

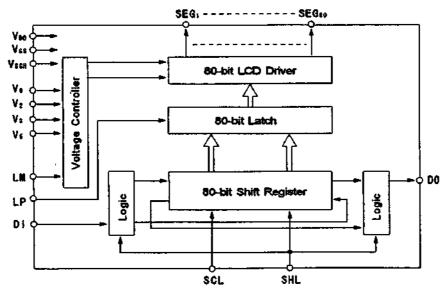
DOT MATRIX LCD 80-OUT SEGMENT DRIVER

MGENERAL DESCRIPTION

The NJU6445 is a 80-out segment driver providing serial input interface for dot matrix LCD.

It is also suitable for the extension driver of LCD controller driver.

It consists of bi-directional shift register, 80-bit latch, and 80-out high voltage LCD drivers.


The bi-directional shift register performs the efficient extension driver allocation according to the number of characters and easy wiring with the LCD panel.

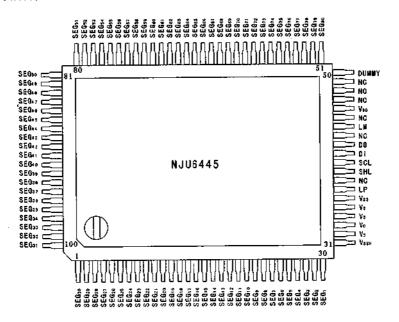
As the 80-driver has 4 level voltage input to drive the LCD, adjustable driving voltage according to the LCD panel can be supplied from the external power source.

MFEATURES

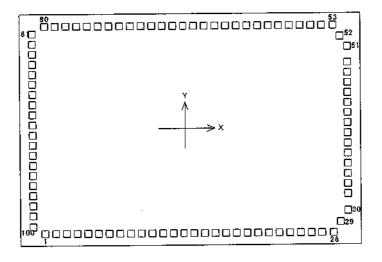
- ●80-out Segment Driver
- ●80-bit Shift Register (Bi-directional Shift Register)
- Two of Shift Direction Select Terminal
- Fast Data Transmission (Shift Clock 3.3 MHz)
- External Power Supply for LCD Driving Voltage
- ●LCD Driving Voltage -- VDD 3.0V ~ VDD 10.0V
- ●Operating Voltage --- 5.0 V ± 10 %
- Package Outline --- QFP100/Chip
- C-MOS Technology

BBLOCK DIAGRAM

SPACKAGE OUTLINE



NJU6445F


NJU6445C

EPINCONFIGURATION

■PAD LOCATION

PAD size : 90um × 90um CHIP size: 3.69 × 2.61mm

■PAD COODINATES

Chip Size 3.69mm × 2.61mm(Chip Center X=0um,Y=0um)

PAD No.	Terminai	X≂(um)	Y≖(um)	
1	SEG30	-1599	-1183	
2	SEG29	-1479	-1183	
3	SEG2a	-1359	-1183	
4	SEG ₂₇	-1239	-1183	
5	SEG26	-1119	-1183	
6	SEG ₂₅	-999	-1183	
7	SEG24	-879	-1183	
8	SEG ₂₃	-759	-1183	
9	SEG22	-639	-1183	
10	SEG21	-519	-1183	
11	SEG20	-399	-1183	
12	SEG19	-279	-1183	
13	SEG18	-159	-1183	
14	SEG17	-39	-1183	
15	SEG16	81	-1183	
16	SEG15	201	-1183	
17	SEG14	321	-1183	
18	SEG13	441	-1183	
19	SEG ₁₂	561	-1183	
20	SEG ₁₁	681	-1183	
21	SEG10	801	-1183	
22	SEG»	921	-1183	
23	SEG ₆	1041	-1183	
24	SEG7	1161	-1183	
25	SEG ₆	1281	-1183	
26	SEG ₅	1401	-1183	
27	SEG ₄	1521	-1183	
28	SEG3	1641	-1183	
29	SEG ₂	1683	-1050	
30	SEG ₁	1723	-920	
31	VssH	1723	-780	
32	V5	1723	-660	
33	VO	1723	-540	
34		1723	-420	
35	V2	1723	-300	
36	Vss	1723	-180	
37	LP	1723	-60	
38	NC NC	Non-		
39	SHL	1723	60	
40	SCL	1723	180	
41	DI	1723	300	
42	DO	1723	420	
43	NC	Non-		
44	LM	1723	540	
45	NC		<u> </u>	
46	Voo	Non-PAD 1723 660		
47	NC	Non-		
48	NC NC	Non-		
49	NC NC	Non-		
50 50	DUMMY	1723	780	
, Ju	O O IVINI I	1720	, 00,	

PAD No.	Terminal	X=(um)	Y=(um)
. 51	SEGao	1723	920
52	SEG79	1683	1050
53	SEG78	1641	1183
54	SEG77	1521	1183
55	SEG76	1401	1183
56	SEG75	1281	1183
57	SEG74	1161	1183
58	SEG73	1041	1183
59	SEG72	921	1183
60	SEG71	801	1183
61	SEG70	681	1183
62	SEG ₆₉	561	1183
63	SEG68	441	1183
64	SEG ₆₇	321	1183
65	SEG66	201	1183
66	SEGes	81	1183
67	SEG64	-39	1183
68	SEGe3	-159	1183
69	SEG ₆₂	-279	1183
70	SEG ₆₁	-399	1183
71	SEG60	-519	1183
72	SEG59	-639	1183
73	SEG ₅₆	-759	1183
74	SEG57	-879	1183
75	SEG55	-999	1183
76	SEG65	-1119	1183
77	SEG54	-1239	1183
78	SEGss	-1359	1183
79	SEG52	-1479	1183
80	SEG51	-1599	1183
81	SEG50	-1721	1140
82	SEG49	-1721	1020
83	SEG48	-1721	900
84	SEG47	-1721	780
85	SEG46	-1721	660
86	SEG45	-1721	540
87	\$EG44	-1721	420
88	SEG ₄₃	-1721	300
89	SEG42	-1721	180
90	SEG ₄₁	-1721	60
91	SEG40	-1721	-60
92	SEGas	-1721	-180
93	SEGaa	-1721	-300
94	SEG ₃₇	-1721	-420
95	SEG36	-1721	-540
96	SEGas	-1721	-660
97	SEG34	-1721	-780
98	SEG33	-1721	-900
99	SEG ₃₂	-1721	-1020
100	SEG31	-1721	-1140

■TERMINAL DESCRIPTION

No	SYMBOL	FUNCTION
1~30 51~100	SEG ₃₀ ~SEG ₁ SEG ₈₀ ~SEG ₃₁	LCD segment driver terminal. Each terminal corresponds to each bit of the shift register
41	ומ	Display data input terminal. The DI terminal is fixed as the input regardless of the shift direction. Display data is input synchronaizing with the clock signal.
42	DO	Data output terminal. The DO terminal is fixed as the output regardless of the shift direction. The data is output synchronizing with the clock signal.
40	SCL	Shift register clock pulse input terminal. The data is shifted in the shift register by the falling edge of the clock pulse. A data setup time and hold time are required between data input and SCL. Clock pulse rising time and falling time should be set less than 50ns (MAX) respectively.
39	SHL	Shift direction select terminal. "H": Shift direction is from 80th bit to 1st bit. "L": Shift direction is from 1st bit to 80th bit. The DI and DO terminals are fixed as input and output respectively regardless of this terminal input level.
37	LP	Latch pulse input terminal. The data in the shift register is latched to the Latch by this signal. "H": Data leading, "L": Data latch
44	LM	Alternate signal input for LCD driving.
46,36	Vpc,Vss	Power supply terminal (connect to the controller's Vooterminal) Power supply terminal (connect to the controller's Vss terminal)
33,35,34, 32,31	Vo,V2,V3, Vs,Vssh	LCD driving power source input terminals. V ₀₀ ≧ V ₀ ≧ V ₂ ≧ V ₃ ≧ V ₅ ≧ V ₅ ××
38,43,45, 47~49	NC	Non connection.(Normally open)
50	DUMMY	Dummy PAD

■FUNCTIONAL DESCRIPTION

(1)Shift register control

The 80-bit shift register is bi-directional.

The shift direction of shift register is controlled as shown in below:

Control Terminal	Input Shift Direction	
SHL	" H"	801
	"L*	180

Note) DI and DO terminals are fixed input and output terminal respectively regardless the SHL input level.

(2)LCD driver output truth table

Input Data	Selection/ Non-selection	LM terminal	Driver Output (SEG1 to SEG80)
		"H"	V5
"H"	Selection	"L"	Vo
D1 H	Nag salsation	"H*	V3
	"L" Non-selection	"L"	V2

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT	
Supply Voltage(1)	Voo	-0.3~+7.0	V	
Supply Voltage(2) Note1)	V ₀ ,V ₂ ,V ₃ ,V ₅ ,V _{SSH}	V ₀₀ −11∼V ₀₀ +0.3	V	
Input Voltage ViN		-0. 3~V₀₀+0. 3	٧	
Operating Temperature	Торг	-30~+80	Ç	
Storage Temperature T _{stq}		-55~+150	ొ	

Note 1) The relation : $V_{DD} \ge V_0 \ge V_2 \ge V_3 \ge V_5 \ge V_{SSH}$ must be maintained.

MELECTRICAL CHARACTERISTICS

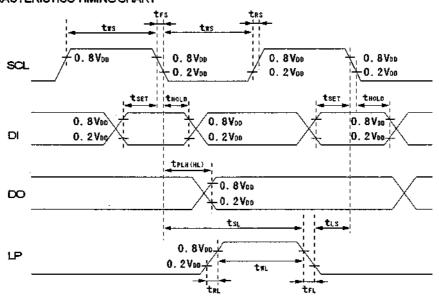
DC Characteristics

 $(V_{00}=5V \pm 10\%, Ta=20 \sim +75$ °C)

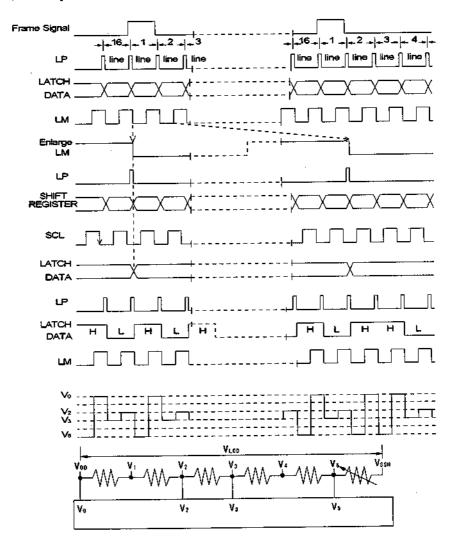
DO CHAIAMENSINS			(555 -		·	
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
	VH		0.8Voo		Voc	٧
Input Voltage Note1)	VIL				0.2V _{DD}	٧
Input Current Note1)	lн	ViH=Voo			1	uA
	la	Vn=0V	-1			uΑ
<u>.,.,.</u>	Vон	I₀=-40uA	4.2			٧
Output Voitage Note2)	Vol	l₀=0.4mA			0.4	V
Driver On-resistance Note3)	Row	l _d =0.05mA			5	kΩ
Operating Current (Logic Part)	Isso	(LM,LP)=130us cycle SCL=1.5MHz Every one bit Inverted Data. No Load.		1.1	1.5	mA
Operating Current (LCD Driver Part)	lssно	(LM,LP)=130us cycle SCL=1.5MHz Every one bit Inverted Data, No Load.		70	100	uA
LCD Driving Voltage	Vico	Vssн Terminal, Vpp=5V	Vpp-3.0		V _{DD} -10	٧

Note 2) Apply to LM, LP, SCL, SHL and DI terminals.

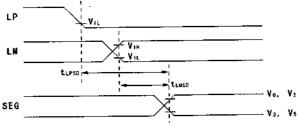
Note 3) Apply to DO terminal.


Note 4) Apply to SEG1~SEG80 terminals.

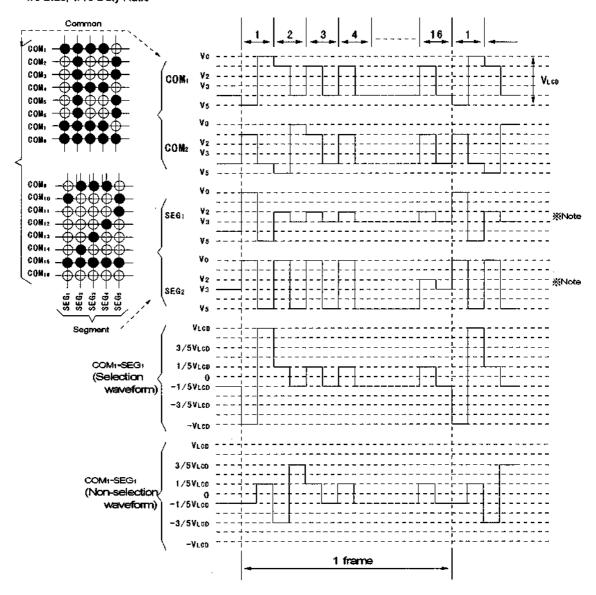
AC Characteristics


PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Propagation Delay Time	tpuH(HL)		-	-	250	ns
Maximum Operating Frequency	fscı	Duty=50%	3.3	-	-	MHz
SCL Pulse Width	tws		125	-	-	ns
LP Pulse Width	tw.		125	-	-	ns
Set Up Time	tser		50	-		ns
SCL → LP Time	tsı		250			ns
LP → SCL Time	tus		0	•		ns
Data Hold Time	t HOLD		50	-	-	ns
SCL Rise, Fall Time	trs,trs		-	-	50	ns
LP Rise, Fall Time	trac, tra		-	•	1	us

■AC CHARACTERISTICS TIMING CHART

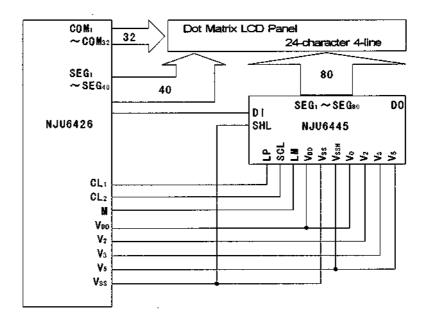


■TIMING CHART 1/5 Bias, 1/16 Duty Ratio


III SEGMENT SIGNAL OUTPUT TIMING

PARAMETER	SYMBOL	CONDITIONS	MIN	TΥP	MAX	UNIT
LP-SEG Output Delay Time	tLPSD	CL=100pF	•	•	4.5	us
LM-SEG Output Delay Time	tLMSD	CL=100pF		-	4.5	us

LCD DRIVING WAVEFORM EXAMPLE 1/5 Bias, 1/16 Duty Ratio



% Note : In case of V0 terminal connected to the V_{DD} .

■APPLICATION CIRCUIT

24-character 4-line Display Example (NJU6426 + NJU6445)

NJU6445

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.