

Specification for E-Paper

AES200200A00-1.54ENRS

Revision 1.2

Α	Orient Display
ES	E-Paper
200200	Resolution 200 x 200
A00	Revision A00
1.54	Diagonal: 1.54", Module: 31.80×37.32×0.98 mm
E	EPD - Electrophoretic Display (Active Matrix)
N	Normal, Top: 0~+50°C; Tstr: -25~+70°C
R	Reflective Polarizer
S	3-/4-wire SPI Interface
/	Controller SSD1681 Or Compatible
/	ZIF FPC
/	Ultra Wide Viewing Angle
1	Ultra Low Power Consumption

REVISION HISTORY

Rev	Date	Item	Page	Remark
1.0	JUN.04.2020	New Creation	ALL	
1.1	NOV.23.2020	Update DC Characteristics Add Packaging	P20 P31	
1.2	JUN.16.2022	Update Mechanical Drawing of EPD module Update Input /Output Pin Assignment Update Reliability test Delete Block Diagram Update Inspection method and condition Update Packaging	P31 P5 P6 P27 P28 P28-31 P32	

LIST

1. Over View	(4)
2. Features	(4)
3. Mechanical Specifications	(4)
4. Mechanical Drawing of EPD module	(5)
5. Input /Output Pin Assignment	(6-7)
6.Command Table	(8-19)
7. Electrical Characteristics	(20-24)
8. Operation Flow and Code Sequence	(25)
9. Optical Characteristics	(26)
10. Handling, Safety and Environment Requirements	(26)
11. Reliability test	(27)
12. Inspection method and condition	(28-31)
13. Packaging	(32)

1. Over View

AES200200A00-1.54ENRS is a TFT active matrix electrophoretic display, with interface and a reference system design. The 1.54" active area contains 200×200 pixels, and has 1-bit black/white full display capabilities. An integrated circuit contains gate buffer, source buffer, interface, timing control logic, oscillator, DC-DC, SRAM, LUT, VCOM and border are supplied with each panel.

2.Features

- High contrast
- High reflectance
- Ultra wide viewing angle
- Ultra low power consumption
- Pure reflective mode
- Bi-stable
- Commercial temperature range
- Landscape, portrait mode
- Antiglare hard-coated front-surface
- Low current sleep mode
- On chip display RAM
- Serial peripheral interface available
- On-chip oscillator
- On-chip booster and regulator control for generating VCOM, Gate and source driving voltage
- I²C Signal Master Interface to read external temperature sensor
- Available in COG package IC thickness 300um

3. Mechanical Specifications

Parameter	Specifications	Unit	Remark
Screen Size	1.54	Inch	
Display Resolution	200(H)×200(V)	Pixel	Dpi:184
Active Area	$27.0(H) \times 27.0(V)$	mm	
Pixel Pitch	0.14×0.14	mm	
Pixel Configuration	Square		
Outline Dimension	$31.80(H) \times 37.32(V) \times 1.0(D)$	mm	
Weight	2.18 ± 0.5	g	

4. Mechanical Drawing of EPD module

5. Input /Output Pin Assignment

5-1) Pin out List

No.	Name	I/O	Description	Remark
1	NC		Do not connect with other NC pins	Keep Open
2	GDR	О	N-Channel MOSFET Gate Drive Control	
3	RESE	I	Current Sense Input for the Control Loop	
4	VGL	С	Power Supply pin for Negative Gate driving voltage VCOM and VSL	
5	VGH	C	Power Supply pin for Positive Gate driving voltage and VSH1	
6	TSCL	O	This pin is I ² C Interface to digital temperature sensor Clock pin. External pull up resistor is required when connecting to I ² C slave. When not in use: Open	
7	TSDA	I/O	This pin is I ² C Interface to digital temperature sensor Data pin. External pull up resistor is required when connecting to I ² C slave. When not in use: Open	
8	BS1	I	Bus Interface selection pin	Note 5-5
9	BUSY	О	Busy state output pin	Note 5-4
10	RST#	I	Reset signal input. Active Low.	Note 5-3
11	D/C#	I	Data /Command control pin	Note 5-2
12	CS#	I	Chip select input pin	Note 5-1
13	SCL	I	Serial Clock pin (SPI)	
14	SDA	I	Serial Data pin (SPI)	
15	VDDIO	P	Power Supply for interface logic pins It should be connected with VCI	
16	VCI	P	Power Supply for the chip	
17	VSS	P	Ground	
18	VDD	С	Core logic power pin VDD can be regulated internally from VCI. A capacitor should be connected between VDD and VSS	
19	NC	NC	Do not connect with other NC pins	Keep Open
20	VSH	С	Positive Source driving voltage	
21	PREVGH	С	Power Supply pin for Positive Gate driving voltage and VSH1	

22	VSL	С	Negative Source driving voltage	
23	PREVGL		Power Supply pin for Negative Gate driving voltage VCOM and VSL	
24	VCOM	С	VCOM driving voltage	

- Note 5-1: This pin (CS#) is the chip select input connecting to the MCU. The chip is enabled for MCU communication only when CS# is pulled Low.
- Note 5-2: This pin (D/C#) is Data/Command control pin connecting to the MCU. When the pin is pulled High, the data will be interpreted as data. When the pin is pulled Low, the data will be interpreted as command.
- Note 5-3: This pin (RES#) is reset signal input. The Reset is active low.
- Note 5-4: This pin (BUSY) is Busy state output pin. When Busy is Low, the operation of chip should not be interrupted and any commands should not be issued to the module. The driver IC will put Busy pin

Low when the driver IC is working such as:

- Outputting display waveform; or
- Communicating with digital temperature sensor
- Note 5-5: This pin (BS1) is for 3-line SPI or 4-line SPI selection. When it is "Low", 4-line SPI is selected. When it is "High", 3-line SPI (9 bits SPI) is selected. Please refer to below Table.

BS1 State	MCU Interface
L	4-lines serial peripheral interface(SPI) - 8 bits SPI
Н	3- lines serial peripheral interface(SPI) - 9 bits SPI

6.Command Table

-	man	-	D7	D6	D5	D4	D3	D2	D1	DO	Command	Descripti	on		
0	0	01	0	0	0	0	0	0	0	1	Driver Output control	Gate setti			
0	1	UI	-	-	-	-	17.1		-	-	Driver Output control			200 MUX	(
0			A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀				tting as (A	
-7	1		-	-		-	17.	0	-	A ₈					
0	1		0	0	0	0	0	B ₂	B1	Bo		B[2]: GD Selects th GD=0 [PC G0 is the output sec GD=1, G1 is the output sec B[1]: SM Change s SM=0 [PC	ne 1st outport, and the property of the proper	out Gate output cha G0,G1, G output cha G1, G0, G	nnel, gat 32, G3, nnel, gat 33, G2, . ate driver
												B[0]: TB TB = 0 [P	OR], scar	n from G0	to G199
												B[0]: TB TB = 0 [P	OR], scar		to G199
0	0	03	0	0	0	0	0	0	1	1	Gate Driving voltage	B[0]: TB TB = 0 [Po TB = 1, so	OR], scar can from (n from G0 G199 to G	to G199
0	0	03	0	0	0	0 Aa	0	0 A2	1 A ₁	1 An	Gate Driving voltage Control	B[0]: TB TB = 0 [Po TB = 1, so Set Gate A[4:0] = 0	OR], scar can from (driving vo	n from G0 G199 to G	to G199 0.
0	0 1	03	0 0	0 0	0 0	0 A ₄	0 A ₃	0 A ₂	1 A ₁	1 A ₀		B[0]: TB TB = 0 [Po TB = 1, so Set Gate A[4:0] = 0	OR], scar can from (driving vo	n from G0 G199 to G Iltage	to G199 0.
		03				-						B[0]: TB TB = 0 [Pt TB = 1, so Set Gate A[4:0] = 0 VGH setti A[4:0]	OR], scar can from 0 driving vo 0h [POR] ing from 1 VGH	on from G0 G199 to G Ultage OV to 20V A[4:0]	to G199 0.
		03				-						B[0]: TB TB = 0 [Pt TB = 1, so Set Gate A[4:0] = 0 VGH setti A[4:0] 00h	OR], scar can from 0 driving vo 0h [POR] ing from 1 VGH 20	of from G0 G199 to G oltage OV to 20V A[4:0] ODh	to G199 0. VGH
		03				-						B[0]: TB TB = 0 [Pt TB = 1, so Set Gate A[4:0] = 0 VGH setti A[4:0] 00h 03h	OR], scar can from 0 driving vo 0h [POR] ing from 1 VGH 20 10	of from G0 G199 to G oltage OV to 20V A[4:0] ODh OEh	to G199 0. VGH 15 15.5
		03				-						B[0]: TB TB = 0 [Pt TB = 1, so Set Gate A[4:0] = 0 VGH setti A[4:0] 00h 03h 04h	OR], scar can from 0 driving vo 0h [POR] ing from 1 VGH 20 10	of from G0 G199 to G oltage OV to 20V A[4:0] ODh OEh OFh	to G199 0. VGH 15 15.5
		03				-						B[0]: TB TB = 0 [Pt TB = 1, so Set Gate A[4:0] = 0 VGH setti A[4:0] 00h 03h 04h 05h	OR], scar can from 0 driving vo 0h [POR] ing from 1 VGH 20 10 10.5	of from G0 G199 to G oltage OV to 20V A[4:0] ODh OEh OFh 10h	to G199 0. VGH 15 15.5 16 16.5
		03				_						B[0]: TB TB = 0 [Pt TB = 1, so Set Gate A[4:0] = 0 VGH setti A[4:0] 00h 03h 04h	OR], scar can from 0 driving vo 0h [POR] ing from 1 VGH 20 10	of from G0 G199 to G oltage OV to 20V A[4:0] ODh OEh OFh	to G199 0. VGH 15 15.5
		03				_						B[0]: TB TB = 0 [Pt TB = 1, so Set Gate A[4:0] = 0 VGH setti A[4:0] 00h 03h 04h 05h	OR], scar can from 0 driving vo 0h [POR] ing from 1 VGH 20 10 10.5	of from G0 G199 to G oltage OV to 20V A[4:0] ODh OEh OFh 10h	to G199 0. VGH 15 15.5 16 16.5
		03				_						B[0]: TB TB = 0 [Pt TB = 1, so Set Gate A[4:0] = 0 VGH setti A[4:0] 00h 03h 04h 05h 06h	OR], scar can from 0 driving vo 0h [POR] ing from 1 VGH 20 10 10.5 11	of from G0 G199 to G oltage OV to 20V A[4:0] ODh OEh OFh 10h	to G199 0. VGH 15 15.5 16 16.5
		03				_						B[0]: TB TB = 0 [P: TB = 1, so Set Gate A[4:0] = 0 VGH setti A[4:0] 00h 03h 04h 05h 06h 07h	OR], scar can from 0 driving vo 0h [POR] ing from 1 VGH 20 10 10.5 11 11.5	of from G0 G199 to G of G199 to G of G199 to G OV to 20V A[4:0] ODh OEh OFh 10h 11h	to G199 0. VGH 15 15.5 16 16.5 17
		03				_						B[0]: TB TB = 0 [P TB = 1, so Set Gate A[4:0] = 0 VGH setti A[4:0] 00h 03h 04h 05h 06h 07h 08h	OR], scar can from 0 driving vo 0h [POR] ing from 1 VGH 20 10 10.5 11 11.5 12 12.5	of from G0 G199 to G oltage OV to 20V A[4:0] ODh OEh OFh 10h 11h 12h	to G199 0. VGH 15 15.5 16 16.5 17 17.5
		03				_						B[0]: TB TB = 0 [P TB = 1, so Set Gate A[4:0] = 0 VGH setti A[4:0] 00h 03h 04h 05h 06h 07h 08h 07h	OR], scar can from 0 driving vo 0h [POR] ing from 1 VGH 20 10 10.5 11 11.5 12 12.5 12	of from G0 G199 to G of G199	VGH 15 15.5 16 16.5 17 17.5 18
		03				_						B[0]: TB TB = 0 [P TB = 1, so Set Gate A[4:0] = 0 VGH setti A[4:0] 00h 03h 04h 05h 06h 07h 08h 07h 08h	OR], scar can from 0 driving vo 0h [POR] ing from 1 VGH 20 10 10.5 11 11.5 12 12.5 12 12.5	of from G0 G199 to G of G199	VGH 15 15.5 16 16.5 17 17.5 18 18.5
		03				_						B[0]: TB TB = 0 [P: TB = 1, so Set Gate A[4:0] = 0 VGH setti A[4:0] 00h 03h 04h 05h 06h 07h 08h 07h 08h 07h	OR], scar can from 0 driving vo 0h [POR] ing from 1 VGH 20 10 10.5 11 11.5 12 12.5 12	of from G0 G199 to G of G199	to G199 0. VGH 15 15.5 16 16.5 17 17.5 18 18.5 19

	man			De	DE	D.	Da	Do	D4	Do	C	and		Description
	70.00	T. C.	D7	D6	D5	D4	D3	D2	D1	D0	Comm	OTT STATE OF THE PARTY OF THE P		Description
0	0	04	0	0	0	0	0	1	0	0		Driving	voltage	Set Source driving voltage A[7:0] = 41h [POR], VSH1 at 15V
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Contro	1.		B[7:0] = A8h [POR], VSH2 at 5V.
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	Bo				C[7:0] = 32h [POR], VSL at -15V
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co	211			Remark: VSH1>=VSH2
VSI to 8	J/B[7] H1/VS .8V B[7:0]	VSH	1/VSH2	A/B	B[7 :0]	VSH1	/VSH2	to	17V A/B[7:0]	/SH2	voltage	e setting	VSH1/VSH	
_	8Eh 8Fh	+-	2.4	_	Fh IOh	_	.8	1	23h 24h	-	9.2	3Ch 3Dh	14.2	0Ah -5
_	90h	_	2.6		1h	_	.9	-	25h		9.4	3Eh	14.4	0Ch -5.5
1111	91h		2.7	В	2h	1	6		26h		9.6	3Fh	14.6	0Eh -6 10h -6.5
_	92h	-	2.8	_	3h	_	.1		27h		9.8	40h	14.8	12h -7
	93h	-	3	_	4h 5h	_	.2	-	28h	-	10	41h	15	14h -7.5
_	94h 95h	_	3.1		i6h	_	.4		29h 2Ah		10.2	42h 43h	15.2 15.4	16h -8
_	96h	_	3.2	_	i7h	_	.5		2Bh		10.6	44h	15.6	18h -8.5
_	97h	_	3.3	_	8h	_	.6		2Ch		10.8	45h	15.8	1Ah -9
	98h	_	3.4	-	9h	_	.7		2Dh		11	46h	16	1Ch -9.5
_	99h 9Ah	_	3.5		Ah Bh	_	.8		2Eh 2Fh	+	11.2	47h 48h	16.2 16.4	1Eh -10
	9Bh	_	3.7		Ch	_	7	-	30h	7	11.6	49h	16.6	20h -10.5
	9Ch	1	3.8	В	Dh	7	.1		31h	-/ -	11.8	4Ah	16.8	22h -11
_	9Dh	_	3.9	_	Eh	_	.2		32h		12	4Bh	17	24h -11.5
	9Eh 9Fh	-	4.1	_	Fh Oh		.3	-	33h	4	12.2	Other	NA	26h -12
	A0h	_	4.2		th	_	.5	-	34h 35h	7	12.4			28h -12.5 2Ah -13
_	A1h	_	4.3	_	2h	_	.6		36h		12.8			2Ch -13.5
Ш	A2h		4.4	C	3h	7	.7		37h		13			2Eh -14
_	A3h	_	4.5	_	4h	_	.8	1 1 1	38h		13.2			30h -14.5
	A4h A5h	_	4.6 4.7		5h 6h	_	8	-	39h 3Ah	-	13.4			32h -15
	A6h	_	4.8	_	7h	_	.1	-	3Bh	+	13.8			34h -15.5
	A7h	- 9	4.9	C	8h	8	.2	_						36h -16
_	A8h	-	5	_	9h	_	.3							38h -16.5
	A9h	+-	5.1	_	Ah	_	.4							3Ah -17
_	AAh ABh	-	5.2	_	Bh Ch	_	.6							Other NA
	ACh	_	5.4	_	Dh	-	.7							
_	ADh	+	5.5		Eh	_	.8							
- 1	AEh		5.6	0	ther	l N	IA							
0	0	08	0	0	0	0	1	0	0	0	OTOD	Code Set	ting	Program Initial Code Setting
	1		724								- W.	-3		The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	09	0	0	0	0	1	0	0	1		Register t	for Initial	Write Register for Initial Code Setting
0	1		A ₇	A ₆	A ₅	A4	Аз	A ₂	A ₁	Ao	Code S	Setting		Selection
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo				A[7:0] ~ D[7:0]: Reserved
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co	1			Details refer to Application Notes of Initi
100											-			Code Setting
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀				
0	0	0A	0	0	0	0	1	0	1	0		Register : Setting	for Initial	Read Register for Initial Code Setting

1000	man D/C#		D7	D6	D5	D4	D3	D2	D1	DO	Command	Descripti	on
0	0	0C	0	0	0	0	1	1	0	0	Booster Soft start	Booster Ena	able with Phase 1, Phase 2 and Phas
0	1		1	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao		for soft star	t current and duration setting.
)	1		1	B ₆	B ₅	B ₄	Вз	B ₂	Bı	Bo	-		oft start setting for Phase1
)	1		1	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	_	_		8Bh [POR] oft start setting for Phase2
)	1		0	0	D ₅	D ₄	D ₃	D ₂	D ₁		-		9Ch [POR]
0			U		D5	D4	D3	D2				= D[7:0] -> Du	oft start setting for Phase3 96h [POR] uration setting 0Fh [POR]
													escription of each byte: / B[6:0] / C[6:0]:
												Bit[6:4	Driving Strength Selection
												000	1(Weakest)
												001	2
												010	3
												011	4
												100	5
												101	6
												110	7
												111	8(Strongest)
												Bit[3:0	Min Off Time Setting of GDR [Time unit]
												0000	NA
												0011	
												0100	
												0101	
												0110	
												1000	
												1000	
												1010	
												1011	
												1100	
												1101	
												1110	
												1111	
												D[5:4 D[3:2	duration setting of phase duration setting of phase 3 duration setting of phase 2
												Bit[1:0	D]: duration setting of phase 1 Duration of Phase [Approximation]
												00	10ms
												01	20ms
												10	30ms
												11	40ms
0.0	0	10	0	0	0	1	0	0	0	0 [Deep Sleep mode	Deep Slee	ep mode Control:
	1		0	0	0	0	0		-	Ao		A[1:0]:	Description
			(a)	-		7.4	-					00	Normal Mode [POR]
												01	Enter Deep Sleep Mode 1
												11	Enter Deep Sleep Mode 2
												enter Dee keep outp Remark:	command initiated, the chip w p Sleep Mode, BUSY pad will ut high. eep Sleep mode, User require

	man D/C#	-	-	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	14	0	0	0	1	0	1	0	0	HV Ready Detection	HV ready detection
U	U	14	U	U	0		U			U	nv Ready Detection	A[7:0] = 00h [POR] The command required CLKEN=1 and ANALOGEN=1. Refer to Register 0x22 for detail. After this command initiated, HV Ready detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).
0	1		0	A ₆	A ₅	A4	0	A ₂	A ₁	Ao		A[6:4]=n for cool down duration: 10ms x (n+1) A[2:0]=m for number of Cool Down Loop to detect. The max HV ready duration is 10ms x (n+1) x (m) HV ready detection will be trigger after each cool down time. The detection will be completed when HV is ready. For 1 shot HV ready detection, A[7:0] can be set as 00h.
0	0	15	0	0	0	1	0	1	0	1	VCI Detection	VCI Detection
0	1	10	0	0	0	0	0	A ₂	A ₁	Ao	VOI Detection	A[2:0] = 100 [POR] , Detect level at 2.3V A[2:0] : VCI level Detect
												A[2:0] VCI level
												011 2.2V 100 2.3V
												100 2.3V
												110 2.5V
												111 2.6V
												Other NA
												The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail.
												After this command initiated, VCI detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).
0	0	18	0	0	0	1	1	0	0	0	Temperature Sensor	Temperature Sensor Selection
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	Control	A[7:0] = 48h [POR], external temperatrure sensor A[7:0] = 80h Internal temperature sensor
0	0	1A	0	0	0	1	1	0	1	0	Temperature Sensor	Write to temperature register.
0	1		A ₁₁	A ₁₀	A ₉	A ₈	A ₇	A ₆	A ₅	A ₄	Control (Write to	A[11:0] = 7FFh [POR]
0	1		A ₃	A ₂	A ₁	Ao	0	0	0	0	temperature register)	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0	0	1B	0	0	0	1	1	0	1	1	Temperature Sensor	Read from temperature register.
1	1		A ₁₁	A ₁₀	A ₉	A ₈	A ₇	A ₆	A ₅	A ₄	Control (Read from temperature register)	
1	1		A ₃	A ₂	A ₁	A ₀	0	0	0	0		
0	0	12	0	0	0	1	0	0	1	0	SW RESET	It resets the commands and parameters to their S/W Reset default values except R10h-Deep Sleep Mode
												During operation, BUSY pad will output high.
												Note: RAM are unaffected by this command.

	man D/C#			D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	1C	0	0	0	1	1	1	0	0	Temperature Sensor	Write Command to External temperatur
0	1	10	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	Control (Write Command	sensor.
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	Bo	to External temperature	A[7:0] = 00h [POR], B[7:0] = 00h [POR],
0	1		C ₇	C ₆	C ₅	C ₄	Сз	C ₂	C ₁	Co	sensor)	C[7:0] = 00h [POR],
												A[7:6] A[7:6] Select no of byte to be sent 00 Address + pointer 01 Address + pointer + 1st parameter 10 Address + pointer + 1st parameter + 2nd pointer 11 Address A[5:0] - Pointer Setting B[7:0] - 1st parameter C[7:0] - 2nd parameter The command required CLKEN=1. Refer to Register 0x22 for detail. After this command initiated, Write Command to external temperature sens starts. BUSY pad will output high during operation.
0	0	20	0	0	1	0	0	0	0	0	Master Activation	Activate Display Update Sequence
		ľ										The Display Update Sequence Option is located at R22h.
												BUSY pad will output high during operation. User should not interrupt this operation to avoid corruption of panel images.
0	0	21	0	0	1	0	0	0	0	1	Display Update Control	RAM content option for Display Update
0	1	21	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	1	A[7:0] = 00h [POR] B[7:0] = 00h [POR]
												A[7:4] Red RAM option
												0000 Normal
												0100 Bypass RAM content as 0
												1000 Inverse RAM content
												A[3:0] BW RAM option
												0000 Normal
												0100 Bypass RAM content as 0
		,	,—.									1000 Inverse RAM content
0	0	11	0	0	0	1	0	0	0	1	Data Entry mode setting	Define data entry sequence
0	1		0	0	0	0	0	A ₂	A ₁	Ao		A[2:0] = 011 [POR]
												A [1:0] = ID[1:0] Address automatic increment / decrement setting The setting of incrementing or decrementing of the address counter callower bit of the address. 00 —Y decrement, X decrement, 01 —Y decrement, X increment, 10 —Y increment, X increment, 11 —Y increment, X increment [POR] A[2] = AM Set the direction in which the address counter is updated automatically after dare written to the RAM. AM= 0, the address counter is updated the X direction. [POR] AM = 1, the address counter is updated the Y direction.

	man D/C#		D7	D6	D5	D4	D3	D2	D1	DO	Command	Description	
0	0	22	0	0	1	0	0	0	1	0	Display Update	Display Update Sequence Opt	ion:
0	1	22	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	Control 2	Enable the stage for Master Ad A[7:0]= FFh (POR)	
												Operating sequence	Parameter (in Hex)
												Enable clock signal	80
												Disable clock signal	01
												Enable clock signal → Enable Analog	C0
											*4	Disable Analog → Disable clock signal	03
												Enable clock signal → Load LUT with DISPLAY Mode 1 → Disable clock signal	91
												Enable clock signal → Load LUT with DISPLAY Mode 2 → Disable clock signal	99
												Enable clock signal → Load temperature value → Load LUT with DISPLAY Mode 1 → Disable clock signal	B1
												Enable clock signal → Load temperature value → Load LUT with DISPLAY Mode 2 → Disable clock signal	В9
												Enable clock signal → Enable Analog → Display with DISPLAY Mode 1 → Disable Analog → Disable OSC	C7
												Enable clock signal → Enable Analog → Display with DISPLAY Mode 2 → Disable Analog → Disable OSC	CF
												Enable clock signal → Enable Analog → Load temperature value → DISPLAY with DISPLAY Mode 1 → Disable Analog → Disable OSC	F7
	Ш											Enable clock signal → Enable Analog → Load temperature value → DISPLAY with DISPLAY Mode 2 → Disable Analog → Disable OSC	FF
0	0	24	0	0	1	0	0	1	0	0	Write RAM (Black White) / RAM 0x24	After this command, data entrice written into the BW RAM until a command is written. Address padvance accordingly	another
												For Write pixel: Content of Write RAM(BW) = For Black pixel: Content of Write RAM(BW) =	

	-	d Ta									lean and a second	
/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	26	0	0	1	0	0	1	1	0	Write RAM (RED) / RAM 0x26	After this command, data entries will be written into the RED RAM until another command is written. Address pointers will advance accordingly.
												For Red pixel: Content of Write RAM(RED) = 1 For non-Red pixel [Black or White]: Content of Write RAM(RED) = 0
0	0	27	0	0	1	0	0	1	1	1	Read RAM	After this command, data read on the MCU bus will fetch data from RAM. According to parameter of Register 41h to select reading RAM0x24/ RAM0x26, until another command is written. Address pointers will advance accordingly.
												The 1st byte of data read is dummy data.
0	0	28	0	0	1	0	1	0	0	0	VCOM Sense	Enter VCOM sensing conditions and hold for duration defined in 29h before reading VCOM value. The sensed VCOM voltage is stored in register The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail.
											,	BUSY pad will output high during operation.
•	•	00	•								W00440 B #	Tour is a second second
0	0	29	0	0	0	0	1 A ₃	0 A ₂	0 A ₁	1 Ao	VCOM Sense Duration	Stabling time between entering VCOM sensing mode and reading acquired.
J			Ü			U	ns ns	A 2	Al	Ao		A[3:0] = 9h, duration = 10s. VCOM sense duration = (A[3:0]+1) sec
0	0	2A	0	0	1	0	1	0	1	0	Program VCOM OTP	Program VCOM register into OTP
												The command required CLKEN=1. Refer to Register 0x22 for detail.
												BUSY pad will output high during operation.
0	0	2B	0	0	1	0	1	0	1	1	Write Register for VCOM	This command is used to reduce glitch
0	1	- 7	0	0	0	0	0	1	0	0	Control	when ACVCOM toggle. Two data bytes
0	1		0	1	1	0	0	0	1	1		D04h and D63h should be set for this command.
				M.			1					command.

	man D/C#	_	D7	D6	D5	D4	D3	D2	D1	DO	Command	Descript	ion		
	10000	The State Section	-	3414	Day.	2000		-				Descript			1011:-1
0	1	2C	0 A ₇	0 A ₆	1 A ₅	0 A ₄	1 A ₃	1 A ₂	0 A ₁	0 A ₀	Write VCOM register		OM regist 00h [POR]		ICU interface
												A[7:0]	VCOM	A[7:0]	VCOM
											74	08h	-0.2	44h	-1.7
												0Ch	-0.3	48h	-1.8
												10h	-0.4	4Ch	-1.9
												14h	-0.5	50h	-2
												18h	-0.6	54h	-2.1
												1Ch	-0.7	58h	-2.2
												20h	-0.8	5Ch	-2.3
												24h	-0.9	60h	-2.4
												28h	-1	64h	-2.5
												2Ch	-1.1	68h	-2.6
												30h	-1.2	6Ch	-2.7
											1 A	34h	-1.3	70h	-2.8
												38h	-1.4	74h	-2.9
											1	3Ch	-1.5	78h	-3
												40h	-1.6	Other	NA
D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 1 1 1 1 1 1 1 1 1 1	2D	0 A ₇ B ₇ C ₇ D ₇ E ₇ F ₇ G ₇ H ₇ I ₇	0 A ₆ B ₆ C ₆ D ₆ E ₆ F ₆ G ₆ H ₆ I ₆	1 A ₅ B ₅ C ₅ D ₅ E ₅ F ₅ G ₅ H ₅ I ₅ K ₅	0 A ₄ B ₄ C ₄ D ₄ E ₄ F ₄ G ₄ H ₄ I ₄ J ₄	1 A ₃ B ₃ C ₃ D ₃ E ₃ F ₃ G ₃ H ₃ I ₃ J ₃	1 A ₂ B ₂ C ₂ D ₂ E ₂ F ₂ G ₂ H ₂ I ₂ J ₂	0 A ₁ B ₁ C ₁ D ₁ E ₁ F ₁ G ₁ H ₁ I ₁ J ₁	1 A ₀ B ₀ C ₀ D ₀ E ₀ F ₀ G ₀ H ₀ J ₀ K ₀	OTP Register Read for Display Option	A[7:0]: (Comm B[7:0]: (Comm C[7:0]~ (Comm [5 bytes H[7:0]~	-K[7:0]: Waveform Version nand 0x37, Byte G to Byte		de Byte F)
0	0	2E	0	0	1	0	1	1	1	0	User ID Read	Read 10	Byte Use	r ID store	ed in OTP:
1	1	-	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀		A[7:0]]~	J[7:0]: Use		Byte A and
1	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	Bo		Byte J)	[10 bytes]		
1	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co	-				
1	1							_			1 (1)				
			D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀					
1	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	E ₀					
1	1	-	F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	Fo					
1	1	- 1	G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	Go					
1	1		H ₇	H ₆	H ₅	H ₄	Нз	H ₂	H ₁	Ho					
1	1		17	16	15	14	13	12	11	I ₀					
	1								-		4	1			

	-	Hex	_	D6	D5	D4	D3	D2	D1	DO	Command	Description
0	0	2F	0	0	1	0	1	1	1	1	Status Bit Read	Read IC status Bit [POR 0x01]
1	1		0	0	A ₅	A ₄	0	0	A ₁	Ao	Status Bit Neud	A[5]: HV Ready Detection flag [POR=0] 0: Ready 1: Not Ready A[4]: VCI Detection flag [POR=0] 0: Normal 1: VCI lower than the Detect level A[3]: [POR=0] A[2]: Busy flag [POR=0] 0: Normal 1: BUSY A[1:0]: Chip ID [POR=01] Remark: A[5] and A[4] status are not valid after RESET, they need to be initiated by command 0x14 and command 0x15 respectively.
0	0	30	0	0	1	1	0	0	0	0	Program WS OTP	Program OTP of Waveform Setting
91									-		-5,-2,1,1,0,0,1,1	The contents should be written into RAM before sending this command. The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	31	0	0	1	1	0	0	0	1	Load WS OTP	Load OTP of Waveform Setting
									j-6			The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
^		20					0		4		Marke IIIT as siske a	Make LUT resistant from MCU interfere
0	1	32	0 A ₇	0 A ₆	1 A ₅	1 A ₄	0 A ₃	0 A ₂	1 A ₁	O Ao	Write LUT register	Write LUT register from MCU interface [153 bytes], which contains the content of
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	Bo		VS[nX-LUTm], TP[nX], RP[n], SR[nXY],
0	1		:		:	:	:	:	:	:		and FR[n] Refer to Session 6.7 WAVEFORM
0	1		•		i		6.20	•		64		SETTING
_											000	lene I I I
0	0	34	0	0	1	1	0	1	0	0	CRC calculation	CRC calculation command For details, please refer to SSD1681 application note. BUSY pad will output high during
												operation.
0	0	25	0	0	4	4	0	4	0	4	CDC Status Dood	CPC Status Boad
0	1	35	0	0	1	1	0	1	0 A ₉	1 A ₈	CRC Status Read	CRC Status Read A[15:0] is the CRC read out value
_			A ₁₅	A ₁₄		-		A ₁₀				1,200,100
1	1		A ₇	A ₆	A ₅	A ₄	Аз	A ₂	A ₁	Ao		

~~~		d Ta		De	DE	D4	Do	Da	D4	Do	Command	Description
1000	-	Hex		D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	36	0	0	1	1	0	1	1	0	Program OTP selection	Program OTP Selection according to the OTP Selection Control [R37h and R38h]
												The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	37	0	0	1	1	0	1	1	1	Write Register for Display	Write Register for Display Option
0	1		A ₇	0	0	0	0	0	0	0	Option	A[7] Spare VCOM OTP selection
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo		0: Default [POR] 1: Spare
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co		1. Spare
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	Do		B[7:0] Display Mode for WS[7:0]
0	1	- 1	E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	E ₀		C[7:0] Display Mode for WS[15:8]
0	1		0	F ₆	0	0	F ₃	F ₂	F ₁	Fo		D[7:0] Display Mode for WS[23:16] E[7:0] Display Mode for WS[31:24]
0	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	Go		F[3:0 Display Mode for WS[35:32]
0	1		H ₇	H ₆	H ₅	H ₄	Нз	H ₂	H ₁	Ho		0: Display Mode 1
0	1		17	16	15	14	l ₃	l ₂	l ₁	lo		1: Display Mode 2
0	1		J ₇	J ₆	<b>J</b> ₅	J ₄	J ₃	J ₂	J ₁	Jo		F[6]: PingPong for Display Mode 2
												0: RAM Ping-Pong disable [POR] 1: RAM Ping-Pong enable
												G[7:0]~J[7:0] module ID /waveform version.
												Remarks: 1) A[7:0]~J[7:0] can be stored in OTP 2) RAM Ping-Pong function is not suppo for Display Mode 1
0	0	20						0			Marita Daniata familia and	Wester Description House ID
0	0	38	0	0 A ₆	1 A ₅	1 A ₄	1 A ₃	0 A ₂	0 A ₁	0 A ₀	write Register for User ID	Write Register for User ID A[7:0]]~J[7:0]: UserID [10 bytes]
0	1		A ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀		. if its if the course fire system
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀		Remarks: A[7:0]~J[7:0] can be stored in
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀		OTP
0	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	E ₀		
0	1		F ₇	F ₆			F ₃	F ₂	F ₁	F ₀		
0	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	Go		
0	1		H ₇	H ₆	H ₅	H ₄	H ₃	H ₂	H ₁	H ₀	7	
0	1		17	I ₁₆	I 15	14	l ₃	l ₂	111	lo		
0	1		J ₇	J ₆	J ₅	J ₄	J ₃	J ₂	J ₁	Jo		
U			υγ	06	05	04	03	02	J1	00		
0	0	39	0	0	1	1	1	0	0	1	OTP program mode	OTP program mode
0	1		0	0	0	0	0	0	A ₁	Ao		A[1:0] = 00: Normal Mode [POR] A[1:0] = 11: Internal generated OTP programming voltage
												Remark: User is required to EXACTLY follow the reference code sequences

	LIU LIL	d Ta	_										
/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description	on
0	0	3C	0	0	1	1	1	1	0	0	Border Waveform Control		der waveform for VBD
0	1		A ₇	A ₆	A ₅	<b>A</b> ₄	0	A ₂	A ₁	A ₀			Oh [POR], set VBD as HIZ. elect VBD option
											16	A[7:6]	Select VBD as
												00	GS Transition,
													Defined in A[2] and A[1:0]
												01	Fix Level, Defined in A[5:4]
											-6.11	10	VCOM
												11[POR]	] HiZ
												A [5:4] Fix Level Setting for VBD	
												A[5:4]	VBD level
												00 VSS	
												01	VSH1
												10	VSL
												11 VSH2	
											(* 14		
											1 1	A[2] GS Transition control	
											I	A[2]	GS Transition control
											. 11	0	Follow LUT
												(Output VCOM @ RED)  1 Follow LUT	
											0.3		
											1		Transition setting for VBD
												A[1:0]	VBD Transition
											13	00	LUT0
											15	01	LUT1
												10	LUT2
				,								11	LUT3
0	0	3F	0	0	1	1	1	1	1	1	End Option (EOPT)	Option for	LUT end
0	1		A ₇	A ₆	A ₅	A ₄	Аз	A ₂	A ₁	Ao		A[7:0]= 02	
•			, ,,	, 10	7.0	7 44	, 13	/ 1/2	3.11	7.0			ormal.
													urce output level keep
											1	pre	evious output before power off
0	0	41	0	1	0	0	0	0	0	1	Read RAM Option	Read RAM	1 Option
0	1		0	0	0	0	0	0	0	A ₀		A[0]= 0 [P0	
J	11		Ö	Ü		U	J	0	J	70		0 : Read R	RAM corresponding to RAM0x24 RAM corresponding to RAM0x26
0	0	44	0	1	0	0	0	1	0	0	Set RAM X - address	Specify the	e start/end positions of the
0	1	74	0	0	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Start / End position		Idress in the X direction by an
					-			-					nit for RAM
0	1		0	0	B ₅	B ₄	B ₃	B ₂	B ₁	Bo		A[5:0]: XSA[5:0], XStart, POR = 00h B[5:0]: XEA[5:0], XEnd, POR = 15h	
_		45	0	1	0	0	0	1	0	1	Set Ram Y- address	Specify the start/end positions of the	
0	0			A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	Start / End position	window address in the Y direction by a	
_	-		A ₇					_	_	100		address ur	oit for DAM
0	1		A ₇	_	_	0	0	0	0	Δ.		address unit for RAM	III IOI KAIVI
0	1		0	0	0	0 B.	0 Bo	0 B	0	A ₈			
0	1			_	_	0 B ₄	0 B ₃	0 B ₂ 0	0 B ₁	A ₈ B ₀ B ₈		A[8:0]: YS	A[8:0], YStart, POR = 000h A[8:0], YEnd, POR = 127h

_		Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Descripti	on		
0	0	46	0	1	0	0	0	1	1	0	Auto Write RED RAM for			M for Reg	ular Patteri
0	1		A ₇	A ₆	A ₅	A ₄	0	A ₂	A ₁	Ao	Regular Pattern	A[7:0] = 0			
				7.0	7.5	, ,		112				A[7]: The A[6:4]: Ste Step of all to Gate	ep Height,	POR= 00	
												A[6:4]	Height	A[6:4]	Height
												000	8	100	128
											1	001	16	101	200
											A 9	010	32	110	200
												011	64	111	200
															on accordir
												to Source	147:41	A (O. O)	147:141
												A[2:0]	Width	A[2:0]	Width
											1	000	8	100	128
												001	16	101	200
												010	32	110	200
											A 4	011	64	111	200
												BUSY pacton.		ut high du	ring
0	0	47	0	1	0	0	0	1	1	1	Auto Write B/W RAM for			M for Reg	ular Patteri
0	1		A ₇	A ₆	A ₅	A4	0	A ₂	A ₁	Ao	Regular Pattern	A[7:0] = 0  A[7]: The A[6:4]: Step of all to Gate	1st step ver	POR= 00	
												A[6:4]	Height	A[6:4]	Height
												000	8	100	128
												001	16	101	200
												010	32	110	200
												011	64	111	200
												to Source	ter RAM ir	X-directi	on accordin
												A[2:0]	Width	A[2:0]	Width
											1	000	8	100	128
												001	16	101	200
											1	010	32	110	200
											11	011	64	111	200
											1	During op high.	eration, B		will output
)	0	4E	0	1	0	0	1	1	1	0	Set RAM X address	Make initi			
0	1		0	0	$A_5$	A ₄	Аз	A ₂	A ₁	A ₀	Counter	A[5:0]: 00		coo couril	or (AC)
					100							A[5:0]: 00	n [POR].		
)	0	4F	0	1	0	0	1	1	1	1	Set RAM Y address	Make initi			
)	1		A7	A ₆	A ₅	A ₄	A ₃	A ₂	Aı	Ao	counter	address in			er (AC)
)	1		0	0	0	0	0	0	0	A ₈		A[8:0]: 00	uh [POR].	t Laborat	4. 4
)	0	7F	0	1	1	1	1	1	1	1	NOP		have any o	effect on t	

### 7. Electrical Characteristics

### 7-1) Absolute maximum rating

Parameter	Symbol	Rating	Unit
Logic supply voltage	VCI	-0.5 to +6.0	V
Logic Input voltage	VIN	-0.5 to VCI +0.5	V
Logic Output voltage	VOUT	-0.5 to VCI +0.5	V
Operating Temp range	TOPR	0 to +50	° C
Storage Temp range	TSTG	-25 to+70	° C
Optimal Storage Temp	TSTGo	23±2	° C
Optimal Storage Humidity	HSTGo	55±10	%RH

### 7-2) Panel DC Characteristics

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR =23°C

Parameter	Symbol	Conditions	Applica ble pin	Min.	Тур.	Max	Units
Single ground	$V_{SS}$	-	-	-	0	-	V
Logic supply voltage	$V_{\rm CI}$	-	VCI	2.2	3.0	3.7	V
Core logic voltage	$V_{ m DD}$		VDD	1.7	1.8	1.9	V
High level input voltage	$V_{IH}$	-	-	$0.8~\mathrm{V_{CI}}$	-	-	V
Low level input voltage	$V_{\rm IL}$	-	-	-	-	$0.2~V_{CI}$	V
High level output voltage	$V_{OH}$	IOH = -100uA	-	0.9 VCI	-	-	V
Low level output voltage	$V_{\mathrm{OL}}$	IOL = 100uA	-	-	-	$0.1~\mathrm{V_{CI}}$	V
Typical power	$P_{TYP}$	$V_{CI} = 3.0V$	-	-	4.5	-	mW
Deep sleep mode	P _{STPY}	$V_{CI} = 3.0V$	-	-	0.003	-	mW
Typical operating current	Iopr_V _{CI}	V _{CI} =3.0V	-	-	1.5	-	mA
Image update time	-	25 °C	-	-	3	-	sec
Sleep mode current	Islp_V _{CI}	DC/DC off No clock No input load Ram data retain	-	-	20		uA
Deep sleep mode current	Idslp_V _{CI}	DC/DC off No clock No input load Ram data not retain	-	-	1	5	uA

⁻ The Typical power consumption is measured with following pattern transition: from horizontal 2 gray scale pattern to vertical 2 gray scale pattern.(Note 7-1)

Note 7-1

The Typical power consumption

⁻ The standby power is the consumed power when the panel controller is in standby mode.

⁻ The listed electrical/optical characteristics are only guaranteed under the controller & waveform provided by NEWFACE.

⁻ Vcom is recommended to be set in the range of assigned value  $\pm\,0.1V.$ 



#### 7-3) Panel AC Characteristics

#### 7-3-1) MCU Interface

#### 7-3-1-1) MCU Interface selection

The module can support 3-wire/4-wire serial peripheral. MCU interface is pin selectable by BS1 shown in Table 7-1.

A-Common Common Com	Pin Name									
MCU Interface	BS1	RES#	CS#	D/C#	SCL	SDA				
4-wire serial peripheral interface (SPI)	L	RES#	CS#	DC#	SCL	SDA				
3-wire serial peripheral interface (SPI) – 9 bits SPI	H	RES#	CS#	L	SCL	SDA				

Table 7-1: Interface pins assignment under different MCU interface

Note

(1) L is connected to  $V_{SS}$  and H is connected to  $V_{DDIO}$ 

#### 7-3-1-2) MCU Serial Interface (4-wire SPI)

The 4-wire SPI consists of serial clock SCL, serial data SDA, D/C# and CS#. The control pins status in 4-wire SPI in writing command/data is shown in Table 6-2 and the write procedure 4-wire SPI is shown in Table 7-2

Function	SCL pin	SDA pin	D/C# pin	CS# pin
Write command	1	Command bit	L	L
Write data	1	Data bit	Н	L

Table 7-2: Control pins status of 4-wire SPI

#### Note:

- (1) L is connected to VSS and H is connected to VDDIO
- (2) † stands for rising edge of signal
- (3) SDA (Write Mode) is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0. The level of D/C# should be kept over the whole byte. The data byte in the shift register is written to the Graphic Display Data RAM (RAM)/Data Byte register or command Byte register according to D/C# pin.



Figure 7-1: Write procedure in 4-wire SPI mode

In the read operation (Command 0x1B, 0x27, 0x2D, 0x2E, 0x2F, 0x35). After CS# is pulled low, the first byte sent is command byte, D/C# is pulled low. After command byte sent, the following byte(s) read are data byte(s), so D/C# bit is then pulled high. An 8-bit data will be shifted out on every clock falling edge. The serial data SDA bit shifting sequence is D7, D6, to D0 bit. Figure 6-2 shows the read procedure in 4-wire SPI.



Figure 7-2: Read procedure in 4-wire SPI mode

#### 7-3-1-3) MCU Serial Peripheral Interface (3-wire SPI)

The 3-wire SPI consists of serial clock SCL, serial data SDA and CS#. The operation is similar to 4-wire SPI while D/C# pin is not used and it must be tied to LOW. The control pins status in 3-wire SPI is shown in Table 7-3.

In the write operation, a 9-bit data will be shifted into the shift register on every clock rising edge. The bit shifting sequence is D/C# bit, D7 bit, D6 bit to D0 bit. The first bit is D/C# bit which determines the following byte is command or data. When D/C# bit is 0, the following byte is command. When D/C# bit is 1, the following byte is data. Table 6-3 shows the write procedure in 3-wire SPI

Function	SCL pin	SDA pin	D/C# pin	CS# pin
Write command	1	Command bit	Tie LOW	L
Write data	1	Data bit	Tie LOW	Ľ

Table 7-3: Control pins status of 3-wire SPI

#### Note:

- (1) L is connected to VSS and H is connected to VDDIO
- (2) ↑ stands for rising edge of signal



Figure 7-3: Write procedure in 3-wire SPI

In the read operation (Register 0x1B, 0x27, 0x2D, 0x2E, 0x2F, 0x35). SDA data are transferred in the unit of 9 bits. After CS# pull low, the first byte is command byte, the D/C# bit is as 0 and following with the register byte. After command byte send, the following byte(s) are data byte(s), with D/C# bit is 1. After D/C# bit sending from MCU, an 8-bit data will be shifted out on every clock falling edge. The serial data SDA bit shifting sequence is D7, D6, to D0 bit. Figure 7-4 shows the read procedure in 3-wire SPI.



Figure 7-4: Read procedure in 3-wire SPI mode

#### 7-3-2) Serial Peripheral Interface

#### Write mode

Parameter	Min	Тур	Max	Unit
SCL frequency (Write Mode)	12.7	10-1	20	MHz
Time CS# has to be low before the first rising edge of SCLK	60			ns
Time CS# has to remain low after the last falling edge of SCLK	65	1.50	- 08.5	ns
Time CS# has to remain high between two transfers	100	11-1		ns
Part of the clock period where SCL has to remain high	25	Le.		ns
Part of the clock period where SCL has to remain low	25	1	Tel	ns
Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL	10	1 2	A.	ns
Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL	40	Det.	-	ns
	SCL frequency (Write Mode) Time CS# has to be low before the first rising edge of SCLK Time CS# has to remain low after the last falling edge of SCLK Time CS# has to remain high between two transfers Part of the clock period where SCL has to remain high Part of the clock period where SCL has to remain low Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL	SCL frequency (Write Mode) Time CS# has to be low before the first rising edge of SCLK 60 Time CS# has to remain low after the last falling edge of SCLK 65 Time CS# has to remain high between two transfers 100 Part of the clock period where SCL has to remain high 25 Part of the clock period where SCL has to remain low 25 Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL 10	SCL frequency (Write Mode)  Time CS# has to be low before the first rising edge of SCLK  Time CS# has to remain low after the last falling edge of SCLK  Time CS# has to remain high between two transfers  100 -  Part of the clock period where SCL has to remain high  25 -  Part of the clock period where SCL has to remain low  25 -  Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL  10 -	SCL frequency (Write Mode)  Time CS# has to be low before the first rising edge of SCLK  Time CS# has to remain low after the last falling edge of SCLK  Time CS# has to remain high between two transfers  100 -  Part of the clock period where SCL has to remain high  Part of the clock period where SCL has to remain low  25 -  Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL  - 20

#### Read mode

Parameter	Min	Тур	Max	Unit
SCL frequency (Read Mode)	97	0.3	2.5	MHz
Time CS# has to be low before the first rising edge of SCLK	100	-	1.37	ns
Time CS# has to remain low after the last falling edge of SCLK	50		T) Est	ns
Time CS# has to remain high between two transfers	250		1.	ns
Part of the clock period where SCL has to remain high	180	-	1.54	ns
Part of the clock period where SCL has to remain low	180	- (-7)	14	ns
Time SO(SDA Read Mode) will be stable before the next rising edge of SCL	- 1	50	1151	ns
Time SO (SDA Read Mode) will remain stable after the falling edge of SCL	_0.75	0	12.	ns
	SCL frequency (Read Mode) Time CS# has to be low before the first rising edge of SCLK Time CS# has to remain low after the last falling edge of SCLK Time CS# has to remain high between two transfers Part of the clock period where SCL has to remain high Part of the clock period where SCL has to remain low Time SO(SDA Read Mode) will be stable before the next rising edge of SCL	SCL frequency (Read Mode)  Time CS# has to be low before the first rising edge of SCLK  100  Time CS# has to remain low after the last falling edge of SCLK  50  Time CS# has to remain high between two transfers  250  Part of the clock period where SCL has to remain high  Part of the clock period where SCL has to remain low  180  Time SO(SDA Read Mode) will be stable before the next rising edge of SCL  -  Time SO (SDA Read Mode) will remain stable after the falling edge of SCL  -	SCL frequency (Read Mode)  Time CS# has to be low before the first rising edge of SCLK  Time CS# has to remain low after the last falling edge of SCLK  Time CS# has to remain high between two transfers  250  Part of the clock period where SCL has to remain high  Part of the clock period where SCL has to remain low  Time SO(SDA Read Mode) will be stable before the next rising edge of SCL  Time SO (SDA Read Mode) will remain stable after the falling edge of SCL  0	SCL frequency (Read Mode)  - 2.5  Time CS# has to be low before the first rising edge of SCLK  100

Note: All timings are based on 20% to 80% of VDDIO-VSS

Table 7-4: Serial Peripheral Interface Timing Characteristics



Figure 7-5: SPI timing diagram

## 7-4) Reference Circuit



Part Name	Value	Requirements/Reference Part
C0-C1	1uF	X5R/X7R; Voltage Rating : 6V or 25V
C2-C7	1uF	0402/0603/0805; X5R/X7R; Voltage Rating : 25V
C8	1uF	0402/0603/0805; X5R/X7R; Voltage Rating : 25V
R1	2.2 ohm	0402/0603/0805; 1% variation, ≥ 0.05W
D1-D3	Diode	MBR0530 1) Reverse DC voltage ≥ 30V 2) lo ≥ 500mA 3) Forward voltage ≤ 430mV
Q1	NMOS	Si1304BDL/NX3008NBK  1) Drain-Source breakdown voltage ≥ 30V 2) Vgs(th) = 0.9V (Typ), 1.3V (Max) 3) Rds on ≤ 2.1Ω @ Vgs = 2.5V
L1	47uH	CDRH2D18 / LDNP-470NC lo= 500mA (Max)
U1	0.5mm ZIF socket	24pins, 0.5mm pitch

#### Remarks:

- 1) The recommended component value and reference part in Table is subject to change depending on panel loading.
- 2) Customer is required to review if the selected component value and part is suitable for their application.

## 8. Operation Flow and Code Sequence

8-1) General operation flow to drive display panel



## 9. Optical Specifications

### 9-1) Specifications

Measurements are made with that the illumination is under an angle of 45 degree, the detection is perpendicular unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур.	Max	Units	Notes
R	White Reflectivity	White	30	35	-	%	9-1
CR	Contrast Ratio	Indoor	8:1		-		9-2
GN	2Grey Level	-		DS+(WS-DS)*n(m-1)			9-3
T update	Image update time	at 25 °C		3	-	sec	
Life		Topr		1000000times or 5years			

Notes: 9-1. Luminance meter: Eye-One Pro Spectrophotometer.

9-2. CR=Surface Reflectance with all white pixel/Surface Reflectance with all black pixels.

9-3 WS: White state, DS: Dark state

### 10. Handling, Safety and Environment Requirements

### Warning

The display glass may break when it is dropped or bumped on a hard surface. Handle with care. Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

#### Caution

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components. Disassembling the display module.

Disassembling the display module can cause permanent damage and invalidates the warranty agreements.

Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to static electricity and other rough environmental conditions.

Data sheet status						
Product specification	This data sheet contains final product specifications.					
Limiting values						
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC						
134).Stress above one or more of the	e limiting values may cause permanent damage to the device.					
These are stress ratings only and open	eration of the device at these or at any other conditions above					
those given in the Characteristics see	ctions of the specification is not implied. Exposure to limiting					
values for extended periods may affect device reliability.						
Application information						
Where application information is given	Where application information is given, it is advisory and does not form part of the specification.					

# 11.Reliability test

NO	Test items	Test condition
1	Low-Temperature Storage	T = -25°C, 240 h Test in white pattern
2	High-Temperature Storage	T=60°C, RH=35%, 240h Test in white pattern
3	High-Temperature Operation	T=40°C, RH=35%, 240h
4	Low-Temperature Operation	0°С, 240h
5	High-Temperature, High-Humidity Operation	T=40°C, RH=80%, 240h
6	High Temperature, High Humidity Storage	T=50°C, RH=90%, 240h Test in white pattern
7	Temperature Cycle	1 cycle:[-25° C 30min]→[+60° C 30 min]: 50 cycles Test in white pattern
8	UV exposure Resistance	765W/m² for 168hrs,40 °C Test in white pattern
9	ESD Gun	Air+/-15KV;Contact+/-8KV (Test finished product shell, not display only) Air+/-8KV;Contact+/-6KV (Naked EPD display, no including IC and FPC area) Air+/-4KV;Contact+/-2KV (Naked EPD display, including IC and FPC area)

Note: Put in normal temperature for 1hour after test finished, display performance is ok.

## 12. Inspection method and condition

## 12. 1 Inspection condition

Item	Condition
Illuminance	800~1500 lux
Temperature	22°C ±3°C
Humidity	55±10 %RH
Distance	≥30cm
Angle	Vertical fore and aft 45
Inspection method	By eyes



### 12. 2 Zone definition

A Zone: Active areaB Zone: Border zone

C Zone: From B zone edge to panel edge



## 12. 3 General inspection standards for products

## 12.3.1 Appearance inspection standard

Inspection item		Figure		A zone inspection standard	B/C zone	Inspection method	MAJ/ MIN
Spot defects	Spot defects such as dot, foreign matter, air bubble, and dent etc.	Diameter D=(L+W)/2 (L-length, W-width) Measuring method shown in the figure below  D=(L+W)/2	The distance between the two spots should not be less than 10mm	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Foreign matter D≤1mm Pass	Check by eyes Film gauge	MIN

Insp	ection item	F	igure	A zone inspection standard	B/C zone	Inspection method	MA J/ MI N
Line defects	Line defects such as scratch, hair etc.	L-Length, W-Width, (W/L)<1/4 Judged by line, (W/L)≥1/4 Judged by dot	The distance between the two lines should not be less than 5mm	7.5"-13.3"Module (Not include 7.5"): L>10mm,N=0 W>0.8mm, N=0 5mm≤L≤10mm, 0.5mm≤W≤0.8mm N≤2 L≤5mm, W≤0.5mm Ignore  4.2"-7.5"Module (Not include 4.2"): L>8mm,N=0 W>0.2mm, N=0 2mm≤L≤8mm, 0.1mm≤W≤0.2mm N≤4 L≤2mm, W≤0.1mm Ignore  Module below 4.2": L>5mm,N=0 W>0.2mm, N=0 2mm≤L≤5mm, 0.1mm≤W≤0.2mm N≤4 L≤2mm, W≤0.1mm Ignore	Ignore	Check by eyes Film gauge	MIN

Inspect	ection item Figure Inspection		Inspection standard	Inspection method	MA J/ MIN
Panel chipping and crack defects	TFT panel chipping	X the length, Y the width, Z the chipping height, T the thickness of the panel	Chipping at the edge:  Module over 7.5" (Include 7.5"):  X≤ 6mm,Y≤1mm Z≤T N=3 Allowed  Module below 7.5"(Not include 7.5"):  X≤ 3mm,Y≤1mm Z≤T N=3 Allowed  Chipping on the corner:  IC sideX≤2mm Y≤2mm, Non-IC sideX≤1mm Y≤1mm. Allowed  Note:  Chipping should not damage the edge wiring. If it does not affect the display, allowed	Check by eyes. Film gauge	MIN
	Crack	牧清亜紋	Crack at any zone of glass , Not allowed	Check by eyes. Film gauge	MIN
	Burr edge	TA	No exceed the positive and negative deviation of the outline dimensions X+Y≤0.2mm Allowed	Calliper	MIN
	Curl of panel	Curl height	Curl height H≤Total panel length 1% Allowed	Check by eyes	MIN

Inspec	tion item	Figure	Inspection standard	Inspecti on method	MAJ / MIN
PS defect	Water proof film		Waterproof film damage, wrinkled, open edge, not allowed     Exceeding the edge of module(according to the lamination drawing) Not allowed     Edge warped exceeds height of technical file, not allowed	Check by eyes	MIN
			Adhesive height exceeds the display surface, not allowed		
RTV defect	Adhesive effect	- 11	1. Overflow, exceeds the panel side edge, affecting the size, not allowed     2. No adhesive at panel edge≤1mm, mo exposure of wiring, allowed     3. No adhesive at edge and corner1*1mm, no exposure of wiring, allowed	Check by eyes	MIN
			Protection adhesive, coverage width within W≤1,5mm, no break of adhesive, allowed		
	Adhesive re-fill		Dispensing is uniform, without obvious concave and breaking, bubbling and swell, not higher than the upper surface of the PS, and the diameter of the adhesive re-filling is not more than 8mm, allowed	Check by eyes	MIN
EC defect	Adhesive bubble	防水胶涂布证 封切胶边缘 PS边缘 Barder外缘 (Pro. 2018)	<ol> <li>Effective edge sealing area of hot melt products ≥1/2 edge sealing area;</li> <li>Bubble a+b≥1/2 effective width, N≤3, spacing≥5mm, allowed         No exposure of wiring, allowed     </li> </ol>	Check by eyes	MIN

Inspection item		ection item Figure Inspection standard		Inspection method	MAJ/ MIN
EC defect	Adhesive effect		1. Overflow, exceeds the panel side edge, affecting the size, not allowed     2.No adhesive at panel edge≤Imm, mo exposure of wiring, allowed     3.No adhesive at edge and corner 1*Imm, no exposure of wiring, allowed     4. Adhesive height exceeds the display surface, not allowed	Visual, caliper	MIN
Silver dot adhesive	Silver dot adhesive		<ol> <li>Single silver dot dispensing amount ≥1mm, allowed</li> <li>One of the double silver dot dispensing amount is</li> <li>≥1mm and the other has adhesive (no reference to 1mm)</li> <li>Allowed</li> </ol>	Visual	MIN
defect			Silver dot dispensing residue on the panel ≤0.2mm, allowed	Film gauge	MIN
	FPC wiring		FPC, TCP damage / gold finger peroxidation, adhesive residue, not allowed	Visual	MIJ
FPC defect	FPC golden finger		The height of burr edge of TCP punching surface ≥ 0.4mm, not allowed	Caliper	MIN
	FPC damage/cr ease	9	Damage and breaking, not allowed  Crease does not affect the electrical performance display, allowed	Check by eyes	MIN

Inspection item		Figure	Inspection standard	Inspection method	MAJ/ MIN
Protective film defect	Protective film	Scratch and crease on the surface but no affect to protection function, allowed		Check by eyes	MIN
		Adhesive at edge L≤5mm, W≤0.5mm, N=2, no entering into viewing area		Check by eyes	MIN
Stain defect	Stain	If stain can be normally wiped clean by > 99% alcohol, allowed		Visual	MIN
Pull tab defect	Pull tab	The position and direction meet the document requirements, and ensure that the protective film can be pulled off.		Check by eyes/ Manual pulling	MIN
Shading tape defect	Shading tape	Tilt≤10°, flat without warping, completely covering the IC.		Check by eyes/ Film gauge	MIN
Stiffener	Stiffener	Flat without warping, Exceeding the left and right edges of the FPC is not allowed.  Left and right can be less than 0.5mm from FPC edge		Check by eyes	MIN
Label	Label/ Spraying code	The content meets the requirements of the work sheet. The attaching position meets the requirements of the technical documents.		Check by eyes	MIN

13. Packaging TBA