

Orient Display (N.A.) Ltd.

220 Royal Crest Court,Unit 06,Markham,ON,Canada L3R 9Y2

Tel: 905-477-1166 Fax: 905-477-1782

Orient Display (USA) Corp.

14925 SE Allen Road, Suite 203 B, Bellevue, WA 98006

Tel: (425)698-1938 Fax: (425)698-1852

 AIY-A003M

 User Manual Ver1.0

Base NXP I.MX6U

ARM@ Cortex@-A9 Processor

Customer’s Approval:

 SIGNATURE DATE

PREPARED BY (RD ENGINEER)

CHECKED BY

APPROVED BY

AIY-A003M Page 1

Chapter 1: Setup Embedded Linux Development Environment......................................4

 1.1 Install cross compiler...5

 1.1.1 Unzip the cross compiler ...5

 1.1.2 Set environment variables ...5

 1.1.2.1 Modify the global configuration file...5

 1.1.2.2 Modify user profile (recommended)...6

 1.1.2.3 System dependency package...6

 1.1.2.4 Test toolchain..6

Chapter 2: AIY-A003M Basic Operation..7

 2.1 Debug the serial port connection.. 8

 2.2 Power on and log in.. 8

 2.3 Shut down and restart... 8

 2.4 Set up automatic startup... 8

 2.4.1 Boot script..8

 2.4.2 Add auto-execute command on boot...9

 2.5 TF card use...9

 2.6 USB Disk Use..11

Chapter 3: Hardware interface programming..13

 3.1 GPIO Hardware programming ... 14

 3.1.1 GPIO interface..14

 3.1.2 Use GPIO from the command line...15

 3.1.3 Use GPIO by writing C program...16

 3.2 Serial programming.. 17

 3.2.1 open serial port ...17

AIY-A003M Page 2

 3.2.2 Set the serial port baud rate...18

 3.2.3 Read and write data...19

Chapter 4: Embedded GUI (QT) programming..20

 4.1 Qt/Embedded Introduction...21

 4.2 Setup Qt/Embedded cross-compilation environment ..21

 4.2.1 Introduction to Compilation Environment...21

 4.2.2 Install tslib..21

 4.2.2.1 Before Install...21

 4.2.3 Cross compile Qt 4.8.6...22

 4.3 QT SDK Build... 24

 4.3.1 QT SDK... 24

 4.3.2 Qt SDK Install..24

 4.4. qmake...25

 4.5 Qt Creator...25

 4.5.1 Qt Creator Configuration..25

 4.5.2 Qt Creator use...26

AIY-A003M Page 3

Chapter 1

Setup Embedded Linux

Development Environment

 This chapter first describes the basic methods of embedded Linux development

in the Linux environment, and then introduces the software used in embedded

development, including how to install and test. This chapter is indispensable for

embedded Linux development and is the basis for embedded Linux development.

Please understand it carefully and make correct settings.

AIY-A003M Page 4

1.1 Install cross compiler

The cross compiler is usually released under the name arm-none-linux-

gnueabi.tar.bz2 (the tool chain names of different manufacturers and different

platforms are mostly different and generally not universal), For AIY-A003M

motherboard, the name of the cross-compilation tool chain is gcc-linaro-arm-linux-

gnueabihf-4.9-2014.09_linux.tar.bz2.

1.1.1 Unzip the cross compiler

The developer copies the cross-compiler to the development host (Ubuntu is

recommended as the development host), and unzip it by referring to the following

command:

od@Linux-host:~$tar -jxvf gcc-linaro-arm-linux-gnueabihf-4.9-2014.09_linux.tar.bz2 -C /opt

1.1.2 Set environment variables

There are many ways to set system environment variables, the two commonly

used are described below:

1.1.2.1 Modify the global configuration

 /etc/profile is the global configuration file of the system. Set the path of the

cross-compiler in this file, so that all users who log in to the machine can use this

compiler
 Open the terminal, enter the "sudo vi /etc/profile" command to open the

/etc/profile file, and add at the end of the file:

export PATH=/opt/gcc-linaro-arm-linux-gnueabihf-4.9-2014.09_linux/bin:$PATH

Save the file and exit, and then enter ". /etc/profile" (dot + space + file name) in

the terminal, and execute the profile file to make the changes just made effective. If

there are no input errors, reopen the terminal at this time, enter arm-linux-

gnueabihf-, and press the TAB key on the keyboard, you can see many commands

starting with arm-linux-gnueabihf-.

AIY-A003M Page 5

1.1.2.2 Modify user profile (recommended)

 "/etc/profile" is a global configuration file that will affect all users who log in to

this machine. If you don’t want your personal settings to affect other users of the

system, you can modify the configuration file that only belongs to the current user,

usually "~/.bashrc" or “~/.bash_profile”

The modification method is similar to modifying the "/etc/profile" file. After the

file is opened, add at the end:

export PATH=/opt/gcc-linaro-arm-linux-gnueabihf-4.9-2014.09_linux/bin:$PATH

In the same way as executing "/etc/profile", enter ". .bashrc" or ". .bash_profile"

to execute the modified file to make the modification effective. If it is correct,

reopen the terminal, enter arm-linux-gnueabihf-, and then press the keyboard TAB

key, you can also see many commands beginning with arm-linux-gnueabihf-

1.1.2.3 System dependency package

 The following dependency packages are required in the development

environment, which can be installed directly through the apt tool:

$ sudo apt-get install lib32z1 lib32z1-dev

$ sudo apt-get install lib32stdc++6

$ sudo apt-get install g++

1.1.2.4 Test toolchain

 Open the terminal and run the cross-compiler tool. If you can get an output

similar to the following, the cross-compiler has been able to work normally

 Further, you can also write a simple c file, and then check whether the cross

tool chain can successfully compile it.

AIY-A003M Page 6

Chapter 2

AIY-A003M Basic Operation

 This chapter describes the basic operations of the AIY-A003M motherboard,

such as hardware connection, booting, and system settings. This chapter is a

description of some operations, and they are also common operations in the

embedded Linux development process, which need to be mastered.

AIY-A003M Page 7

2.1 Debug the serial port connection

AIY-A003M has a debugging serial port (COM1), which uses RS-232 level. If

the debugging computer is equipped with a standard serial port (usually RS-232

level), you can use a serial port extension cable to connect the computer with AIY-

A003M. If you are using a portable computer (usually without a standard serial

port) or a desktop computer that does not provide a standard serial port, you need a

USB to RS-232 serial cable to connect the computer and the motherboard. When

using a USB to RS-232 serial cable on a computer running Windows operating

system, you need to install the corresponding driver (provided by the manufacturer

of the conversion chip).

2.2 Power on and log

 After power supply is connected, the AIY-A003M motherboard runs

automatically. After the PC is connected to the motherboard through COM1 (the

baud rate is 115200), you can log in to the motherboard through the serial port. The

login password and account are both root.

2.3 Shut down and restart

When you need to shut down or restart, if there is a data storage operation, in

order to ensure that the data is completely written, you can enter the sync command.

After completing the data synchronization, turn off the power and press the reset

button to restart. You can also enter the reboot command to restart:

[root@AIY-A003M~]# reboot

 This command will automatically complete the data synchronization and restart

the system.

2.4 Set up automatic start up

AIY-A003M Page 8

2.4.1 Boot script

 The system file: /etc/init.d/S90start_userapp.sh is a script that is automatically

executed when booting. The content of the script is shown in code listing 2.1.

Commands or applications that need to be automatically executed at boot can be

added to this file.

 Code list 2.1 start_userapp file content

2.4.2 Add auto-execute command on boot

 If you want to automatically execute a program when you turn on the machine,

such as the mydemo program in the /root directory, add a command to execute the

/root/mydemo program in the S90start_userapp.sh file:

2.5 Use TF card

After inserting the TF card into the TF slot of the motherboard, the Linux system

will automatically detect the TF card and print the relevant kernel information:

[root@AIY-A003M ~]#

mmc0: new high speed SD card at address 21ed

mmcblk0: mmc0:21ed APPSD 121 M

mmcblk0: p1

#!/bin/sh

ifconfig eth0 192.168.1.2

you can add your app start_command here

/root/mydemo

AIY-A003M Page 9

The system will generate a directory under /media for each partition of the TF

card. The name of the directory is mmcblk0pn (n represents a different partition,

n=0, 1, 2, 3...). Each partition of the TF card is automatically mounted in these

directories. The files saved by the user in these directories will be stored in the

corresponding partition of the TF card.

 Enter the df command to view the mounting status and usage of each partition:

[root@AIY-A003M ~]# df

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/root 6846632 58888 6436624 1% /

devtmpfs 866940 0 866940 0% /dev

tmpfs 1031292 0 1031292 0% /dev/shm

tmpfs 1031292 112 1031180 0% /tmp

 tmpfs 1031292 20 1031272 0% /run

/dev/sda1 30267776 83600 30184176

Before the TF card is used up and ejected, you need to uninstall all the partitions first

[root@AIY-A003M ~]#umount /dev/mmcblk0p1

Note that before unmounting a partition, you must first move the current directory

out of the directory where the partition is mounted, that is to say, you cannot

unmount /media/mmcblk0p1 under the /media/mmcblk0p1 directory.

AIY-A003M Page 10

2.6 Use USB Disk

AIY-A003M integrates two universal USB ports, which can directly support U

disk connection. After inserting the USB flash drive into the USB interface, Linux

will automatically detect the connection of the USB flash drive and print out the

information:

root@AIY-003M ~]# usb 1-1.2: new high-speed USB device number 4 using ci_hdrc

usb-storage 1-1.2:1.0: USB Mass Storage device detected

scsi host1: usb-storage 1-1.2:1.0

scsi 1:0:0:0: Direct-Access SanDisk Cruzer Blade 1.26 PQ: 0 ANSI: 6

sd 1:0:0:0: [sda] 15633408 512-byte logical blocks: (8.00 GB/7.45 GiB)

sd 1:0:0:0: [sda] Write Protect is off

sd 1:0:0:0: [sda] Write cache: disabled, read cache: enabled, doesn't support DPO or FUA

sda: sda4

sd 1:0:0:0: [sda] Attached SCSI removable disk

The system will generate a directory for each partition of the U disk under the

/media directory, the name of the directory is sdxn (x is used to distinguish

different U disks, n is used to distinguish different partitions, x=a, b, c... … N=0, 1,

2, 3…), each partition of the U disk is mounted under these directories. The files

saved by the user in these directories will be stored in the corresponding partition

of the U disk.

AIY-A003M Page 11

 Enter the df command to view the mounting status and usage of each partition of

the U disk:

[root@AIY-003M ~]# df

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/root 6617864 94472 6180560 2% /

devtmpfs 89312 0 89312 0%

/dev tmpfs 253376 0 253376 0% /dev/shm

tmpfs 253376 104 253272 0% /tmp

tmpfs 253376 172 253204 0% /run

/dev/mmcblk1p1 511720 6592 505128 1% /media/mmcblk1p1

/dev/sda4 7801088 4076864 3724224 52% /media/sda4

 Similar to the TF card, the U disk should be unloaded before unplugging the

relevant partition before using it.

AIY-A003M Page 12

Chapter 3

 Hardware interface programming

 This chapter mainly talks about hardware interface programming. Since users

need secondary development in AIY-A003M, and often operate on the usual serial

ports and GPIOs, this chapter focuses on the description of the programming and

usage methods of this part of the hardware contact.

AIY-A003M Page 13

3.1 GPIO Hardware programming

This motherboard system provides a very convenient operation interface for

GPIO. The GPIO sub-directory of AIY-A003M is /sys/class/gpio. First introduce

how to operate GPIO in the onboard Linux system (please refer to the motherboard

specification for the specific location and connection of GPIO)

3.1.1 GPIO interface

/sys/class/gpio has following file nodes:

root@AIY-A003M ~]# ls /sys/class/gpio/

export gpiochip128 gpiochip192 gpiochip64 unexport

gpiochip0 gpiochip160 gpiochip32 gpiochip96

Export and unexport are the attribute files of the GPIO subsystem. Export is

used to export gpio. After gpio is exported, related nodes will appear in the

/sys/class/gpio/ directory. Operating related nodes can realize the direction and level

of gpio. Read and write status, etc.

Write the sequence number N of the GPIO to the export file to export its device

catalog. The calculation formula of the sequence number is as follows:

 GPIO sequence number = (BANK − 1) × 32 + N

 In the formula, BANK is the BANK where the GPIO pin is located, and N is

the serial number of the pin in that BANK. Take IO4 on the motherboard (the

actual GPIO pin is GPIO1_IO04) as an example, its BANK value is 1, N value is 4,

so the sequence number is (1-1)*32+4=4.

 The operation command to write the sequence number is as follows (note that

there is a space on each side of the ">"):

 [root@AIY-A003M ~]# echo 4> /sys/class/gpio/export

AIY-A003M Page 14

After the above command is executed, the gpio4 directory will be generated

under the /sys/class/gpio. The purpose of operating this GPIO can be achieved by

reading and writing the device files in this directory. Similary, you can also export

other GPIO device. After the device directory of GPIO4 is generated, you can see

that it contains the following property files:

[root@AIY-A003M ~]# ls /sys/class/gpio/gpio4/

active_low direction power uevent

device edge subsystem value

 Among them, the commonly used ones are the direction and value, the direction

is used to configure gpio as input or output, and the value is used for output

replacement (when used as output) or read replacement (when used as input)

3.1.2 Use GPIO from the command line

 After GPIO is exported, it defaults to input function. You can view the current

operating direction of the GPIO by reading the direction file

[root@AIY-A003M ~]# cat /sys/class/gpio/gpio4/direction

in

Write the "out" string to the direction file to set GPIO as output:

[root@AIY-A003M ~]# echo out > /sys/class/gpio/gpio4/direction

In the same way, you can write an "in" string to set GPIO back to input.

 When GPIO is set as input, the value file records the input level status of the

GPIO pin: 1 means input is a high level; 0 means that the input is a low level. You

can read the input level of GPIO by viewing the value file

[root@AIY-A003M ~]# echo in >

/sys/class/gpio/gpio4/direction

[root@AIY-A003L ~]# cat /sys/class/gpio/gpio4/value

0

AIY-A003M Page 15

When the GPIO is set to output, the state of the output level can be controlled

by writing 0 or 1 to the value file (0 means output low level, 1 means output high

level):

[root@AIY-A003M ~]# echo out >/sys/class/gpio/gpio4/direction

[root@AIY-A003M ~]# echo 1 > /sys/class/gpio/gpio4/value

[root@AIY-A003M ~]# echo 0 > /sys/class/gpio/gpio4/value

3.1.3 Use GPIO by writing C program

The overall operation is the same as the command line principle, and related

operations are also performed by reading and writing file nodes. When using

system calls to implement GPIO input and output operations, you also need to

export GPIO through the export property file first.

 Then call write function to write an in/out string to the direction device file,

and set GPIO as input Or output:

#define EXPORT_PATH "/sys/class/gpio/export" //export 文件节点路径

#define GPIO "4" //GPIO 口序号

nt i fd_export = open(EXPORT_PATH, O_RDWR); //打开 export 文件

...

write(fd_export,GPIO,strlen(GPIO)); //向 export 文件写入 GPIO 排列序号字符串

#define DIRECT_PATH "/sys/class/gpio/gpio4/direction" //direction 文件路径

nt i fd_dir, ret ;

fd_dir = open(DIRECT_PATH,O_RDWR); //打开 direction 文件

...

ret = write(fd_dir, direction_IN, sizeof(direction)); //写入的字符串 direction 为“in”或“out”

AIY-A003M Page 16

 Finally read or write the value to complete the final operation

After coding, a binary file that can be run on the motherboard is generated

through cross-compilation:

od@Od-System-Builder:~$ arm-linux-gnueabihf-gcc gpio_test.c -o gpio_test

After compiling, copy the binary file to the USB flash drive (assuming to copy

to the root directory of the USB flash drive), insert the USB flash drive, and run the

binary file.

[root@AIY-A003M ~]# /media/sda4/gpio_test

 If you test the output, you can directly measure the gpio level to confirm

whether the program is valid. If you test the input, you can directly connect the

GPIO to GND or VCC (3.3v) on the motherboard with a DuPont cable, and then

read and print the level through the program.

3.2 Serial programming

Like most other devices, the serial port in Linux appears as a device file. AIY-

A003M motherboard serial device file is /dev/ttymxcn (n=0~2, 4~7), there are 7

serial ports in total.

3.2.1 open serial port

Before using a serial port, you must use the open function to open its corresponding

device node file. For example, the code to open "/dev/ttymxc0" is shown in code

listing 3.1.

#define DEV_PATH "/sys/class/gpio/gpio4/value" //value 文件路径

nt i fd_dev, ret ;

fd_dev = open(DEV_PATH, O_RDWR)

...

ret = read(fd_dev, buf, sizeof(buf)); //读取 GPIO 输入电平值; 若是输出，则为 write

AIY-A003M Page 17

Code Listing 3.1 Open the serial port device

 When the open call succeeds, it will return the file descriptor as a parameter of

other operation functions; if it fails, it will return a negative number. When opening

a serial port, in addition to the O_RDWR option flag, it is usually necessary to use

O_NOCTTY, which means that the opened is a terminal device and the program

will not become the controlling terminal of the port. If this flag is not used, an input

of the task (such as keyboard termination signal, etc.) may affect the process.

3.2.2 Set the serial port baud rate

After opening the serial port, the serial port uses the default baud rate of 9600.

In practical applications, since the baud rate of other communication terminals is

not 9600, it is often necessary to set the baud rate.

 Before setting the serial port, first read the serial port parameters, and then

modify the baud rate: get and set terminal properties:

tcgetattr(fd,&options) ；// options is termios structure

 The baud rate of the serial port is divided into input baud rate and output baud

rate, respectively, through cfsetispeed() and cfsetospeed() function setting (options

is the serial port attribute structure obtained through tcgetattr above).

#define TTY_MXC0_PATH "/dev/ttymxc0"

int fd;

fd = open(TTY_MXC0_PATH, O_RDWR | O_NOCTTY) ;

if (fd < 0) {

printf("open uart device ttymxc0 error\n");

}

AIY-A003M Page 18

3.2.3 Read and write data

Use the read/write function to read and write data on the serial port, that is,

read the data received by the serial port, or send data from the serial port:

#define DEV_NAME "/dev/ttymxc1"

fd = open(DEV_NAME, O_RDWR | O_NOCTTY); ...

len = write(fd, buf, sizeof(buf)); /* Write a string to the serial port */

...

len = read(fd, buf, sizeof(buf)); /* Read string from mouth */

3.2.4 Close serial port

 After using the serial port, use the close() function to close the serial port

(parameter fd is the file descriptor obtained when the serial port is opened):

close(fd);

AIY-A003M Page 19

Chapter 4

Embedded GUI (QT) programming

 QT is a common Linux graphical interface, Qt/Embedded is the

embedded version of QT. This chapter introduces the basic

programming of embedded Qt, starting from the environment

construction, and introduces the qmake tool and Qt Creator.

AIY-A003M Page 20

4.1 Qt/Embedded Introduction

Qt is a cross-platform application and UI development framework. With Qt,

you only need to develop applications once, and you can deploy these applications

across different desktops and embedded operating systems without rewriting the

source code. Qt on the embedded Linux distribution belongs to the Embedded

Linux branch platform of Qt (referred to as Qt/E in this article). Based on the

original Qt, Qt/E has made many excellent adjustments to suit the embedded

environment. AIY-A003M uses the more mature qt4.8.6, and has integrated the

relevant operating environment in the motherboard file system. The developer

can run the compiled qt program directly on the motherboard.

4.2 Setup Qt/Embedded cross-compilation environment

4.2.1 Introduction to Compilation Environment

Host system： Ubuntu 14.04

Cross compilation tool：arm-linux-gnueabihf

Target board： AIY-A003M

4.2.2 Install tslib

tslib is an open source program that can provide functions such as filtering, de-

jittering, calibration and other functions for the samples obtained by the touch

screen driver. It is usually used as the adaptation layer of the touch screen driver

and provides a unified interface for the upper application.

4.2.2.1 Before Install

 Install autoconf、automake、autoreconf and libtool：

4.2.2.2 Compile and install tslib

 Copy tslib-master.zip to ubuntu, unzip the tslib source package:

AIY-A003M Page 21

od@Linux-host:~$unzip tslib-master.zip

 Enter the tslib source directory and configure tslib:

Among them, --prefix specifies the installation path of tslib, and users can also

specify other directories by themselves; and --host specifies the cross-compiler.

 Compile tslib source code:

od@Linux-host:~/tslib-master$make

Install tslib：

4.2.3 Cross compile Qt 4.8.6

4.2.3.1 Unzip the QT source code package

Copy the source code package of Qt 4.8.6 (qt-everywhere-opensource-src-

4.8.6.tar.gz) the user directory of Ubuntu, then execute the decompression

command:

od@Linux-host:~/$tar zxvf qt-everywhere-opensource-src-4.8.6.tar.gz

od@Linux-host:~$cd tslib-master

od@Linux-host:~/tslib-master$./autogen.sh

od@Linux-host:~/tslib-master$./configur e -- prefix=/opt/tslib -- host=arm-linux-gnueabih f

ac_cv_func_malloc_0_nonnull=yes

od@Linux-host:~/tslib-master$ sudo chmod 777 /opt

od@Linux-host:~/tslib-master$ make install

AIY-A003M Page 22

 After decompression, you will get the qt-everywhere-opensource-src-4.8.6

directory. Enter the directory and you will see a build-qt script. You can adjust the

installation directory by editing the parameters in the script (the directory after the -

prefix parameter is the installation directory. For example, it can be modified to

/opt/qt4.8.6) and so on.

 After adjusting build-qt, you also need to edit mkspec/qws/linux-arm-gnueabi-

g++/qmake.conf file, modify the tool chain to arm-linux-gnueabihf, and in

Add the -lts parameter to g++.conf, and finally add the following two lines of

parameters at the end of the file:

The contents of the modified file are as follows:

 After saving the file, execute the build-qt script for configuration.

od@Linux-host:~/qt-everywhere-opensource-src-4.8.6$./build-qt

 After the configuration is complete, start to execute the following commands:

od@Linux-host:~/qt-everywhere-opensource-src-4.8.6$ make

QMAKE_INCDIR = /opt/tslib/include

QMAKE_LIBDIR = /opt/tslib/lib

AIY-A003M Page 23

 After compiling, execute the installation command:

od@Linux-host:~/qt-everywhere-opensource-src-4.8.6$make install

4.3 Build QT SDK

4.3.1 QT SDK

 Since Qt is a cross-platform graphics framework, users can first develop and

debug Qt applications on the PC host. After the applications are basically formed,

they can be transplanted to the target board. Therefore, users need to build QT

SDK on the PC to improving development efficiency. The QT SDK includes:

QT library suitable for PC environment operation

QT Integrated Development Environment (Qt Creator)

4.3.2 Install Qt SDK

 Under Ubuntu environment, the Linux version of the Qt SDK can be obtained

through apt-get. When the Ubuntu host can access the Internet normally, you can

use the following commands to obtain and install the Qt SDK:

od@Linux-host:~$ sudo apt-get install qt-sdk

During the installation of the Qt SDK, a Warning: Phonon is not functional

warning may appear. Just press Enter and go to the next step.

After the installation is successful, you can see that there are two more

executable files qmake and qmake-qt4 in the /usr/bin/ directory, we use qmake-qt4,

in order to distinguish between qmake for local compilation and qmake for cross

compilation, It is best to set an alias for one of qmake, for example, qmake-arm can

be used to indicate that you want to use qmake for cross-compilation. This can be

achieved by adding the following command at the end of the ~/.bashrc file.

alias qmake-arm=/opt/qt4.8.6/bin/qmake

AIY-A003M Page 24

4.4. qmake

Qt provides the qmake tool, which is a tool used to generate Makefiles for

different platforms and compilers

Handwriting Makefile is more difficult and error-prone, especially when

porting to the target board after PC development, you also need to write multiple

Makefiles. When using qmake, developers only need to create a .pro file and run

qmake corresponding to the platform to generate the corresponding Makefile.

 For some simple projects (such as projects with a small amount of source code),

you can directly execute the qmake -project command in the top-level directory of

the project to automatically generate Pro files (with the suffix .pro); but for some

complex Qt programs, The Pro file which was automatically generated often fails to

meet the requirements, so the programmer needs to manually rewrite the Pro file.

There are many rules for writing Pro files, and developers can find them online.

4.5 Qt Creator

4.5.1 Qt Creator Configuration

 Qt Creator is a powerful cross-platform IDE that integrates editing, compiling,

running, and debugging functions. Qt programming with Qt Creator can greatly

improve efficiency and reduce development time. Developers can start directly

throuth commands QtCreator:

 od@linux-host: ~qtcreator

 If you have installed the desktop version of Qt and the embedded version of Qt,

you need to set the qmake version used by Qt Creator. Click Tools→Options in the

menu, and then click Build & Run on the left. In the Build & Run that pops up on

the right, select Qt Version and manually add the Qt version. Take the desktop

version of Qt as an example: click Add, and select qmake. Executable file window,

and then select the executable file in the path /usr/bin/qmake-qt4, as shown in the

figure, click to open

AIY-A003M Page 25

Enter the version name in the Version Name column, such as Destop-qt4, click

Apply, then select Kits next to Qt Version, click Add, enter Name, select compiler,

Qt-version, etc., click Apply, then click OK.

4.5.2 Use Qt Creator

The following explains how to use Qt Creator to develop programs. Click New

Project on the main interface of Qt Creator, select Qt Widgets Application, and

click Choose:

AIY-A003M Page 26

在

 Set the project name and path in the pop-up window. Then continue to the next

step, choose the default method, and click Finish on the last page to complete the

project creation and generate default code. Developers can develop their own

functional design on basis of the default code.

