

Specification for E-Paper AES122250A00-2.13ENRS

Revision 3.1

А	Orient Display
ES	E-Paper
122250	Resolution 122 x 250
A00	Revision A00
2.13	Diagonal: 2.13", Module: 29.2x59.2×1.0 mm
E	EPD - Electrophoretic Display (Active Matrix)
N	Top: 0~ +50°C; Tstr: -25~+70°C
R	Reflective Polarizer
S	3-/4-wire SPI Interface
/	Controller SSD1680A Or Compatible
/	ZIF FPC
/	Ultra Wide Viewing Angle
/	Ultra Low Power Consumption

REVISION HISTORY

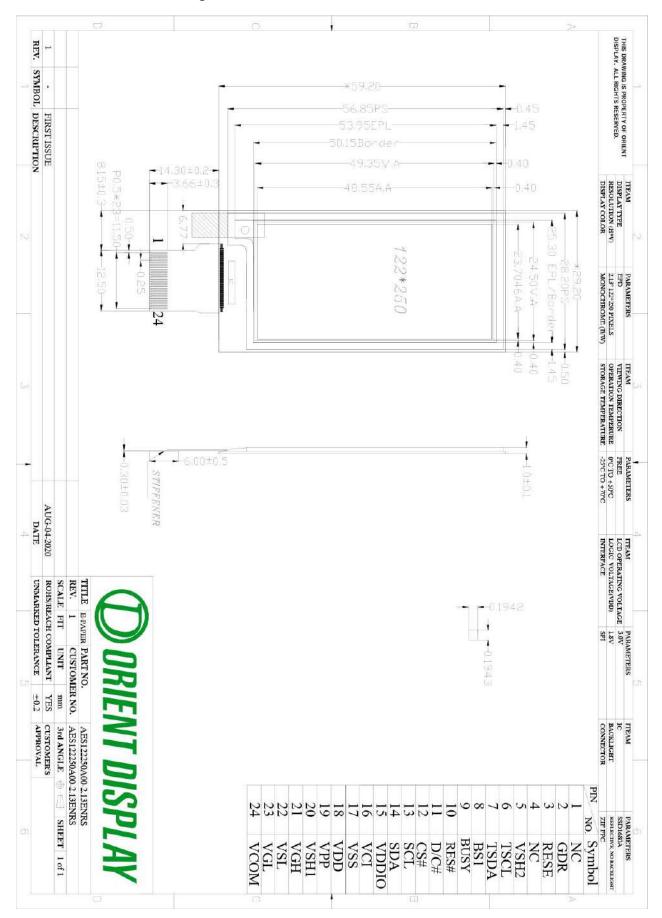
Rev	Date	Item	Page	Remark
1.0	JAN.25.2017	New Creation	ALL	
1.1	SEP.04.2018	Update Overview Update Mechanical Drawing of EPD Update Electrical Characteristics Update Optical Specifications Update Reliability test Update Inspection condition	P4 P5 P7-9 P16 P17 P24	
2.0	MAR.13.2020	New Creation	ALL	
3.0	OCT.22.2020	New Creation	ALL	
3.1	NOV.05.2020	Update Packaging	P35	

LIST

1. Overview	(4)
2. Features	(4)
3. Mechanical Specifications	(4)
4. Mechanical Drawing of EPD module	(5)
5. Input /Output Pin Assignment	(6-7)
6. Electrical Characteristics	(7)
6.1 Absolute Maximum Rating	(7)
6.2 Panel DC Characteristics	(8)
6.3 Panel AC Characteristics	(9)
6.3.1 MCU Interface Selection	(9)
6.3.2 MCU Serial Interface(4-wire SPI)	(9-10)
6.3.3 MCU Serial Interface(3-wire SPI)	(11)
6.3.4 Interface Timing	(12)
7. Command Table	(13-25)
8. Optical Specifications	(26)
9. Handling, Safety and Environment Requirements	(26)
10. Reliability test	(27)
11. Block Diagram	(28)
12. Typical Application Circuit with SPI Interface	(29)
13. Typical Operating Sequence	(30)
13.1 Normal Operation Flow	(30)
14 Part Number Definition	(31)
15 Inspection condition	(31)
15.1 Environment	(31)
15.2 Illuminance	(31)
15.3 Inspect method	(31)
15.4 Display area	·(31)
15.5 Inspection standard	(32)
15.5.1 Electric inspection standard	(32)
15.5.2 Appearance inspection standard	(33-34)
16 Packaging	(35)

1. Overview

AES122250A00-2.13ENRS is an Active Matrix Electrophoretic Display (AM EPD), with interface and a reference system design. The display is capable to display images at 1-bit white, black full display capabilities. The 2.13inch active area contains 122×250 pixels. The module is a TFT-array driving electrophoresis display, with integrated circuits including gate driver, source driver, MCU interface, timing controller, oscillator, DC-DC, SRAM, LUT, VCOM. Module can be used in portable electronic devices, such as Electronic Shelf Label (ESL) System.


2.Features

- 122×250 pixels display
- High contrast High reflectance
- Ultra wide viewing angle Ultra low power consumption
- Pure reflective mode
- Bi-stable display
- Commercial temperature range
- Landscape portrait modes
- Hard-coat antiglare display surface
- Ultra Low current deep sleep mode
- On chip display RAM
- Waveform can stored in On-chip OTP or written by MCU
- Serial peripheral interface available
- On-chip oscillator
- On-chip booster and regulator control for generating VCOM, Gate and Source driving voltage
- I²C signal master interface to read external temperature sensor
- Built-in temperature sensor

3. Mechanical Specifications

Parameter	Specifications	Unit	Remark
Screen Size	2.13	Inch	
Display Resolution	122(H)×250(V)	Pixel	DPI:130
Active Area	23.7046×48.55	mm	
Pixel Pitch	0.1943×0.1942	mm	
Pixel Configuration	Square		
Outline Dimension	29.2(H)×59.2 (V) ×1.0(D)	mm	
Module Weight	3.2±0.5	g	

4. Mechanical Drawing of EPD module

5. Input / Output Terminals

No.	Name	I/O	Description	Remark
1	NC		Do not connect with other NC pins	Keep Open
2	GDR	О	N-Channel MOSFET Gate Drive Control	
3	RESE	I	Current Sense Input for the Control Loop	
4	NC	NC	Do not connect with other NC pins	Keep Open
5	VSH2	С	Positive Source driving voltage(Red)	
6	TSCL	О	I ² C Interface to digital temperature sensor Clock pin	
7	TSDA	I/O	I ² C Interface to digital temperature sensor Data pin	
8	BS1	I	Bus Interface selection pin	Note 5-5
9	BUSY	О	Busy state output pin	Note 5-4
10	RES#	I	Reset signal input. Active Low.	Note 5-3
11	D/C#	I	Data /Command control pin	Note 5-2
12	CS#	I	Chip select input pin	Note 5-1
13	SCL	I	Serial Clock pin (SPI)	
14	SDA	I/O	Serial Data pin (SPI)	
15	VDDIO	P	Power Supply for interface logic pins It should be connected with VCI	
16	VCI	P	Power Supply for the chip	
17	VSS	P	Ground	
18	VDD	С	Core logic power pin VDD can be regulated internally from VCI. A capacitor should be connected between VDD and VSS	
19	VPP	P	FOR TEST	
20	VSH1	С	Positive Source driving voltage	
21	VGH	С	Power Supply pin for Positive Gate driving voltage and VSH1	
22	VSL	C	Negative Source driving voltage	
23	VGL	С	Power Supply pin for Negative Gate driving voltage VCOM and VSL	
24	VCOM	C	VCOM driving voltage	

- I = Input Pin, O =Output Pin, I/O = Bi-directional Pin (Input/output), P = Power Pin, C = Capacitor Pin
- Note 5-1: This pin (CS#) is the chip select input connecting to the MCU. The chip is enabled for MCU communication only when CS# is pulled LOW.
- Note 5-2: This pin is (D/C#) Data/Command control pin connecting to the MCU in 4-wire SPI mode. When the pin is pulled HIGH, the data at SDA will be interpreted as data. When the pin is pulled LOW, the data at SDA will be interpreted as command.
 - Note 5-3: This pin (RES#) is reset signal input. The Reset is active low.
- Note 5-4: This pin is Busy state output pin. When Busy is High, the operation of chip should not be interrupted, command should not be sent. The chip would put Busy pin High when –Outputting display waveform -Communicating with digital temperature sensor

Note 5-5: Bus interface selection pin

BS1 State	MCU Interface
L	4-lines serial peripheral interface(SPI) - 8 bits SPI
Н	3- lines serial peripheral interface(SPI) - 9 bits SPI

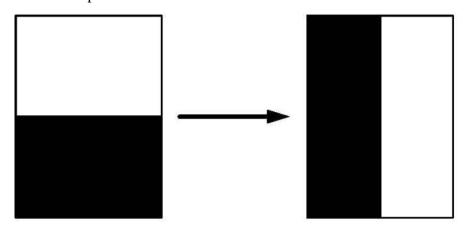
6. Display Module Electrical Characteristics

6.1 Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Logic supply voltage	VCI	-0.5 to +4.0	V
Logic Input voltage	VIN	-0.5 to VCI +0.5	V
Logic Output voltage	VOUT	-0.5 to VCI +0.5	V
Operating Temp range	TOPR	0 to +50	° C
Storage Temp range	TSTG	-25 to+70	° C
Optimal Storage Temp	TSTGo	23±2	° C
Optimal Storage Humidity	HSTGo	55±10	%RH

Note:

Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Panel DC Characteristics tables.


6.2 Display DC Characteristics

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR =23°C

Parameter	Symbol	Conditions	Applica ble pin	Min.	Typ.	Max	Units
Single ground	V_{SS}	-		-	0	-	V
Logic supply voltage	$V_{\rm CI}$	-	VCI	2.2	3.0	3.7	V
Core logic voltage	$V_{ m DD}$		VDD	1.7	1.8	1.9	V
High level input voltage	V _{IH}	-	-	$0.8~V_{CI}$	-	-	V
Low level input voltage	$V_{\rm IL}$	-	-	-	-	$0.2~V_{CI}$	V
High level output voltage	V_{OH}	IOH = -100uA	-	0.9 VCI	-	-	V
Low level output voltage	V_{OL}	IOL = 100uA	-	-	-	$0.1~V_{CI}$	V
Typical power	P_{TYP}	V _{CI} =3.0V	-	-	9	-	mW
Deep sleep mode	P_{STPY}	$V_{CI} = 3.0V$	-	-	0.003	-	mW
Typical operating current	Iopr_V _{CI}	$V_{CI} = 3.0V$	-	-	3.0	-	mA
Image update time	-	25 °C	-	-	3	-	sec
Sleep mode current	Islp_V _{CI}	DC/DC off No clock No input load Ram data retain	-	-	20	-	uA
Deep sleep mode current	Idslp_V _{CI}	DC/DC off No clock No input load Ram data not retain	-	-	1	5	uA

Notes:

1. The typical power is measured with following transition from horizontal 2 scale pattern to vertical 2 scale pattern.

- 2. The deep sleep power is the consumed power when the panel controller is in deep sleep mode.
- 3. The listed electrical/optical characteristics are only guaranteed under the controller & waveform provided by ODNA.

6.3 AC Characteristics

6.3.1 MCU Interface Selection

The pin assignment at different interface mode is summarized in Table 6-4-1. Different MCU mode can be set by hardware selection on BS1 pins. The display panel only supports 4-wire SPI or 3-wire SPI interface mode.

Pin Name	Data/Comma		Control Signa	l	
Bus interface	SDA SCL		CS#	D/C#	RES#
BS1=L 4-wire SPI	SDA	SCL	CS#	D/C#	RES#
BS1=H 3-wire SPI	SDA	SCL	CS#	L	RES#

6.3.2 MCU Serial Interface (4-wire SPI)

The serial interface consists of serial clock SCL, serial data SDA, D/C#, CS#. This interface supports Write mode and Read mode.

Function	CS#	D/C#	SCL
Write command	L	L	↑
Write data	L	Н	↑

Note: † stands for rising edge of signal

In the write mode SDA is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0. The level of D/C# should be kept over the whole byte. The data byte in the shift register is written to the Graphic Display Data RAM /Data Byte register or command Byte register according to D/C# pin.

CS#

D/C#

SCL

SDA
(Write Mode)

Register

Register

Parameter

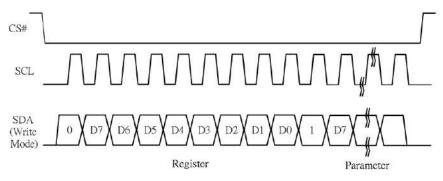
Figure 6-1: Write procedure in 4-wire SPI mode

In the Read mode:

- 1. After driving CS# to low, MCU need to define the register to be read.
- 2. SDA is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0 with D/C# keep low.
- 3. After SCL change to low for the last bit of register, D/C# need to drive to high.
- 4. SDA is shifted out an 8-bit data on every falling edge of SCL in the order of D7, D6, ... D0.
- 5. Depending on register type, more than 1 byte can be read out. After all byte are read, CS# need to drive to high to stop the read operation.

Figure 6-2: Read procedure in 4-wire SPI mode

6.3.3 MCU Serial Interface (3-wire SPI)


The 3-wire serial interface consists of serial clock SCL, serial data SDA and CS#. This interface also supports Write mode and Read mode.

The operation is similar to 4-wire serial interface while D/C# pin is not used. There are altogether 9-bits will be shifted into the shift register on every ninth clock in sequence: D/C# bit, D7 to D0 bit. The D/C# bit (first bit of the sequential data) will determine the following data byte in the shift register is written to the Display Data RAM (D/C# bit = 1) or the command register (D/C# bit = 0).

Function	CS#	D/C#	SCL
Write command	L	Tie	†
Write data	L	Tie	↑

Note: † stands for rising edge of signal

Figure 6-3: Write procedure in 3-wire SPI mode

In the Read mode:

- 1. After driving CS# to low, MCU need to define the register to be read.
- 2. D/C=0 is shifted thru SDA with one rising edge of SCL
- 3. SDA is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0.
- 4. D/C=1 is shifted thru SDA with one rising edge of SCL
- 5. SDA is shifted out an 8-bit data on every falling edge of SCL in the order of D7, D6, ... D0.
- 6. Depending on register type, more than 1 byte can be read out. After all byte are read, CS# need to drive to high to stop the read operation.

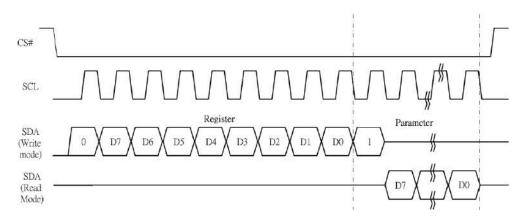
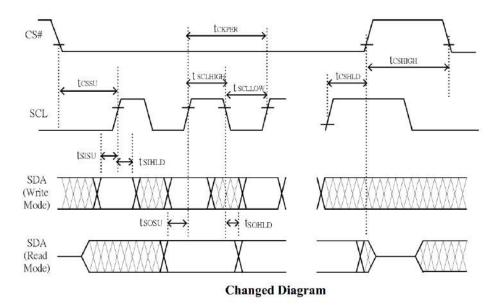



Figure 6-4: Read procedure in 3-wire SPI mode

6.3.4 Interface Timing

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR =25°C.

Serial Interface Timing Characteristics

 $(VCI - VSS = 2.2V \text{ to } 3.7V, TOPR = 25^{\circ}C, CL=20pF)$

Write mode

Symbol	Parameter	Min	Тур	Max	Unit
f _{SCL}	SCL frequency (Write Mode)	-	-	20	MHz
tcssu	Time CS# has to be low before the first rising edge of SCLK	60	27	12	ns
tcshld	Time CS# has to remain low after the last falling edge of SCLK	65	. =	1.5	ns
tcsнigh	Time CS# has to remain high between two transfers	100	8	150	ns
tschiigh	Part of the clock period where SCL has to remain high	25	-	-	ns
tscllow	Part of the clock period where SCL has to remain low	25	2	12	ns
tsisu	Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL	10		1.5	ns
tsihld	Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL	40	5	8.0	ns

Read mode

Symbol	Parameter	Min	Тур	Max	Unit
f _{SCL}	SCL frequency (Read Mode)	-	37	2.5	MHz
tcssu	Time CS# has to be low before the first rising edge of SCLK	100) IT	-	ns
tcshld	Time CS# has to remain low after the last falling edge of SCLK	50	(=	-	ns
tcshigh	Time CS# has to remain high between two transfers	250	14	-	ns
tsclhigh	Part of the clock period where SCL has to remain high	180	12	-	ns
tscllow	Part of the clock period where SCL has to remain low	180	17	-	ns
tsosu	Time SO(SDA Read Mode) will be stable before the next rising edge of SCL		50	-	ns
tsohld	Time SO (SDA Read Mode) will remain stable after the falling edge of SCL	0 ± 0	0	-	ns

7. Command Table

/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	DO	Command	Descripti	on		
0	0	01	0	0	0	0	0	0	0	1	Driver Output control	Gate sett			
0	1	-	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Dilver output control], 296 MU	X
0	1		0	0	0	0	0	0	0	A ₈	-			tting as (A	
2/34/3	. 8		2000	10000	370	- 8	5500		100	150000	-	D 10 01	200 1000		
0	1		0	0	0	0	0	B ₂	B ₁	Bo		B [2:0] = 0 Gate scar	STATE OF THE PARTY]. uence and	direction
												B[2]: GD Selects th GD=0 [PC		put Gate	
														output cha G0,G1, G	
												G1 is the		output cha G1, G0, 0	
														order of ga	ite <mark>dri</mark> ver.
												SM=0 [PC G0, G1, C interlaced	32, G32	95 (left ar	nd right ga
												SM=1, G0, G2, C	64G29	4, G1, G3	,G <mark>29</mark> 9
														n from G0 G295 to G	
_													49.0		
0	1	03	0	0	0	0 A ₄	0 A ₃	0 A ₂	1 A ₁	1 A ₀	Gate Driving voltage Control	Set Gate A[4:0] = 0	Oh [POR]	0V to 20V	,
												A[4:0]	VGH	A[4:0]	VGH
												00h	20	0Dh	15
												03h	10	0Eh	15.5
												04h	10.5	0Fh	16
												05h	11	10h	16.5
												06h	11.5	11h	17
												07h	12	12h	17.5
												08h	12.5	13h	18
	1											07h	12	14h	18.5
												08h	12.5	15h	19
								1	1	1	1				
												09h	13	16h	19.5
												09h 0Ah	13 13.5	16h 17h	19.5 20
															ć-

/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Comn	nand		Description			
0	THE STATE OF	10000	1777	1 200	177	200	27.00		3.9	The second		VACCOUNTY.	voltoss		ing val	togo	
-	0	04	0	0	0	0	0	1	0	0	Contro	e Driving	voltage	Set Source driv A[7:0] = 41h [Po			/
)	1		A ₇	A ₆	A ₅	A ₄	Аз	A ₂	A ₁	A ₀	Contro			B [7:0] = A8h [F			
)	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀				C[7:0] = 32h [P			
)	1		C ₇	C ₆	C ₅	C ₄	C ₃	C_2	C ₁	Co				Remark: VSH1:	>=VSH	2	
[7	/B[7]	= 1,	7-001					A[7]/B[7	7] = C),	3535.53193	43 955546	C[7] = 0,		00000000 1	_
SI	H1/V	SH2	oltag	je se	tting	from	2.4V	VS	H1/	/SH2	voltag	e setting	from 9V	VSL setting	from -5	V to -17V	
	V8.8								17V					-		-	
_	B[7:0] 8Eh	1000	1/VSH2 2.4	0.77	[7:0] Fh		/VSH2	-	VB[7:0] 23h	VS	H1/VSH2 9	A/B[7:0] 3Ch	VSH1/VSH2	4 -	C[7:0]	VSL	
_	8Fh		2.5		0h	5/2	.8	-	24h	+	9.2	3Dh	14.2	1 -	0Ah 0Ch	-5 -5.5	
	90h		2.6		1h		.9		25h		9.4	3Eh	14.4	1 -	0Eh	-6	
	91h		2.7		2h		6	-	26h	+	9.6	3Fh	14.6	- I	10h	-6.5	
	92h 93h		2.8	-	3h 4h		.1		27h 28h		9.8	40h 41h	14.8 15	1 [12h	-7	
	94h		3		5h		.3		29h		10.2	42h	15.2	j [14h	-7.5	
_	95h		3.1		6h	(33)	.4	5	2Ah		10.4	43h	15.4		16h	-8	
	96h 97h		3.2	5.5	7h 8h		.5	12	2Bh 2Ch	-	10.6	44h 45h	15.6 15.8		18h	-8.5	
	98h		3.4	-	9h	277	.7	7	2Dh		11	45h	16	1 -	1Ah 1Ch	-9 -9.5	
- 1	99h	1 8	3.5	В	Ah	6	.8		2Eh		11.2	47h	16.2	j -	1Eh	-10	
_	9Ah		3.6	-	Bh	_	.9	-	2Fh		11.4	48h	16.4	↓	20h	-10.5	
	9Bh 9Ch	_	3.7 3.8	_	Ch Dh		7	-	30h 31h	+	11.6	49h 4Ah	16.6 16.8	1 [22h	-11	
	9Dh	_	3.9	_	Eh		.2		32h		12	4Bh	17	1 [24h	-11.5	
	9Eh	_	4		Fh	27	.3		33h		12.2	Other	NA]	26h	-12	
	9Fh	_	4.1		Oh		.4	10	34h	-	12.4			-	28h	-12.5	
_	A0h A1h	_	4.2		1h 2h		.6	12	35h 36h	+	12.6			-	2Ah 2Ch	-13 -13.5	
	A2h		4.4	-	3h	2,00	.7	11	37h		13			-	2Eh	-13.5	
	A3h		4.5	. 0	4h		.8		38h		13.2				30h	-14.5	
	A4h A5h	_	4.6 4.7		5h 6h		.9	_	39h 3Ah	+	13.4				32h	-15	
_	A6h		4.8		7h	_	.1	-	3Bh	+	13.8			- [34h	-15.5	
	A7h	_	4.9		8h		.2	_							36h	-16	
	A8h		5		9h		.3							Į.	38h	-16.5	
_	A9h AAh		5.1		Ah Bh		.4							-	3Ah Other	-17 NA	
_	ABh		5.3		Ch	100	.6							Ļ	Other	195	
	ACh		5.4		Dh	100	.7										
	ADh AEh	- //	5.5 5.6		Eh ther	200	.8 IA										
- 23	nLII		0.0		u ICI		iri.										
0	0	08	0	0	0	0	1	0	0	0	Initial	Code Set	ting	Program Initial	Code S	Setting	
											OTP F	Program		THE STATE OF THE STATE S		10.000	
			<i>y</i>											The command in Refer to Register BUSY pad will coperation.	er 0x22	for detail.	
0	0	09	0	0	0	0	1	0	0	1		Register	for Initial	Write Register f	or Initia	al Code Se	ettir
0	1		A ₇	A ₆	A ₅	A4	A ₃	A_2	A ₁	A ₀	Code	Setting		Selection	Decr	, ad	
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo				A[7:0] ~ D[7:0]:			
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co	1			Details refer to Code Setting	Applica	ILIOH NOLES	, 0
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	1			Sode Setting			
J	1		U/	D 6	D 5	D4	D 3	D2	D1	D0							
0	0	0A	0	0	0	0	1	0	1	0		Register Setting	for Initial	Read Register t	or Initia	al Code Se	ettir

Con	man	d Tal	ble	V.		2			771			40	
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description	
0	0	0C	0	0	0	0	1	1	0	0	Booster Soft start	Booster Enable with Phase	
0	1		1	A ₆	A5	A ₄	Аз	A ₂	A ₁	Ao	Control	for soft start current and dur	Continues of Continues of the Continues
0	1		1	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀		A[7:0] -> Soft start setting for = 8Bh [POR]	r Phase1
0	1		1	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co		B[7:0] -> Soft start setting for	r Phase2
0	1		0	0	D ₅	D ₄	D 3	D ₂	Dı	D ₀		= 9Ch [POR] C[7:0] -> Soft start setting for	or Phase3
					-,,,,,,,,,,,		i manifest		11,000,00	1.55		= 96h [POR]	i i ilasco
												D[7:0] -> Duration setting = 0Fh [POR]	
												Bit Description of each A[6:0] / B[6:0] / C[6:0]:	byte:
													ving Strength
													Selection 1(Weakest)
												000	2
												010	3
												011	4
												100	5
												101	6
												110	7
												111 8	(Strongest)
												Min Off T	ime Setting of GDR
													Time unit]
												0000	NA
												0011	
												0100	2.6
												0101	3.2
												0110	3.9 4.6
												1000	5.4
												1001	6.3
												1010	7.3
												1011	8.4
												1100	9.8
												1101	11.5
												1110	13.8
												1111	16,5
												D[5:0]: duration setting D[5:4]: duration settin D[3:2]: duration settin D[1:0]: duration settin	ng of phase 3 ng of phase 2
												Bitt1:01 Dur	ation of Phase
												00	10ms
												01	20ms
												10	30ms
												11	40ms
				1					1.	1.	1		
0	0	10	0	0	0	1	0	0	0	0	Deep Sleep mode	Deep Sleep mode Cor	
0	1		0	0	0	0	0	0	A ₁	Ao		A[1:0]: Description	
												00 Normal Mo 01 Enter Deep	de [POR] Sleep Mode 1
												DESCRIPTION OF THE PROPERTY OF	Sleep Mode 2
												After this command ini enter Deep Sleep Mod keep output high.	e, BUSY pad will
												To Exit Deep Sleep mo to send HWRESET to	

Com	man	d Ta	ble									
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
				0 0	0 0	D4 1 0	0 0	0 A ₂	0 A ₁	1 A ₀	Data Entry mode setting	Define data entry sequence A[2:0] = 011 [POR] A [1:0] = ID[1:0] Address automatic increment / decrement setting The setting of incrementing or decrementing of the address counter can be made independently in each upper and lower bit of the address. 00 –Y decrement, X decrement, 01 –Y decrement, X increment, 10 –Y increment, X decrement, 11 –Y increment, X increment [POR] A[2] = AM Set the direction in which the address
0	0	12	0	0	0	1	0	0	1	0	SW RESET	counter is updated automatically after data are written to the RAM. AM= 0, the address counter is updated in the X direction. [POR] AM = 1, the address counter is updated in the Y direction. It resets the commands and parameters to their S/W Reset default values except R10h-Deep Sleep Mode
												During operation, BUSY pad will output high. Note: RAM are unaffected by this command.
0	0	14	0	0	0	1	0	1	0	0	HV Ready Detection	HV ready detection A[7:0] = 00h [POR] The command required CLKEN=1 and ANALOGEN=1. Refer to Register 0x22 for detail. After this command initiated, HV Ready detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).
0	1		0	A ₆	A5	A ₄	0	A2	A ₁	Α ₀		A[6:4]=n for cool down duration: 10ms x (n+1) A[2:0]=m for number of Cool Down Loop to detect. The max HV ready duration is 10ms x (n+1) x (m) HV ready detection will be trigger after each cool down time. The detection will be completed when HV is ready. For 1 shot HV ready detection, A[7:0] can be set as 00h.

_	man D/C#	-		D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	15	0	0	0	1	0	1	0	1	VCI Detection	VCI Detection
0	1	10	0	0	0	0	0	A ₂	A ₁	A ₀	Vol Detection	A[2:0] = 100 [POR] , Detect level at 2.3V A[2:0] : VCI level Detect
												A[2:0] VCI level
												011 2.2V
												100 2.3V
												101 2.4V
												110 2.5V
												111 2.6V
												Other NA
												The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail. After this command initiated, VCI detection starts. BUSY pad will output high during detection. The detection result can be read from th Status Bit Read (Command 0x2F).
•		40										
0	0	18	0 A ₇	0 A ₆	0 A ₅	1 A ₄	1 A ₃	0 A ₂	0 A ₁	0 A ₀	Temperature Sensor Control	Temperature Sensor Selection A[7:0] = 48h [POR], external
U			N/	Ль	Λ.	/A	Α3	7.2	Ai	Λ0	100 000 100	temperatrure sensor A[7:0] = 80h Internal temperature sensor
0	0	1A	0	0	0	1	1	0	1	0	Temperature Sensor	Write to temperature register.
0	1		A7	A ₆	A ₅	A ₄	Аз	A ₂	A ₁	Ao	Control (Write to	A[7:0] = 7Fh [POR]
					1.27						temperature register)	
0	0	1B	0	0	0	1	1	0	1	1	Temperature Sensor	Read from temperature register.
1	1		A7	A ₆	A ₅	A ₄	Аз	A ₂	A ₁	Ao	Control (Read from	11 11 11 11 11 11 11 11 11 11 11 11 11
											temperature register)	
0	0	1C	0	0	0	1	1	1	0	0	Temperature Sensor	Write Command to External temperature
0	1	530%	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	Control (Write Command	sensor.
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo	to External temperature	A[7:0] = 00h [POR],
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co	sensor)	B[7:0] = 00h [POR], C[7:0] = 00h [POR],
												A[7:6] A[7:6] Select no of byte to be sent 00 Address + pointer 01 Address + pointer + 1st parameter 10 Address + pointer + 1st parameter + 2nd pointer 11 Address A[5:0] - Pointer Setting B[7:0] - 1st parameter C[7:0] - 2nd parameter The command required CLKEN=1. Refer to Register 0x22 for detail. After this command initiated, Write Command to external temperature sensor starts. BUSY pad will output high during operation.
0	0	1F	0	0	0	1	1	1	1	1	IC revision Read	Read IC revision [POR 0x0D]
1	1		A ₇	A ₆	A ₅	A4	A ₃	A ₂	A ₁	A ₀		

	man		ble								Vi.		
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description	
0	0	20	0	0	1	0	0	0	0	0	Master Activation	Activate Display Update Sequence The Display Update Sequence Option is located at R22h. BUSY pad will output high during operation. User should not interrupt this operation to avoid corruption of panel images.	
0	0	21	0	0	1	0	0	0	0	1	Display Update Control	RAM content option for Display Update	
0	1		A ₇	A ₆	A 5	A ₄	Аз	A ₂	A ₁	Ao	1	A[7:0] = 00h [POR]	
0	1		B ₇	0	0	0	0	0	0	0		B[7:0] = 00h [POR]	
0	0	24	0	0	1	0	0	1	0	0	Write RAM (Black White) / RAM 0x24	After this command, data entries will be written into the BW RAM until another command is written. Address pointers wi advance accordingly For Write pixel: Content of Write RAM(BW) = 1 For Black pixel: Content of Write RAM(BW) = 0	

om	D/C#			D6	D5	D4	D3	D2	D1	DO	Command	Description	
0	0	22	0	0	1	0	0	0	1	0	Display Update	Display Update Sequence Opti	on:
0	1		A ₇	A ₆	A ₅	A4	A ₃	A ₂	A ₁	Ao	Control 2	Enable the stage for Master Ad A[7:0]= FFh (POR)	
												Operating sequence	Parameter (in Hex)
												Enable clock signal	80
												Disable clock signal	01
												Enable clock signal → Enable Analog	C0
												Disable Analog → Disable clock signal	03
												Enable clock signal → Load LUT with DISPLAY Mode 1 → Disable clock signal	91
												Enable clock signal → Load LUT with DISPLAY Mode 2 → Disable clock signal	99
												Enable clock signal → Load temperature value → Load LUT with DISPLAY Mode 1 → Disable clock signal	B1
												Enable clock signal → Load temperature value → Load LUT with DISPLAY Mode 2 → Disable clock signal	В9
												Enable clock signal → Enable Analog → Display with DISPLAY Mode 1 → Disable Analog → Disable OSC	C7
												Enable clock signal → Enable Analog → Display with DISPLAY Mode 2 → Disable Analog → Disable OSC	CF
												Enable clock signal →Enable Analog → Load temperature value → DISPLAY with DISPLAY Mode 1 → Disable Analog → Disable OSC	F7
												Enable clock signal → Enable Analog → Load temperature value → DISPLAY with DISPLAY Mode 2 → Disable Analog → Disable OSC	FF
0	0	26	0	0	1	0	0	1	1	0	Write RAM (RED) / RAM 0x26	After this command, data entrice written into the RED RAM until command is written. Address padvance accordingly.	another
									ć — (č			For Red pixel: Content of Write RAM(RED) = For non-Red pixel [Black or Wi Content of Write RAM(RED) =	nite]:
0	0	27	0	0	1	0	0	1	1	1	Read RAM	After this command, data read MCU bus will fetch data from F According to parameter of Reg to select reading RAM0x24/ R/until another command is writte Address pointers will advance accordingly. The 1st byte of data read is dur	RAM. ister 41h AM0x26, en.

Com	man	d Ta	ble							0	19	-W			
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Descript	tion		
0	0	28	0	0	1	0	1	0	0	0	VCOM Sense	for durative VCOM variable The sens register The command ANALOG Refer to I	on defined alue. sed VCOM mand requ SEN=1 Register 0:	voltage i voltage i ired CLK x22 for de	
0	0	20	0	0	1	0	4	0	0	4	VCOM Canas Duration	Ctabling	time between	on ontor	ing VCOM
0	0	29	0	0	1	0	1	0	0	1	VCOM Sense Duration		node and		ing VCOM
0	1		0	1	0	0	A ₃	A ₂	A ₁	A ₀		A[3:0] = 9	9h, duratio	n = 10s.	3:0]+1) sec
0	0	2A	0	0	1	0	1	0	1	0	Program VCOM OTP	Drogram	VCOM reg	riotor into	OTD
									,			The com	mand requ Register 0: ad will outp	iired CLK x22 for de	EN=1. etail.
0	0	2C	0	0	1	0	1	1	0	0	Write VCOM register	Write VC	OM regist	er from M	ICU interface
0	1		A 7	A ₆	A 5	A 4	Аз	A ₂	A ₁	Ao		A[7:0] = 0	00h [POR]		
												A[7:0]	VCOM	A[7:0]	VCOM
												08h	-0.2	44h	-1.7
												0Ch	-0.3	48h	-1.8
												10h	-0.4	4Ch	-1.9
												14h	-0.5	50h	-2
												18h	-0.6	54h	-2.1
												1Ch	-0.7	58h	-2.2
												20h	-0.8	5Ch	-2.3
												24h	-0.9	60h	-2.4
												28h	-1	64h	-2.5
												2Ch	-1.1	68h	-2.6
												30h	-1.2	6Ch	-2.7
												34h	-1.3	70h	-2.8
												38h	-1.4	74h	-2.9
		1			1	1	1			1	I	3Ch	-1.5	78h	-3
												40h	-1.6	Other	NA

	man		1000	12000	l'agrand	1200		2	I region	2/800	I		
	D/C#	17.500	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description	
0	0	2D	0	0	1	0	1	1	0	1	OTP Register Read for Display Option	Read Register for Display Option:	
1	1		A 7	A ₆	A ₅	A 4	Аз	A 2	A ₁	Αo	Display Option	A[7:0]: VCOM OTP Selection	
1	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀		(Command 0x37, Byte A)	
1	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀		BIZ-01- VCOM Benieten	
1	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀		B[7:0]: VCOM Register (Command 0x2C)	
1	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	E ₀		Check the service of the check that the service of	
1	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	F ₀		C[7:0]~G[7:0]: Display Mode	
1	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	G ₀		(Command 0x37, Byte B to Byte F) [5 bytes]	
1	1		H ₇	H ₆	H ₅	H ₄	H ₃	H ₂	H ₁	H ₀		[c byles]	
1	1		I ₇	l ₆	J ₅	l ₄ J ₄	l ₃	I ₂	I ₁	J ₀		H[7:0]~K[7:0]: Waveform Version	
1	1	-	K ₇	K ₆	K ₅	K ₄	K ₃	K ₂	K ₁	K ₀		(Command 0x37, Byte G to Byte J) [4 bytes]	
1	1		N7	N6	N.5	N4	N3	r\2	IN1	N ₀		[4 byteo]	
0	0	2E	0	0	1	0	1	1	1	0	User ID Read	Read 10 Byte User ID stored in OTP:	
1	1		A ₇	A ₆	A ₅	A4	A ₃	A ₂	A ₁	A ₀		A[7:0]]~J[7:0]: UserID (R38, Byte A and	
1	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	Bo		Byte J) [10 bytes]	
1	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co			
1	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀			
1	1		E ₇	E ₆	E ₅	E ₄	Ез	E ₂	E ₁	E ₀			
1	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	Fo			
1	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	G ₀			
1	1		H ₇	H ₆	H ₅	H ₄	H ₃	H ₂	H ₁	Ho			
1	1		17	l 6	15	14	l ₃	l ₂	l ₁	I ₀			
1	1		J ₇	J 6	J ₅	J ₄	J ₃	J ₂	J ₁	J_0			
0	0	2F	0	0	1	0	1	1	1	1	Status Bit Read	Read IC status Bit [POR 0x01]	
1	1		0	0	A5	A4	0	0	Aı	A ₀		Read IC status Bit [POR 0x01] A[5]: HV Ready Detection flag [POR=0] 0: Ready 1: Not Ready A[4]: VCI Detection flag [POR=0] 0: Normal 1: VCI lower than the Detect level A[3]: [POR=0] A[2]: Busy flag [POR=0] 0: Normal 1: BUSY A[1:0]: Chip ID [POR=01] Remark: A[5] and A[4] status are not valid after RESET, they need to be initiated by command 0x14 and command 0x15 respectively.	
0	0	30	0	0	1	1	0	0	0	0	Program WS OTP	Program OTP of Waveform Setting The contents should be written into RAI before sending this command. The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.	

	man	_	10000									
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	31	0	0	1	1	0	0	0	1	Load WS OTP	Load OTP of Waveform Setting
												The command required CLKEN=1. Refer to Register 0x22 for detail.
												BUSY pad will output high during operation.
0	0	32	0	0	1	1	0	0	1	0	Write LUT register	Write LUT register from MCU interface
0	1	-	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	White Edit regions	[227 bytes], which contains the content of
0	1		B ₇	B ₆	B 5	B4	Вз	B ₂	Bı	Bo	-	VS[nX-LUTm], TP[nX], RP[n], SR[nXY], FR and XON[nXY]
0	1		:	:	:	:	:	:	:	:		Refer to Session 6.7 WAVEFORM
0	1		((*))		990	٠	8.0	•	×	(*)		SETTING
0	0	34	0	0	1	1	0	1	0	0	CRC calculation	CRC calculation command For details, please refer to SSD1680A application note. BUSY pad will output high during operation.
												And the second section is a second se
0	0	35	0	0	1	1	0	1	0	1	CRC Status Read	CRC Status Read A[15:0] is the CRC read out value
1	1		A ₁₅	A14	A ₁₃	A ₁₂	A ₁₁	A ₁₀	A9	A ₈	-	A[15.0] is the CNC read out value
1	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀		
0	0	36	0	0	1	1	0	1	1	0	Program OTP selection	Program OTP Selection according to the OTP Selection Control [R37h and R38h] The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
^		07		_			_				Marte Desister & Dissiler	With Design for Disales Ordina
0	0	37	0 A ₇	0	0	0	0	0	0	0	Write Register for Display Option	Write Register for Display Option A[7] Spare VCOM OTP selection
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	Bo		0: Default [POR]
0	1		C ₇	C ₆	C 5	C ₄	C ₃	C ₂	C ₁	Co		1: Spare
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	Do		B[7:0] Display Mode for WS[7:0]
0	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	E ₀		C[7:0] Display Mode for WS[15:8] D[7:0] Display Mode for WS[23:16]
0	1		0	F ₆	0	0	F ₃	F ₂	F ₁	Fo		0: Display Mode 1
0	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	G ₀		1: Display Mode 2
0	1		H ₇	H ₆	H ₅	H ₄	H ₃	H ₂	H ₁	H ₀		F[6]: Ping-Pong for Display Mode 2
0	1		J ₇	J ₆	J 5	4 J4	J ₃	J ₂	J ₁	J ₀		0: RAM Ping-Pong disable [POR] 1: RAM Ping-Pong enable
												G[7:0]~J[7:0] module ID /waveform version.
												Remarks: 1) A[7:0]~J[7:0] can be stored in OTP 2) RAM Ping-Pong function is not support for Display Mode 1

	man D/C#			D6	D5	D4	D3	D2	D1	DO	Command	Description	
0	0	38	0	0	1	1	1	0	0	0	Write Register for User ID	Write Registe	er for User ID
0	1	-	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	White regional for occi ib		0]: UserID [10 bytes]
0	1	-	B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	Bo			S 100 100 100 100 100 100 100 100 100 10
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co	-	Remarks: Al	7:0]~J[7:0] can be stored in
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	-	OTF	
0	1	_	E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	E ₀			
0	1	-	F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	Fo	-		
0	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	Go			
0	1		H ₇	H ₆	H ₅	H ₄	H ₃	H ₂	H ₁	H ₀	-		
1407245	2 3		224				-		1.0	-			
0	1		17	16	15	14	l ₃	12	11	l ₀			
0	1		J ₇	J ₆	J ₅	J ₄	J ₃	J ₂	J ₁	Jo			
0	0	39	0	0	1	1	1	0	0	1	OTP program mode	OTP program	n mode
0	1	55	0	0	0	0	0	0	A ₁	Ao	OTT program mode		Normal Mode [POR]
U	12		U	U	U	.0	U	0	A	Mo			Internal generated OTP
												programming	g voltage
												· Heor is room	uired to EXACTLY follow the
													de sequences
_	_	20	0	_					_	0	D	0-1414-	
0	0	3C	0	0	1	1	1	1	0	0	Border Waveform Control		[POR], set VBD as HIZ.
0	1		A 7	A ₆	A 5	A ₄	0	0	A ₁	A ₀			ect VBD option
												A[7:6]	Select VBD as
												00	GS Transition,
													Defined in A[2] and A[1:0]
												01	Fix Level, Defined in A[5:4]
												10	VCOM
												11[POR]	HiZ
												24 To 2 To	MARKO MILA 18 MINISTRA
													evel Setting for VBD
												A[5:4] 00	VBD level VSS
												01	VSH1
												10	VSL
												11	VSH2
												A [1:0] GS To VBD Level S	ransition setting for VBD
												00b: VCOM	
												10b: VSL; 11	
												A[1:0]	VBD Transition
												00	LUT0
												01 10	LUT1 LUT2
												11	LUT3
- 35								_	_			ļ	
0	0	3F	0	0	1	1	1	1	1	1	End Option (EOPT)	Option for LU	JT end
0	1		A 7	A ₆	A 5	A4	Аз	A ₂	A ₁	Ao		Data bytes s	hould be set for this
	- 5/s		11111111	4001	\$18E	8888	5400000	S2(6)	1855	W			programmed into Waveform
												setting. 22h Norn	nal
													ce output level keep
													ous output before power off

	man D/C#			D6	D5	D4	D3	D2	D1	DO	Command	Descripti	ion			
A	2000		200	5-7	200	10000		0.000	A Partie	1300	Live of Ballion Administration 1	Trees management	Market Street			
0	1	41	0	0	0	0	0	0	0	1 A ₀	Read RAM Option	Read RAM Option A[0]= 0 [POR] 0: Read RAM corresponding to RAM0x24 1: Read RAM corresponding to RAM0x26				
0	0	44	0	1	0	0	0	1	0	0	Set RAM X - address	Specify th	ne start/end	d position	s of the	
0	1		0	0	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	Start / End position		ddress in t			
0	1		0	0	B ₅	B ₄	B ₃	B ₂	B ₁	Bo		address u	init for RA	M		
	•				D ₃	D4	D ₃	D ₂	D,	D 0		A[5:0]: XSA[5:0], XStart, POR = 00h B[5:0]: XEA[5:0], XEnd, POR = 15h				
0	0	45	0	1	0	0	0	1	0	1	Set Ram Y- address	Specify the start/end positions of the				
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	Start / End position	window address in the Y dire		ction by ar		
0	1		0	0	0	0	0	0	0	A ₈	-	address u	init for RAI	М		
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀	•	A[8:0]: YSA[8:0], YStart, POR = 0000 B[8:0]: YEA[8:0], YEnd, POR = 1276			2 = 000h	
0	1		0	0	0	0	0	0	0	B ₈					2 = 127h	
											lii-					
0	1	46	0 A7	1 A6	0 A ₅	0 A4	0	1 A2	A1	0 Ao	Auto Write RED RAM for Regular Pattern	Auto Write RED RAM for Regular Pat A[7:0] = 00h [POR] A[7:] The 1st step value, POR = 0 A[6:4]: Step Height, POR= 000 Step of alter RAM in Y-direction according to Gate			R = 0	
												A[6:4]	Height	A[6:4]	Height	
												000	8	100	128	
												001	16	101	256	
												010	32	110	296	
												011	64	111	NA	
												A[2:0]: Step Width, POR= 000 Step of alter RAM in X-direction according to Source				
												A[2:0]	Width	A[2:0]	Width	
												000	8	100	128	
												001	16	101	176	
														NA		
												011	64	111	NA	
												BUSY pad will output high during operation.			ring	

	man	-	1000		V.		1				The second secon	1					
/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Descript	ion				
0	0	47	0	1	0	0	0	1	1	1	Auto Write B/W RAM for	Auto Write B/W RAM for Regular Pattern					
0	1		A ₇	A ₆	A ₅	A ₄	0	A ₂	A ₁	A ₀	Regular Pattern	A[7:0] = 00h [POR]					
												A[7]: The 1st step value, F A[6:4]: Step Height, POR= Step of alter RAM in Y-dire according to Gate			0		
												A[6:4]	Height	A[6:4]	Height		
												000	8	100	128		
												001	16	101	256		
												010	32	110	296		
												011	64	111	NA		
												A[2:0] 000 001	to Source Width 8	A[2:0] 100 101	Width 128 176		
													15-16				
												010	32	110	NA		
												010	64	111	NA NA		
													eration, B				
											la removin	1					
0	0	4E	0	1	0	0	1	1	1	0	Set RAM X address counter		al settings of the addre				
0	1		0	0	A 5	A 4	Аз	A ₂	A ₁	Ao	Counter	A[5:0]: 00		oss counte	el (AC)		
	_		_			•				24	0.15444	T		·	****		
0	0	4F	0	1	0	0	1	1	1	1	Set RAM Y address counter		al settings the addre				
0	1	-	A7	A ₆	A5	A4	A3	A ₂	A1	A ₀	-	A[8:0]: 00		Jos Goulite	0. (1.0)		
0	1		0	0	0	0	0	0	0	A ₈							
0	0	7F	0	1	1	1	1	1	1	1	NOP	This command is an empty command; i does not have any effect on the display module. However it can be used to terminate Frame Memory Write or Read Commands.					

8. Optical characteristics

8.1 Specification

Measurements are made with that the illumination is under an angle of 45 degree, the detection is perpendicular unless otherwise specified

Symbol	Parameter	Conditions	Min	Typ.	Max	Units	Notes
R	White Reflectivity	White	30	35	-	%	8-1
CR	Contrast Ratio	Indoor	8:1		-		8-2
GN	2Grey Level	-		DS+(WS-DS)*n(m-1)			8-3
T update	Image update time	at 25 °C		3	-	sec	
Life		Topr		1000000times or 5years	·		·

Notes: 8-1. Luminance meter: Eye-One Pro Spectrophotometer.

- 8-2. CR=Surface Reflectance with all white pixel/Surface Reflectance with all black pixels.
- 8-3 WS: White state, DS: Dark state

9. Handling, Safety and Environmental Requirement

Warning

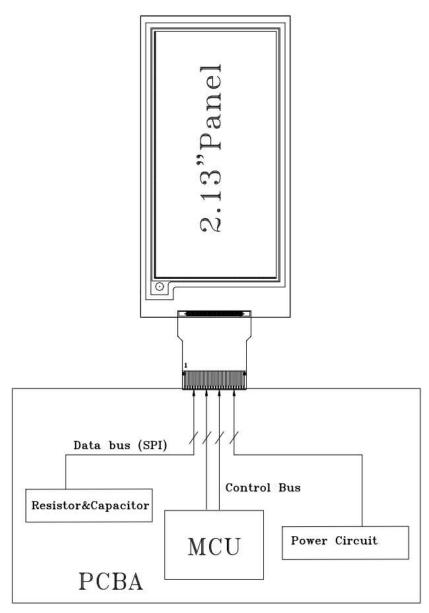
The display glass may break when it is dropped or bumped on a hard surface. Handle with care. Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

Caution

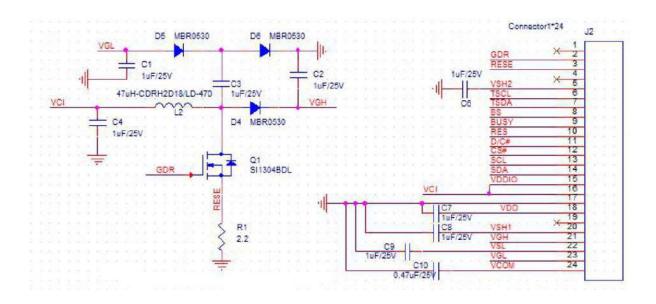
The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components. Disassembling the display module.

Disassembling the display module can cause permanent damage and invalidates the warranty agreements.

Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to static electricity and other rough environmental conditions.

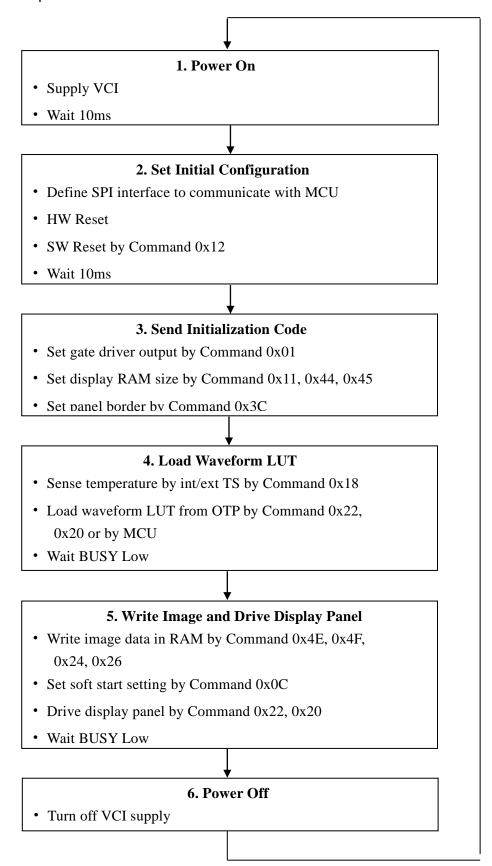

Data sheet status							
Product specification This data sheet contains final product specifications.							
	Limiting values						
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC							
134).Stress above one or more	of the limiting values may cause permanent damage to the device.						
These are stress ratings only ar	nd operation of the device at these or at any other conditions above						
those given in the Characterist	ics sections of the specification is not implied. Exposure to limiting						
values for extended periods ma	ay affect device reliability.						
	Application information						
Where application information	is given, it is advisory and does not form part of the specification.						

10. Reliability test


NO	Test items	Test condition
1	Low-Temperature Storage	T = -25°C, 240 h Test in white pattern
2	High-Temperature Storage	T=70°C, RH=40%, 240h Test in white pattern
3	High-Temperature Operation	T=50°C, RH=35%, 240h
4	Low-Temperature Operation	0°C, 240h
5	High-Temperature, High-Humidity Operation	T=40°C, RH=80%, 240h
6	High Temperature, High Humidity Storage	T=50°C, RH=80%, 240h Test in white pattern
7	Temperature Cycle	1 cycle:[-25° C 30min]→[+70 ° C 30 min] : 50 cycles Test in white pattern
8	UV exposure Resistance	765W/m² for 168hrs,40 °C Test in white pattern
9	ESD Gun	Air+/-15KV;Contact+/-8KV (Test finished product shell, not display only) Air+/-8KV;Contact+/-6KV (Naked EPD display, no including IC and FPC area) Air+/-4KV;Contact+/-2KV (Naked EPD display, including IC and FPC area)

Note: Put in normal temperature for 1hour after test finished, display performance is ok.

11. Block Diagram


12. Typical Application Circuit with SPI Interface

Part Name	Value	Reference Part		Requirements for spare part
C4 C7	luF	0603;X5R/X	7R;Voltage Rating	g:6v or 25v
C1 C2 C3 C6 C8 C9	luF	0603/0805;	X5R/X7R;Voltage	Rating:25v
C10	0.47uF/1 uF		5; X7R;Voltage Ra capacitance >0.25u	
RI	2.20hm		0805; 1%	
D4 D5 D6	Diode	MBR0530	2)Io=500mA	Voltage=30V(max) age =430mV(max)
Q1	NMOS	Si1304BDL/NX3008N13K	1)Drain-Source	breakdown voltage =30v(min) v(Typ), 1.3v(Max)
L2	47UH	CDRH2D18/LDNP-470NC	1) Io=500(max)	

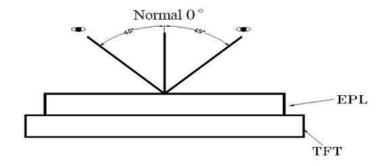
13 . Typical Operating Sequence

13.1Normal Operation Flow

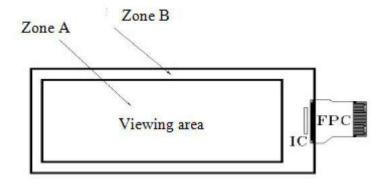
14. Part Number Definition

TBD

15. Inspection condition


15.1 Environment

Temperature: 25±3°C Humidity: 55±10%RH


15.2 Illuminance

Brightness:1200 \sim 1500LUX;distance: 30CM;Angle:Relate 45 $^{\circ}$ surround.

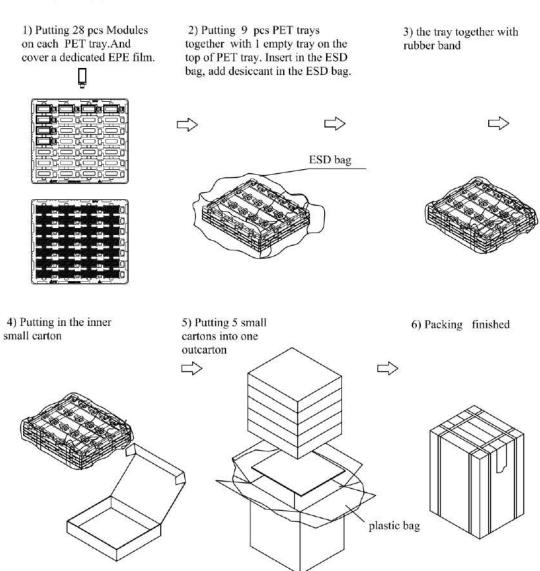
15.3 Inspect method

15.4 Display area

15.5 Inspection standard

15.5.1 Electric inspection standard

NO.	Item	Standard	Defect level	Method	Scope
1	Display	Display complete Display uniform	MA		
2	Black/White spots	D≤0.25mm, Allowed 0.25mm < D≤0.4mm on N≤3, and Distance≥5mm 0.4mm < D Not Allow	MI	Visual inspection	
3	Black/White spots (No switch)	L≤0.6mm, W≤0.2mm, N≤1 L≤2.0mm,W>0.2mm, Not Allow L>0.6mm, Not Allow		Visual/ Inspection card	Zone A
4	Ghost image	Allowed in switching process	MI	Visual inspection	
5	Flash spots/ Larger FPL size	Flash spots in switching, Allowed FPL size larger than viewing area, Allowed	MI	Visual/ Inspection card	Zone A Zone B
6	Display wrong/Missing	All appointed displays are showed correct	MA	Visual inspection	Zone A
7	Short circuit/ Circuit break/ Display abnormal	Not Allow	mspesiion		


15.5.2 Appearance inspection standard

NO.	Item	Standard	Defect level	Method	Scope
1	B/W spots /Bubble/ Foreign bodies/ Dents	D=(L+W)/2 D≤0.25mm, Allowed 0.25mm <d≤0.4mm, d="" n≤3="">0.4mm, Not Allow</d≤0.4mm,>	MI	Visual inspection	Zone A
2	Glass crack	Not Allow	MA	Visual	Zone A Zone B
3	Dirty	Allowed if can be removed	MI	/ Microscope	Zone A Zone B
4	Chips/Scratch/ Edge crown	X≤3mm,Y≤0.5mm And without affecting the electrode is permissible 2mm≤X or 2mm≤Y Not Allow W≤0.1mm,L≤5mm, No harm to the electrodes and N≤2 allow	MI	Visual / Microscope	Zone A Zone B

5	TFT Cracks	Not Allow	MA	Visual / Microscope	Zone A Zone B
6	Dirty/ foreign body	Allowed if can be removed/ allow	MI	Visual / Microscope	Zone A
7	FPC broken/ Goldfingers exidation/ scratch	Not Allow	MA	Visual / Microscope	Zone B
8	TFT edge bulge /TFT chromatic aberration	TFT edge bulge: X≤3mm, Y≤0.3mm Allowed TFT chromatic aberration :Allowed	MI	Visual / Microscope	Zone A Zone B
9	PCB damaged/ Poor welding/ Curl	PCB (Circuit area) damaged Not Allow PCB Poor welding Not Allow PCB Curl≤1%			
10	Edge glue height/ Edge glue bubble	Edge Adhesives H≤PS surface (Including protect film) Edge adhesives seep in≤1/2 Margin width Length excluding Edge adhesives bubble: bubble Width ≤1/2 Margin width; Length ≤0.5mm₀ n≤5	MI	Visual / Ruler	Zone B
11	Protect film	Surface scratch but not effect protect function, Allowed		Visual Inspection	
12	Silicon glue	Thickness ≤ PS surface(With protect film): Full cover the IC; Shape: The width on the FPC ≤ 0.5mm (Front) The width on the FPC≤1.0mm (Back) smooth surface, No obvious raised.	MI	Visual Inspection	
13	Warp degree (TFT substrate)	FPL t ≤2.0mm	MI	Ruler	
14	Color difference in COM area (Silver point area)	Allowed		Visual Inspection	

16. Packaging

PACKLING ORDER:

Note:28 pcs in a tray, 9 trays in a inner carton, 5 inner cartons in a out carton, so 28x9x5=1260pcs/Outcarton

Dimension (Small carton): 385*325*87mm

Dimension (Out carton): 394*344*470mm