs operating different cycles.

Table 4. Table of Instructions

	INSTRUCTION								CO	DE								Execute
	INSTRUCTION	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Time
(a)	Maker Testing	MS1	MS0	0	1	1	1	1	1				Test	data				-
(b)	Clear Display	MS1	MS0	0	1	1	0	0	1	*	*	*	*	*	*	*	*	234.48uS
(c)	Return Home	MS1	MS0	0	1	0	0	0	1	*	*	*	*	*	*	*	*	0uS
(d)	Entry Mode Set	MS1	MS0	0	0	1	0	0	0	*	*	*	*	*	*	I/D	S	0uS
(e)	Display ON/OFF Control	MS1	MS0	0	0	1	0	0	1	*	*	*	*	*	D	М	В	0uS
(f)	Address Shift	MS1	MS0	0	1	0	0	1	0	*	 						ARL	0uS
(g)	Display Shift	MS1	MS0	0	0	1	0	1	0	*	*	* * * * * * Df					DRL	0uS
(h)	Set Static Port	MS1	MS0	0	0	1	0	1	1	1 * * * * P3 P2 P1						P0	0uS	
(i)	Contrast Control	MS1	MS0	0	0	1	1	0	0	0 * * * * E.V.R. Value						ie	0uS	
(j)	Dot Shift	MS1	MS0	0	0	1	1	0	1	*	*	*	*	*	Num	ber of Dot		0uS
(k)	Set Display Mode	MS1	MS0	0	0	1	1	1	0	*	*	*	*	*	*	K	PD	0uS
(l)	Set DD/MK RAM Address	MS1	MS0	0	1	0	0	1	1	*	*	*	DD Mk	RAI KRAI	М(00 М(10	to 0I to 1I	D)H B)H	0uS
(m)	Set CG RAM Address	MS1	MS0	0	1	0	0	0	0	0 CG RAM(00 to FE)H								0uS
	Write DD RAM Data	MS1	MS0	0	1	1	0	0	0	0 Write data(DD RAM)								41.38uS
(n)	Write MK RAM Data	MS1	MS0	0	1	1	0	0	0	*	*	*	Wr	ite da	ata(N	IK RA	AM)	41.38uS
	Write CG RAM Data	MS1	MS0	0	1	1	0	0	0	*	*	*	Wı	rite d	ata(C	GRA	M)	41.38uS
(o)	Read Keyscan Data	MS1	MS0	1	0	0	1	1	1						0uS			

MS1,MS0: Discriminate master or slave. And write code (meet code for selected device) like as mentioned below.

MS1	MS0	DEVICE
1	0	NJU6624A
0	1	NJU6624B

Note: fosc=145KHz. If the oscillation frequency is changed, the execution time is also changed.

(4-1)Description of each instructions

(a)Maker Testing

Code MS1 MS0 0 1 1 1 1 1 1 * * * * * * * * * *		D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
	Code	MS1	MS0	0	1	1	1	1	1	*	*	*	*	*	*	*	*

This code is using for device testing mode (only for maker).

Therefore, please avoid all "0" input or no meaning Enable signal input at data "0".

(Especially please check the output condition of Enable signal when the power turns on.)

(b)Clear Display

_	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
Code	MS1	MS0	0	1	1	0	0	1	*	*	*	*	*	*	*	*

When this instruction is executed, the space code (20)_H is written into every DD RAM address, the DD RAM address (00)_H is set into the address counter and entry mode is set to increment. The S of entry mode does not change.

Note: The character pattern for character code (20)_H must be blank code in the user-defined character pattern (Custom font).

(c)Return Home

_	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
Code	MS1	MS0	0	1	0	0	0	1	*	*	*	*	*	*	*	*

Return home instruction is executed, the DD RAM address (00)_H is set into the address counter. Display is returned its original position if shifted. The DD RAM contents do not change.

(d)Entry Mode Set

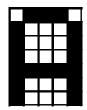
	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
Code	MS1	MS0	0	0	1	0	0	0	*	*	*	*	*	*	I/D	S

Entry mode set instruction which sets the address moving direction and display shift On/Off, is executed when the codes of (I/D) and (S) are written into DB₁(I/D) and DB₀(S), as shown below.

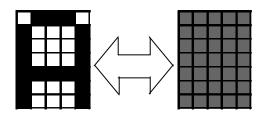
(I/D) sets the address increment or decrement, and the (S) sets the whole display shift in the DD RAM writing.

I/D	Function
1	Address increment: The address of the DD RAM or MK RAM or CG RAM increment (+1) when the write.
0	Address decrement: The address of the DD RAM or MK RAM or CG RAM decrement:(-1) when the write.
S	Func\tion
S 1	F u n c\ t i o n Whole display shift. The shift direction is determined by I/D.: shift to the left at I/D=1 and shift to the right at the I/D=0. The display does not shift when writing into CG, MK RAM.

New Japan Radio Co., Ltd.



(e)Display ON/OFF Control


	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
Code	MS1	MS0	0	0	1	0	0	1	*	*	*	*	*	D	М	В

Display On/Off control instruction which controls the whole display On/Off and the addressed position character blink, is executed when the codes of (D) and (B) are written into $DB_2(D)$ and $DB_0(B)$, as shown below.

D	Function
1	Display On.
0	Display Off.I n this mode, the display data remains in the DD RAM so that it is retrieved immediately on the display when the D change to 1.
М	Function
1	Icon display ON.
0	Icon display OFF.
В	Function
1	The addressed position character is blinking. Blinking rate is 500ms at fosc=145kHz. The cursor and the blink can be displayed simultaneously.
0	The character does not blink.

Character Font 5 x 7 dots (1)Cursor display example

Alternating display
(2)Blink display example

When the number of dot-shift is not set "0" in (j)Dot shift instruction, the blink operation will be appeared at the irregular position.

(f)Address Shift

_D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
Code MS1	MS0	0	1	0	0	1	0	*	*	*	*	*	*	*	ARL

The Address shift instruction shifts the Address to the right or left without writing or reading display data.

ARL	Function
0	Shifts the address position to the left ((AC) is decremented by 1)
1	Shifts the address position to the right ((AC) is incremented by 1)
	4. 6 6 4 4 4

(g)Display Shift

	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	
Code	MS1	MS0	0	0	1	0	1	0	*	*	*	*	*	*	*	DRL	ĺ

The Display shift instruction shifts the Display to the right or left without writing or reading display data. The contents of address counter(AC) does not change by operation of the display shift only.

DRL	Function
0 1	Shifts the whole display to the left and the cursor follows it. Shifts the whole display to the right and the cursor follows it.

(h)Set Static Port

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
Code MS1	MS0	0	0	1	0	1	1	*	*	*	*	P3	P2	P1	P0

It sets Static Output Port signal which can drive LED directly like as indicator. Initial status is "L".

(i)Contrast Control

_	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
Code	MS1	MS0	0	0	1	1	0	0	*	*	*	*	C3	C2	C1	C0

Contrast Control instruction which adjusts the contrast of the LCD, is executed when the code "1" is written into DB $_6$ and the codes of C $_3$ to C $_0$ are written into DB $_3$ to DB $_0$ as shown below.

The contrast of LCD can be adjusted one of 16 voltage-stages by setting this 4-bit register.

See (5-1) "how to adjust the Contrast of LCD".

Set the binary code "0000" when contrast adjustment is unused.

Сз	C 2	C ₁	C 0	VLCD	<u> </u>
0	0	0	0	low	
		:			
		:			
1	1	1	1	high	

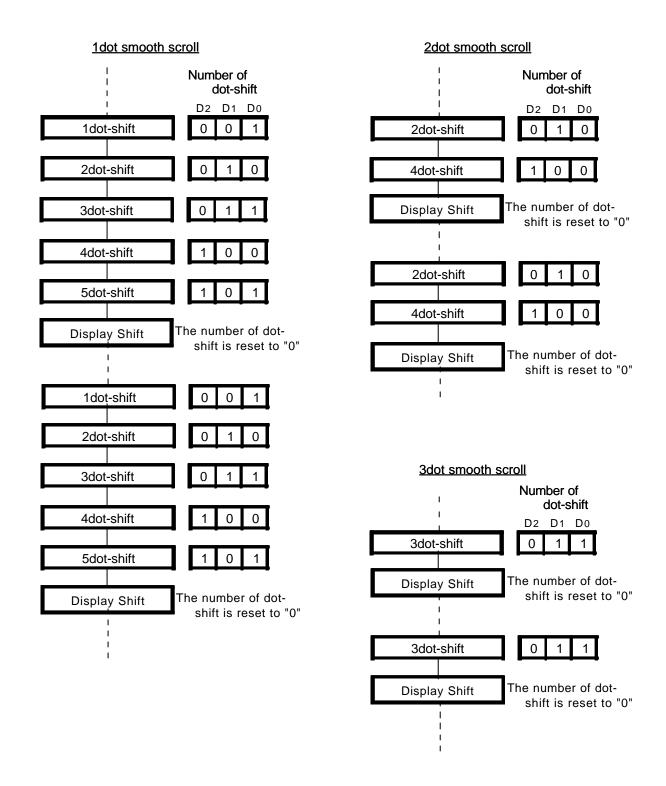
VLCD = VLCD2 - VSS

(j)Dot shift

_	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
Code	MS1	MS0	0	0	1	1	0	1	*	*	*	*	*	SC2	SC1	SC0

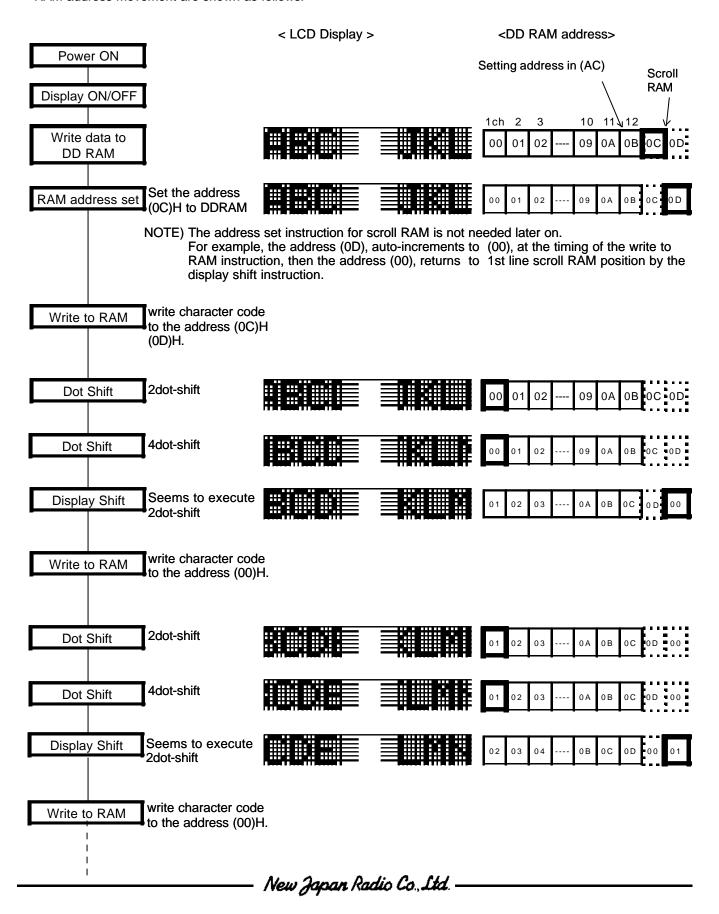
The dot shift instruction sets shift line and the number of dot-shift.

Conbination of this instruction and the Display shift instruction realize the horizontal smooth scroll. Refer to the following table.

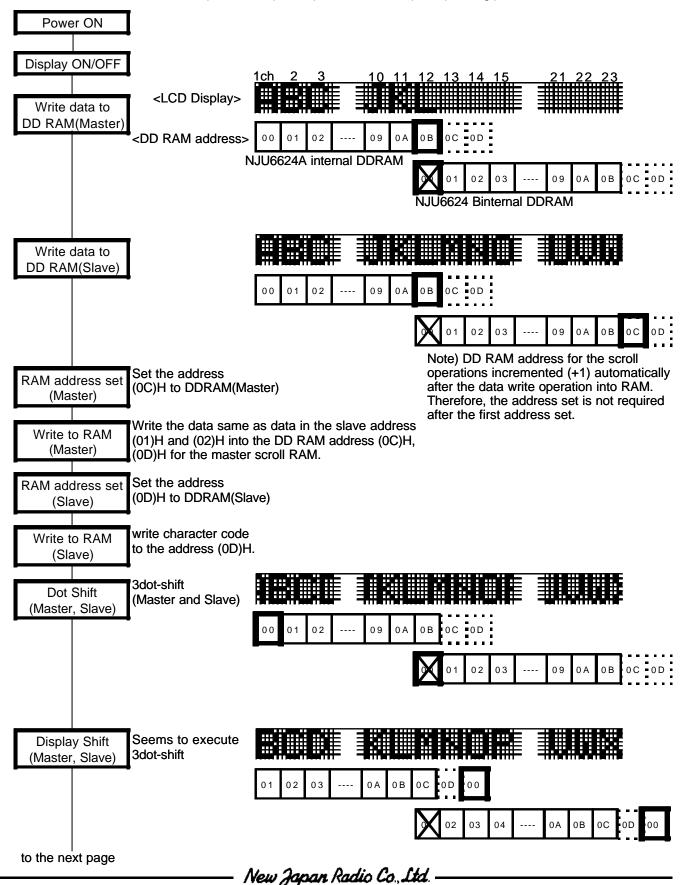

SC2	SC1	SC0	Function
0	0	0	No shift.
0	0	1	1dot-shift to the left.
0	1	0	2dot-shift to the left.
0	1	1	3dot-shift to the left.
1	0	0	4dot-shift to the left.
1	0	1	5dot-shift to the left.
1	1	0	Don't Care.
1	1	1	Don't Care.

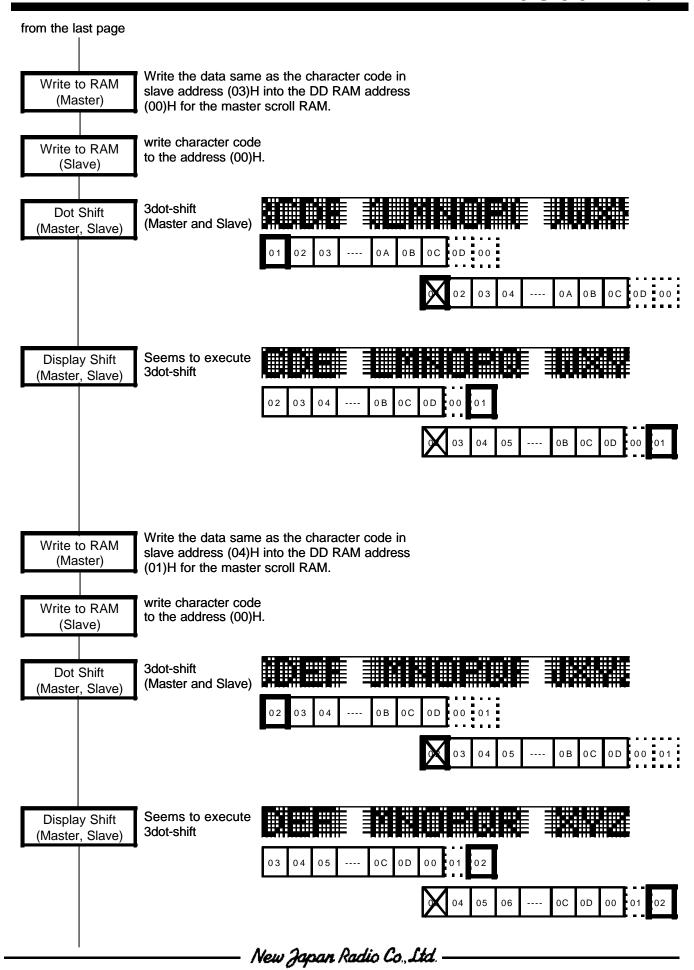
Note1) Set 1/D=1, S=0, in the entry mode set, for the line using the smooth scroll function. Note2) The number of dot-shift is reset to "0" by the execution of the Display Shift instruction. Note3) Only character is shifted by Dot shift instruction.

-Smooth scroll sequence


One out of the following three types of smooth scroll can be selectd by the instructions.

Example of 2 dot smooth scroll


The smooth scroll sequence, which is executed by the 2dot-shift and 4dot-shift instruction, LCD display and DD RAM address movement are shown as follows.



Example of 3 dot smooth scroll (NJU6624A+NJU6624B 23-character,1-line Display)

The smooth scroll sequence, which is executed by the 3dot-shift instruction, LCD display and DD RAM address movement are shown as follows. (NJU6624A(Master) and NJU6624B(Slave) useing.)

(k)Set Display Mode

_	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
Code	MS1	MS0	0	0	1	1	1	0	*	*	*	*	*	*	K	PD

The Set Display Mode instruction control the function of key scan and power down mode.

K	Function
1	Key scan ON
0	Key scan OFF In busy of keyscan (tKS), all of segment terminal (S0 to S7) output the voltage of V2.or V_{LCD2}
PD	Function
1	Power down mode. All of common and segment terminal set the voltage level of VLCD2
0	Release the power down mode.

In busy of Power down mode, do not input any instructions except for release the power down mode.

The power down mode should be set before power off because any irregular display appearance at power off is prevented.

The key scan operation when switching to the power down mode during key scan.

When switching to the power down mode during key scan operation, it stops key scan operation in the period and after power down mode cancellation too.

After power down mode cancellation, the REQ signal maintains "H" when detects key-in signal before switches to power down mode and REQ signal rises to "H".

However, the key scan operation becomes invalid data even if it reads key-in data because it stoppd. The key data becomes to valid with the key scan by the next key scan of frame.

(j)Set DD/MK RAM Address

_	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
Code	MS1	MS0	0	1	0	0	1	1	*	*	*	AD4	AD3	AD2	AD1	AD0

The address data (DB₄ to DB₀) is written into the address counter (AC) by this instruction. After this instruction execution, the data writing is performed into the addressed DD/MK RAM. The RAM includes DD RAM and MK RAM, and these RAMs are shared by address as shown below.

RAM address

DD RAM : (00)H - (0D)H MK RAM : (10)H - (1D)H

(j)Set CG RAM Address

	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
Code	MS1	MS0	0	1	0	0	0	0	AC7	AC6	AC5	AC4	AC3	AC2	AC1	AC0

The CG RAM address set instruction is executed when the "H" level input to the AC terminal and the address is written into DB₇ to DB₀ as shown above.

The address data (DB $_7$ to DB $_0$) is written into the address counter (AC) by this instruction.

After this instruction execution, the data writing is performed into the addressed RAM.

The RAM includes CG RAM address as shown below.

RAM address

CG RAM : (00)H - (FE)H

(n)Write Data to CG, DD or MK RAM

By the execution of this instruction, the binary 8-bit data (A₇ to A₀) are written into the DD RAM, and the binary 5-bit data (A₄ to A₀) are written into the CG or MK RAM. The selection of RAM is determined by the previous instruction. After this instruction execution, the address increment (+1) or decrement(-1) is performed automatically according to the entry mode set. And the display shift is also executed according to the previous entry mode set. However, the data in MK RAM (1C)H and (1D)H are not displayed, bat the automatic address increment is performed. And the display is not changed by the data written into MK RAM (1C)H and (1D)H

-Write Data to DD RAM

_	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
Code	MS1	MS0	0	1	1	0	0	0	DD7	DD6	DD5	DD4	DD3	DD2	DD1	DD0

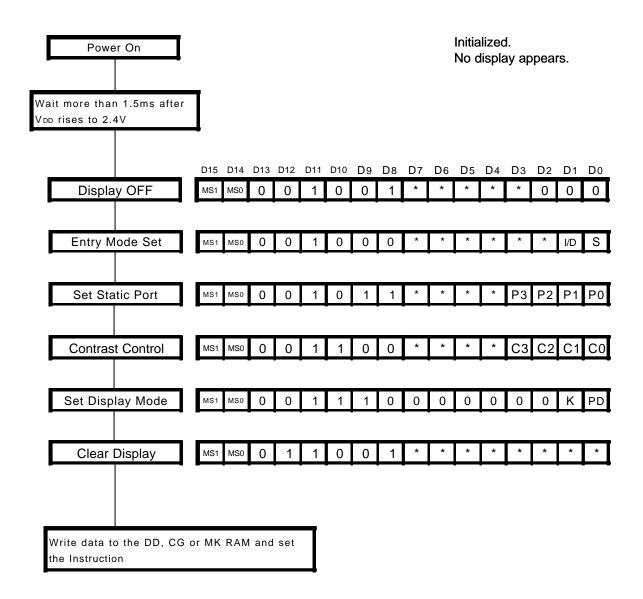
-Write Data to MK RAM

_	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
Code	MS1	MS0	0	1	0	0	0	0	*	*	*	DM4	DM3	DM2	DM1	DM0

-Write Data to CG RAM

	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
Code	MS1	MS0	0	1	0	0	0	0	*	*	*	DC4	DC3	DC2	DC1	DC0

(o)Read Data Key


_	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
Code	MS1	MS0	1	0	0	1	1	1	KL3	KL2	KL1	KL0	0	KH2	KH1	KH0

Read data key is a instruction for data reading out of keyscan. However, the bit 8 to 15 are input data. After this 8-bit data were input, the operation change to output from input at the falling edge of 8th SCK clock.

(4-2)Initialization by instruction

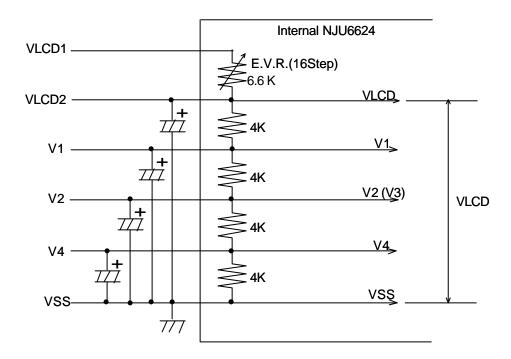
If the power supply conditions for the correct operation of the internal reset circuits are not satisfied, the NJU6624A/B must be initialized by the instruction.

Note: When the Icon display function using, the system should be initialized by software initialization.

(5)LCD display

(5-1)Bleeder Resistance

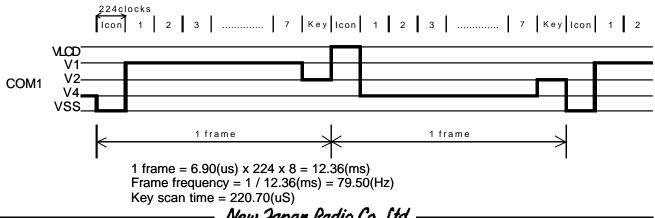
Each LCD driving voltage (V1, V2, V3, V4) is LCD driving high voltage input to the VLCD1 terminal, generated by the E.V.R. and high impedance bleeder resistance.


The bleeder resistance is set 1/4 bias suitable for 1/8 duty ratio.

The capacitor connected between VLCD2 and Vss is needed for stabilizing VLCD. The determination of the each capacitance requires to operate with the LCD panel actually.

LCD Driving Voltage vs Duty Ratio

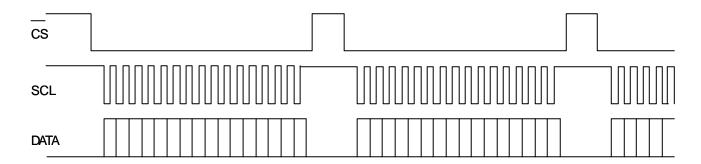
Power	Duty Ratio	1/8
supply	Bias	1/4
	VLCD	VLCD2- VSS


V_{LCD} is the maximum amplitude for LCD driving voltage.

(5-2)Relation between oscillation frequency and LCD frame frequency

As the NJU6624A/B incorporate oscillation capacitor and resistor for CR oscillation, 145kHz oscillation is available without any external components.

The LCD frame frequency example mentioned below is based on 145kHz oscillation.(1clock =6.90us)


New Japan Radio Co., Ltd.

(6)Interface with MPU

The instructions and data are communicated with the serial port which is a clock synchronization type based on 16-bit per word.

The NJU6624A/B can be controlled by the serial data as shown below.

The serial interface circuit operates in CS=L.

A communication unit consists of 16-bit data. The communication period is from the falling edge of CS terminal to the rising edge. The inputs data and latched at rising edge of shift clock (SCL) and the first 16-bit data are fetched into the NJU6624A/B at the rising edge of chip select (CS). The data over than 16 bits are ignored. If the input data are less than 16 bits, they are ignored at the rising edge of "CS". Therefore, just 16 bits data should be input for the correct communication. In case of RAM data input, the RAM address is changed automatically as increment or decrement.

The data to input is MSB first. Although the output data is just only key scan, data bits D8 to D15 in the key data read out instruction are input. After these 8-bit instruction is input, this serial data input terminal is changed to the output terminal at the 8th falling edge of SCL clock.

The electrical short between the NJU6624A/B and external circuit must be prevented in the application.

■ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT	NOTE
Supply Voltage(1)	VDD	-0.3 to +7.0	٧	
Supply Voltage(2)	VLCD1	VSS+10.5 to VSS+0.3	٧	VLCD1 Terminal
Input Voltage	VN	-0.3 to VDD+0.3	٧	
Operating Temperature	Topr	-40 to +85	•c	
Storage Temperature	Tstg	-55 to +125	°C	
Power Dissipation	PD	500	m W	

Note 1: If the LSI are used on condition above the absolute maximum ratings, the LSI may be destroyed.

Using the LSI within electrical characteristics is strongly recommended for normal operation. Use beyond the electric characteristics conditions will cause mal function and poor reliability.

Note 2 : Decoupling capacitor should be connected between V_{DD} and V_{SS} , VLCD1-Vssdue to the stabilized operation for the Voltage converter.

Note 3 : All voltage values are specified as Vss = 0V

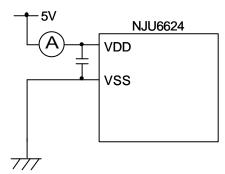
The relation : VLCD1≥ VLCD2 > VDD> Vss , Vss=0V must be maintained.

ELECTRICAL CHARACTERISTICS

(VDD=4.5V to 5.5V,Ta=-40 to +80°C)

				, ,		, 0.01, Ia 7		,
PARA	METER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE
		VIH1		0.8VDD	-	VDD	٧	4
Input Volta	ge	VIL1		VSS	-	0.2VDD	٧	4
		VIH2		0.8VDD	-	VLCD1	٧	5
Input Volta	ge	VIL2		vss	-	0.2VDD	٧	5
04.486		VOH	-IOH=2mA,VDD=5V	4.0	_	-	V	6
Output Vol	tage	VOL	IOL=2mA,VDD=5V	-	. •	0.5	٧	6
Driver On-	resist.(COM)	RCOM	±ld=1uA(COM Terminal) Vo=VLCD,VSS,V1,V4	-	•	40	ΚΩ	8
Driver On-	resist.(SEG)	RSEG	±ld=1uA(SEG Terminal) Vo=VLCD,VSS,V2	-	-	40	ΚΩ	8
Pull-up MC	S Current 1	-lp1	VDD=5V	5	25	50	цA	5
Pull-up MC	OS Current 2	-lp2	VLCD1=5V	10	25	50	uА	5
Input Leak	age Current	ILI	VIN=0 to VDD	-1.0	-	1.0	uA	10
Operating	Current	IDD1	VDD=5V fosc=145KHz Ta=25°C, Display, keyscanON	-	-	500	uA	7
		IDD2	VDD=5V, Ta=25°C stand-by mode	-	7	10	uА	7
		V1	VLCD1-VSS=8V,Ta=25°C	5.8	6.0	6.2	٧	
Bleeder	LCD Driving Voltage	V2	E.V.R. value "1111"	3.8	4.0	4.2	٧	
resistan- ce	Vollage	V4	COM/SEG terminal	1.8	2.0	2.2	٧	
circuit	Bleeder resistance	RB	VLCD1-VSS=8V,Ta=25°C E.V.R. value "1111"	11.2	16.0	20.8	ΚΩ	
Oscillation	Frequency	fosc	VDD=5V,Ta=25°C	72	145	218	KHz	
LCD Disp	lay Voltage	VLCD1	VLCD1 Terminal,VSS=0V	VDD	_	10.0	٧	9
VCD1 Cu	rrent	ILCD1	VLCD1-VSS=8V			1	mΑ	

- Note 4 : Apply to the OSC1, SCL, DATA, CS, RESET Terminals.


Note 5 : "Pull-up MOS Current 1" : Apply to the DATA Terminals.

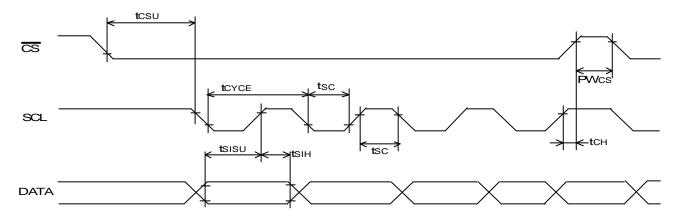
"Pull-up MOS Current 2" and "Input Voltage 2" : Apply to the K0 to K3 Terminals.

Note 6: Apply to the P0 to P3, REQ, DATA Terminals.

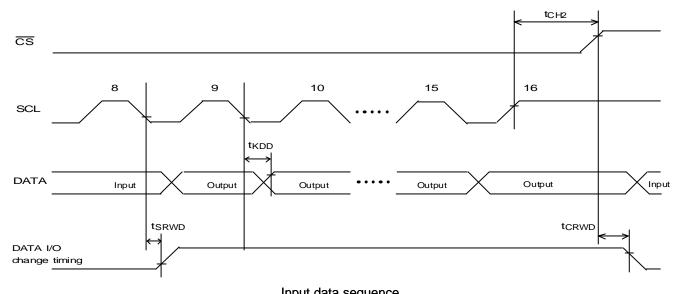
Note 7: If the input level is medium, current consumption will increase due to the penetration current. Therefore, the input level must be fixed to "H" or "L".

-Operating Current Measurement Circuit

- Note 8: Rcom and Rcom are the resistance values between power supply terminals (Vss, VLCD2 or V1, V2, V4) and each common terminal (COM1 to COM7/COMMK) and supply voltage (Vss, VLCD2 or V1, V2, V4) and each segment terminal (SEG₁ to SEG₇₁) respectively, and measured when the current l_d is flown on every common and segment terminals at a same time.
- Note 9: Apply to the output voltage from each COM and SEG are less than ±0.15V against the LCD driving constant voltage (VDD, VLCD1) at no load condition.
- Note 10: Apply to the SCL, CS, RESET Terminals.

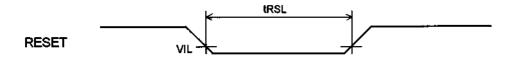


■Bus timing characteristics


-Serial Interface Sequence

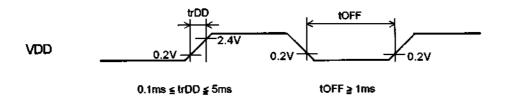
(V_{DD}=4.5V to 5.5V, VLCD1=Vss+8.0V, Ta=25°C)

PARAMETER	SYMBOL	MIN.	MAX.	CONDITION	UNIT
Serial clock cycle time	t cyce	1	-		us
Serial clock width	t sc	300	-		ns
Chip select pulse width	PWcs	100	-		us
Chip select set up time	t csu	300	-	fig.1	ns
Chip select hold time 1	t _{CH1}	300	-		ns
Serial input data set up time	t sısu	300	-		ns
Serial input data hold time	tsıн	300	-		ns
Key data output delay time	t kdd	-	300		ns
Data port direction change time from input to output	tsrwd	-	300	fig O	ns
Data port direction change time from output to input	tcrwd	-	300	fig.2	ns
Chip select hold time 2	tcH2	1	-		us


Input data sequence

Input data sequence
New Japan Radio Co., Ltd.

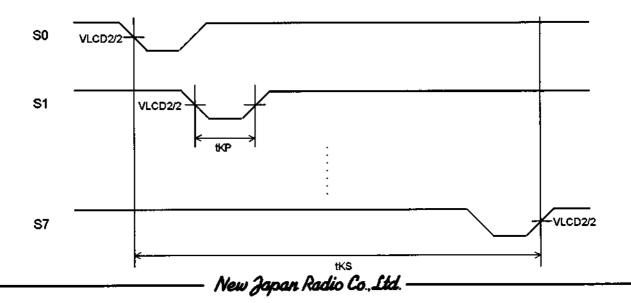
-The Input Condition when using the Hardware Reset Circuit



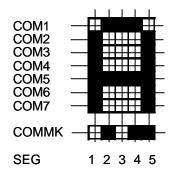
PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNIT
Reset input "0" level width	t RSL	fOSC=145kHz	1.2			ms

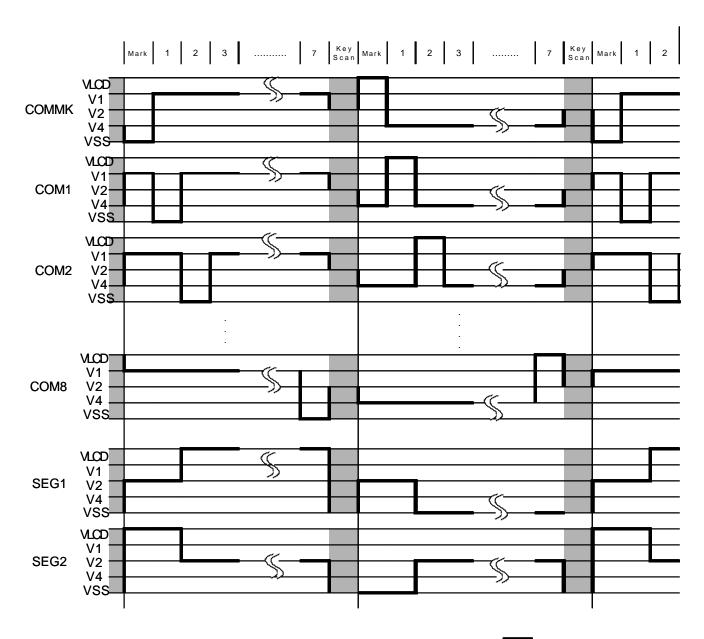
-Power Supply Condition when using the internal initialization circuit (Ta=25°C)

PARAMETER	SYMBOL	CONDITION	MiN	TYP	MAX	UNIT
Power supply rise time	trop	•	0.1	-	5	ms
Power supply OFF time	toff	-	1	-	-	ms

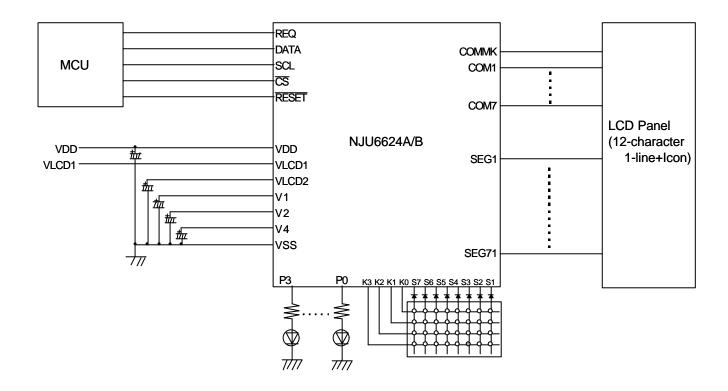

Since the internal initialization circuits will not operate normally unless the above conditions are met, in such a case initialize by instruction. (Refer to initialization by the instruction)

-Keyscan timing

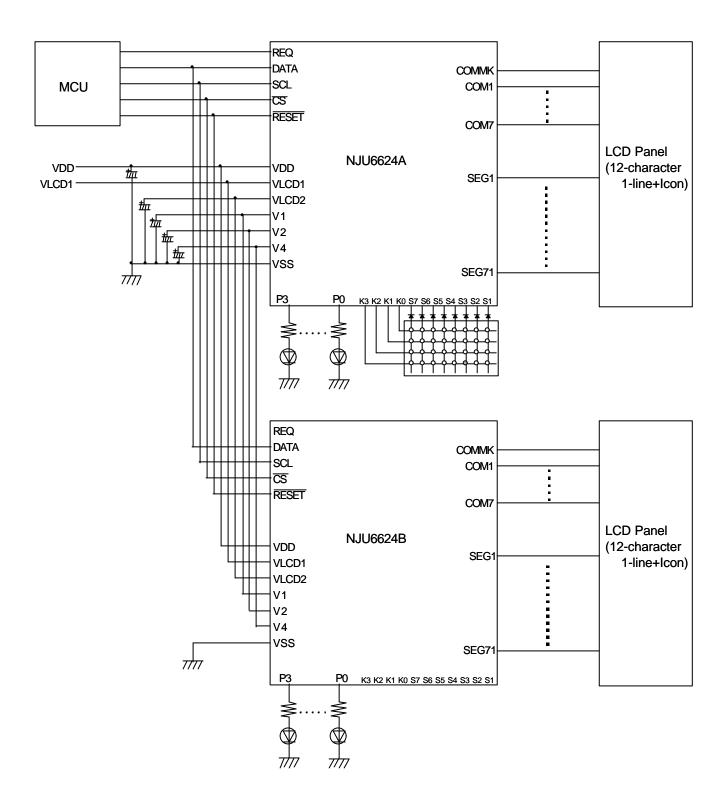

(fosc=145kHz)


PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNIT
Keyscan time	1ks	-	•	221	-	us
Keyscan palse width	t kp	-	-	27.6	-	us

■LCD DRIVING WAVE FORM



is Keyscan wave form


APPLICATION CIRCUITS

(1) 12-character 1-line Display Example

(2) 12-character 2-line Display Example

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.
The products on this databook may not be appropriate for use in certain equipment where reliability is critical or where the products may be subjected to extreme conditions. Thus, you should consult our sales office before using the products in vehicle control equipment.