

# **Specification for LCD Module**

### AMC2002CR-B-Y6WFDY-STL



**Revision V00** 

| AM   | Orient Display                                       |  |  |  |  |  |
|------|------------------------------------------------------|--|--|--|--|--|
| С    | Character Type                                       |  |  |  |  |  |
| 2002 | 20 Characters x 02 Lines                             |  |  |  |  |  |
| С    | Serial C, Module Dimension 116.0 x 37.0 x 14.5 (max) |  |  |  |  |  |
| R    | RoHS Compliant                                       |  |  |  |  |  |
| В    | COB Type                                             |  |  |  |  |  |
| Υ    | STN Positive Yellow Green                            |  |  |  |  |  |
| 1    | Dark Character on Yellow Green Background            |  |  |  |  |  |
| 6    | 6 o'clock Viewing Direction                          |  |  |  |  |  |
| W    | Top: -20~+70°C; Tstr: -30~+80°C                      |  |  |  |  |  |
| F    | Tranflective                                         |  |  |  |  |  |
| D    | LED Backlight                                        |  |  |  |  |  |
| Υ    | Yellow Green Backlight                               |  |  |  |  |  |
| /    | Controller ST7066Uv22 Or Compatible                  |  |  |  |  |  |
| /    | Parallel Interface                                   |  |  |  |  |  |













### DOCUMENT REVISION HISTORY:

| DATE    | PAGE | DESCRIPTION   |
|---------|------|---------------|
| 2023.9. | -    | First release |
|         |      |               |
|         |      |               |
|         |      |               |
|         |      |               |
|         |      |               |
|         |      |               |
|         |      |               |
|         |      |               |
|         |      |               |
|         |      |               |
|         |      |               |
|         |      |               |

### **Contents**

- 1.Precautions in use of LCD Modules
- 2.General Specification
- 3. Absolute Maximum Ratings
- 4. Electrical Characteristics
- 5. Optical Characteristics
- 6.Interface Pin Function
- 7. Power Supply
- 8. Contour Drawing & Block Diagram
- 9. Function Description
- 10. Character Generator ROM Pattern
- 11.Instruction Table
- 12. Timing Characteristics
- 13.Initializing of LCM
- 14. Quality Assurance
- 15.Reliability

# 1. Precautions in use of LCD Modules

- (1)Avoid applying excessive shocks to the module or making any alterations or modifications to it.
- (2)Don't make extra holes on the printed circuit board, modify its shape or change the components of LCD module.
- (3)Don't disassemble the LCM.
- (4)Don't operate it above the absolute maximum rating.
- (5)Don't drop, bend or twist LCM.
- (6)Soldering: only to the I/O terminals.
- (7)Storage: please storage in anti-static electricity container and clean environment.

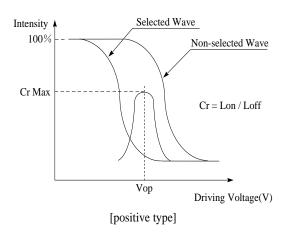
# 2. General Specification

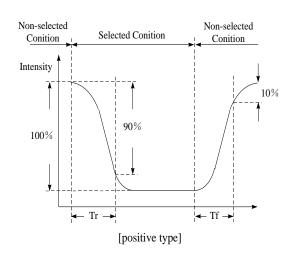
| Item                                 | Dimension                        | Unit |
|--------------------------------------|----------------------------------|------|
| Number of Characters                 | 20 characters x 2 Lines          | _    |
| Module dimension(With LED Backlight) | 116.0 x 37.0 x 14.5 (MAX)        | mm   |
| View area                            | 83.0x18.6                        | mm   |
| Active area                          | 73.50x11.50                      | mm   |
| Dot size                             | 0.60x 0.65                       | mm   |
| Dot pitch                            | 0.65 x 0.70                      | mm   |
| Character size                       | 3.20 x 5.55                      | mm   |
| Character pitch                      | 3.70 x 5.95                      | mm   |
| LCD type                             | STN, Yellow-Green, Transflective |      |
| Duty                                 | 1/16                             |      |
| View direction                       | 6 o'clock                        |      |
| Backlight Type                       | Yellow-Green LED Backlight       |      |

# 3. Absolute Maximum Ratings

| It                   | em              | Symbol              | Min      | Max     | Unit |
|----------------------|-----------------|---------------------|----------|---------|------|
| Input Voltage        |                 | V <sub>I</sub>      | -0.3     | VDD+0.3 | V    |
| Supply Voltage For I | Logic           | VDD-V <sub>SS</sub> | -0.3     | 7.0     | V    |
| Supply Voltage For I | LCD             | $V_{DD}$ - $V_0$    | Vdd-10.0 | 0       | V    |
| Wide Temperature     | Operating Temp. | Тор                 | -20      | 70      | °C   |
| LCM                  | Storage Temp.   | Tstr                | -30      | 80      | °C   |

# 4. Electrical Characteristics


| Item                                        | Symbol              | Condition                                           | Min          | Тур | Max      | Unit |
|---------------------------------------------|---------------------|-----------------------------------------------------|--------------|-----|----------|------|
| Supply Voltage For Logic                    | $V_{DD}$ - $V_{SS}$ | _                                                   | 4.5          | 5.0 | 5.5      | V    |
| Supply Voltage For LCD                      | $V_{DD}$ - $V_0$    | Ta=25°C                                             | 4.4          | 4.7 | 5.0      | V    |
| Input High Volt.                            | $V_{\mathrm{IH}}$   | _                                                   | $0.7~V_{DD}$ | _   | $V_{DD}$ | V    |
| Input Low Volt.                             | $V_{\mathrm{IL}}$   | _                                                   | -0.3         | _   | 0.6      | V    |
| Supply Current                              | $I_{\mathrm{DD}}$   | V <sub>DD</sub> =5V                                 | 0.5          | 1.0 | 2.0      | mA   |
| Supply Voltage of<br>Yellow-green backlight | $V_{ m LED}$        | Forward current =210 mA  Number of LED die 2x21= 42 | 3.9          | 4.1 | 4.4      | V    |


# 5. Optical Characteristics

| Item            | Symbol | Condition | Min | Тур | Max | Unit |
|-----------------|--------|-----------|-----|-----|-----|------|
| View Angle      | (V)θ   | CR≧2      | -20 | _   | 35  | deg  |
| view ringie     | (Н)ф   | CR≧2      | -30 | _   | 30  | deg  |
| Contrast Ratio  | CR     | _         | _   | 3   | _   | _    |
| Response Time   | T rise | _         | _   | _   | 250 | ms   |
| The sponse Time | T fall | _         | _   | _   | 250 | ms   |

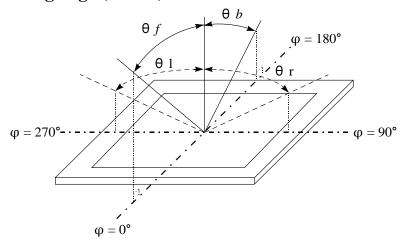
#### **Definition of Operation Voltage (Vop)**

#### Definition of Response Time (Tr, Tf)





#### **Conditions:**

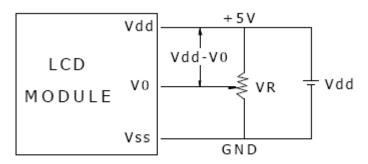

Operating Voltage: Vop

Viewing Angle( $\theta$ ,  $\phi$ ):  $0^{\circ}$ ,  $0^{\circ}$ 

Frame Frequency: 64 HZ

Driving Waveform: 1/N duty, 1/a bias

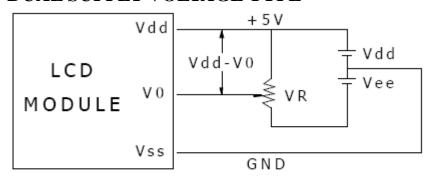
#### **Definition of viewing angle(CR≥2)**




# 6. Interface Pin Function

| Pin No. | Symbol            | Level      | Description                              |
|---------|-------------------|------------|------------------------------------------|
| 1       | $V_{SS}$          | 0V         | Ground                                   |
| 2       | $V_{\mathrm{DD}}$ | 5.0V       | Supply Voltage for logic                 |
| 3       | V0                | (Variable) | Operating voltage for LCD                |
| 4       | RS                | H/L        | H: DATA, L: Instruction code             |
| 5       | R/W               | H/L        | H: Read(MPU→Module) L: Write(MPU→Module) |
| 6       | Е                 | H,H→L      | Chip enable signal                       |
| 7       | DB0               | H/L        | Data bit 0                               |
| 8       | DB1               | H/L        | Data bit 1                               |
| 9       | DB2               | H/L        | Data bit 2                               |
| 10      | DB3               | H/L        | Data bit 3                               |
| 11      | DB4               | H/L        | Data bit 4                               |
| 12      | DB5               | H/L        | Data bit 5                               |
| 13      | DB6               | H/L        | Data bit 6                               |
| 14      | DB7               | H/L        | Data bit 7                               |
| 15      | LED(+)            |            | Anode of LED Backlight                   |
| 16      | LED(-)            |            | Cathode of LED Backlight                 |

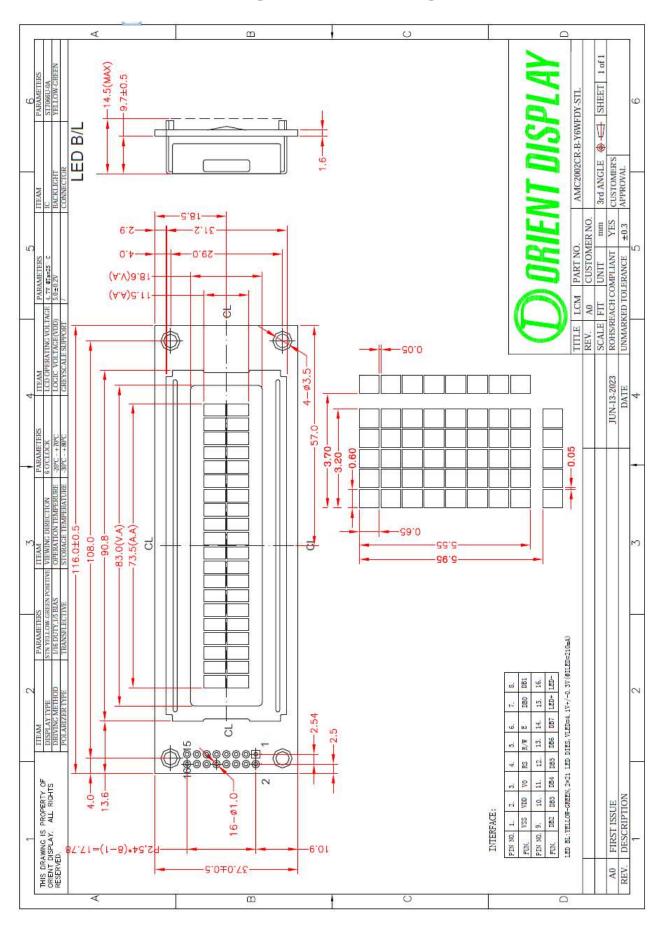
# 7. POWER SUPPLY


#### SINGLE SUPPLY VOLTAGE TYPE



Vdd-V0: LCD Driving Voltage

VR: 10K - 20K


#### **DUAL SUPPLY VOLTAGE TYPE**



Vdd-V0: LCD Driving Voltage

VR: 10K - 20K

# 8. Contour Drawing & Block Diagram



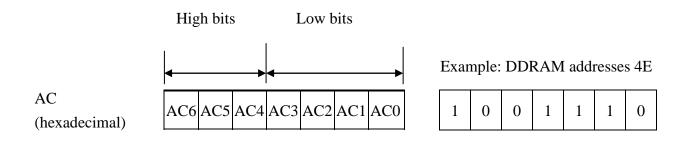
### 9. Function Description

The LCD display Module is built in a LSI controller, the controller has two 8-bit registers, an instruction register (IR) and a data register (DR).

The IR stores instruction codes, such as display clear and cursor shift, and address information for display data RAM (DDRAM) and character generator (CGRAM). The IR can only be written from the MPU. The DR temporarily stores data to be written or read from DDRAM or CGRAM. When address information is written into the IR, then data is stored into the DR from DDRAM or CGRAM. By the register selector (RS) signal, these two registers can be selected.

| RS | R/W | Operation                                               |
|----|-----|---------------------------------------------------------|
| 0  | 0   | IR write as an internal operation (display clear, etc.) |
| 0  | 1   | Read busy flag (DB7) and address counter (DB0 to DB7)   |
| 1  | 0   | Write data to DDRAM or CGRAM (DR to DDRAM or CGRAM)     |
| 1  | 1   | Read data from DDRAM or CGRAM (DDRAM or CGRAM to DR)    |

#### **Busy Flag (BF)**


When the busy flag is 1, the controller LSI is in the internal operation mode, and the next instruction will not be accepted. When RS=0 and R/W=1, the busy flag is output to DB7. The next instruction must be written after ensuring that the busy flag is 0.

#### Address Counter (AC)

The address counter (AC) assigns addresses to both DDRAM and CGRAM

#### **Display Data RAM (DDRAM)**

This DDRAM is used to store the display data represented in 8-bit character codes. Its extended capacity is 80×8 bits or 80 characters. Below figure is the relationships between DDRAM addresses and positions on the liquid crystal display.



#### Display position DDRAM address

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
|--|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|
|--|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|

| 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 0A | 0B | 0C | 0D | 0E | 0F | 10 | 11 | 12 | 13 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 4A | 4B | 4C | 4D | 4E | 4F | 50 | 51 | 52 | 53 |

2-Line by 20-Character Display

#### **Character Generator ROM (CGROM)**

The CGROM generate  $5\times8$  dot or  $5\times10$  dot character patterns from 8-bit character codes. See Table 2.

#### **Character Generator RAM (CGRAM)**

In CGRAM, the user can rewrite character by program. For  $5\times8$  dots, eight character patterns can be written, and for  $5\times10$  dots, four character patterns can be written.

Write into DDRAM the character code at the addresses shown as the left column of table 1. To show the character patterns stored in CGRAM.

# Relationship between CGRAM Addresses, Character Codes (DDRAM) and Character patterns

Table 1.

For 5 \* 8 dot character patterns

| Character Codes<br>( DDRAM data ) | CGRAM Address                                          | Character Patterns<br>( CGRAM data )    |                                      |
|-----------------------------------|--------------------------------------------------------|-----------------------------------------|--------------------------------------|
| 7 6 5 4 3 2 1 0                   | 5 4 3 2 1 0                                            | 7 6 5 4 3 2 1 0                         |                                      |
| High Low                          | High Low                                               | High Low                                |                                      |
| 0 0 0 0 * 0 0 0                   | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | * * * * * * * * * * * * * * * * * * *   | Character pattern(1)  Cursor pattern |
| 0 0 0 0 * 0 0 1                   | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | * * * * O O O O O O O O O O O O O O O O | Character pattern(2)  Cursor pattern |
|                                   | $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ | * * *                                   |                                      |
| 0 0 0 0 * 1 1 1                   | 1 1 1 1 0 0<br>1 0 1<br>1 1 0<br>1 1 1                 | * * *                                   |                                      |

For 5 \* 10 dot character patterns

| Character Codes<br>( DDRAM data ) | CGRAM Address                                                                                                           | Character Patterns<br>( CGRAM data )    |                                   |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------|
| 7 6 5 4 3 2 1 0<br>High Low       | 5 4 3 2 1 0<br>High Low                                                                                                 | 7 6 5 4 3 2 1 0<br>High Low             |                                   |
| 0 0 0 0 * 0 0 0                   | 0 0 0 0<br>0 0 0 1<br>0 0 1 0<br>0 0 1 1<br>0 1 0 0<br>0 0 1 0 1<br>0 1 1 0<br>0 1 1 1<br>1 0 0 0<br>1 0 0 1<br>1 0 1 0 | * * * * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Character pattern  Cursor pattern |
|                                   |                                                                                                                         |                                         |                                   |
|                                   | 1 1 1 1                                                                                                                 | * * * * * * * *                         |                                   |

# 10. Character Generator ROM Pattern

#### Table.2

# ST7066U

Table 4 Correspondence between Character Codes and Character Patterns (ROM Code: 0A)

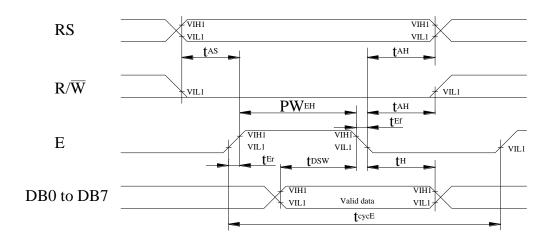
#### NO.7066-0A

| 67-64 |                  |      | Tanana a | and the second | Turiumana ( | 2002 | E. verse | in and     | l constant |      |           | 0.0000 | 10/10/20/20 | restrance: | Francisco de | Language Control |
|-------|------------------|------|----------|----------------|-------------|------|----------|------------|------------|------|-----------|--------|-------------|------------|--------------|------------------|
| P3-P0 | 0000             | 0001 | 0010     | 0011           | 0100        | 0101 | 0110     | 0111       | 1000       | 1001 | 1010      | 1011   | 1100        | 1101       | 1110         | 1111             |
| 0000  | CG<br>RAM<br>(1) |      |          |                |             |      |          |            |            |      |           |        |             | *          |              |                  |
| 0001  | (2)              |      |          |                |             |      |          |            |            |      |           |        |             | Ġ,         |              |                  |
| 0010  | (3)              |      |          |                |             |      |          |            |            |      |           |        |             |            |              |                  |
| 0011  | (4)              |      | #        |                |             |      |          | <b>33.</b> |            |      |           |        | Ï           |            | 8.           | ***              |
| 0100  | (5)              |      | *        | H              |             |      | d        | i.         |            |      |           | 1      | k           | i.         | W            |                  |
| 0101  | (6)              |      |          |                |             |      |          |            |            |      | •         | H      |             |            | œ            |                  |
| 0110  | (7)              |      | 8        |                |             |      |          |            |            |      |           | M      |             |            | ø            |                  |
| 0111  | (8)              |      |          |                |             |      | 9        |            |            |      | 7         |        | ×           |            |              | H                |
| 1000  | (1)              |      |          |                |             | ×    |          |            |            |      |           |        | *           |            |              | ×                |
| 1001  | (2)              |      |          |                |             |      | i        |            |            |      |           |        |             | 11.        |              |                  |
| 1010  | (3)              |      | **       |                |             | X    |          | ×          |            |      |           |        |             |            |              |                  |
| 1011  | (4)              |      |          |                | K.          | L    | k        |            |            |      | **        | *      |             |            | ×            | ×                |
| 1100  | (5)              |      |          |                |             | *    |          |            |            |      | *         |        |             |            | 4.           | ×                |
| 1101  | (6)              |      |          |                |             |      |          | *          |            |      |           | ×      |             |            |              |                  |
| 1110  | (7)              |      |          |                |             |      |          |            |            |      | <b>33</b> |        |             |            | ı            |                  |
| 1111  | (8)              |      |          |                |             |      |          |            |            |      |           | W      |             |            |              |                  |

# 11. Instruction Table

#### Instruction Table:

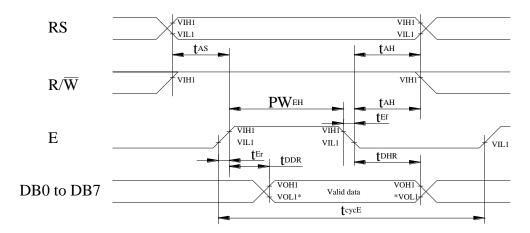
|                                  |    |     |     | Inst | ructi | on ( | ode |     | Description |     |                                                                                                                                              |                  |
|----------------------------------|----|-----|-----|------|-------|------|-----|-----|-------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Instruction                      | RS | R/W | DB7 | DB6  | DB5   | DB4  | DB3 | DB2 | DB1         | DB0 | Description                                                                                                                                  | Time<br>(270KHz) |
| Clear<br>Display                 | 0  | 0   | 0   | 0    | 0     | 0    | 0   | 0   | 0           | 1   | Write "20H" to DDRAM. and<br>set DDRAM address to<br>"00H" from AC                                                                           | 1.52 ms          |
| Return<br>Home                   | 0  | 0   | 0   | 0    | 0     | 0    | 0   | 0   | 1           | x   | Set DDRAM address to<br>"00H" from AC and return<br>cursor to its original position<br>if shifted. The contents of<br>DDRAM are not changed. | 1.52 ms          |
| Entry Mode<br>Set                | 0  | 0   | 0   | 0    | 0     | 0    | 0   | 1   | I/D         | s   | Sets cursor move direction<br>and specifies display shift.<br>These operations are<br>performed during data write<br>and read.               | 37 us            |
| Display<br>ON/OFF                | 0  | 0   | 0   | 0    | 0     | 0    | 1   | D   | С           | В   | D=1:entire display on<br>C=1:cursor on<br>B=1:cursor position on                                                                             | 37 us            |
| Cursor or<br>Display<br>Shift    | 0  | 0   | 0   | 0    | 0     | 1    | S/C | R/L | x           | x   | Set cursor moving and<br>display shift control bit, and<br>the direction, without<br>changing DDRAM data.                                    | 37 us            |
| Function<br>Set                  | 0  | 0   | 0   | 0    | 1     | DL   | N   | F   | x           | x   | DL:interface data is 8/4 bits<br>N:number of line is 2/1<br>F:font size is 5x11/5x8                                                          | 37 us            |
| Set CGRAM<br>address             | 0  | 0   | 0   | 1    | AC5   | AC4  | AC3 | AC2 | AC1         | ACO | Set CGRAM address in address counter                                                                                                         | 37 us            |
| Set DDRAM<br>address             | 0  | 0   | 1   | AC6  | AC5   | AC4  | AC3 | AC2 | AC1         | ACO | Set DDRAM address in address counter                                                                                                         | 37 us            |
| Read Busy<br>flag and<br>address | 0  | 1   | BF  | AC8  | AC5   | AC4  | AC3 | AC2 | AC1         | AC0 | Whether during internal operation or not can be known by reading BF. The contents of address counter can also be read.                       | 0 us             |
| Write data<br>to RAM             | 1  | 0   | D7  | D6   | D5    | D4   | D3  | D2  | D1          | D0  | Write data into internal<br>RAM<br>(DDRAM/CGRAM)                                                                                             | 37 us            |
| Read data<br>from RAM            | 1  | 1   | D7  | D6   | D5    | D4   | D3  | D2  | D1          | D0  | Read data from internal<br>RAM<br>(DDRAM/CGRAM)                                                                                              | 37 us            |


#### Note

Be sure the ST7066U is not in the busy state (BF = 0) before sending an instruction from the MPU to the ST7066U. If an instruction is sent without checking the busy flag, the time between the first instruction and next instruction will take much longer than the instruction time itself. Refer to Instruction Table for the list of each instruction execution time.

**\*** "−": don't care

# **12. Timing Characteristics**


### 12.1 Write Operation

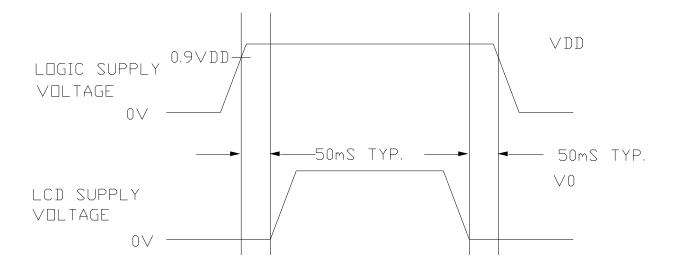


Ta=25°C, VDD= $5.0\pm0.5$ V

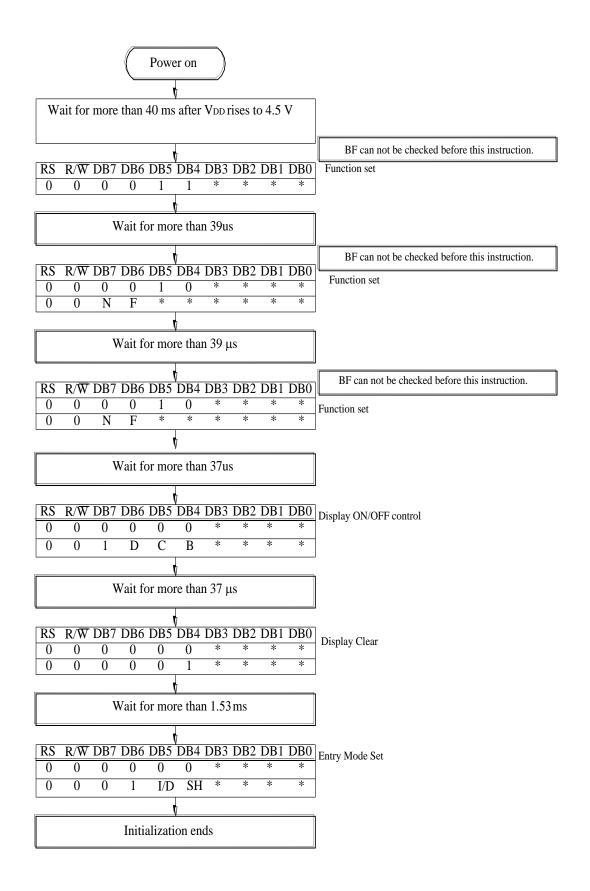
| Symbol           | Characteristics       | Test Condition           | Min.     | Тур. | Max.          | Unit |
|------------------|-----------------------|--------------------------|----------|------|---------------|------|
| -                | <b>.</b>              | Internal Clock Operation | า        |      |               |      |
| fosc             | OSC Frequency         | R = 91KΩ                 | 190      | 270  | 350           | KHz  |
|                  |                       | External Clock Operatio  | n        | 7    | <del>()</del> |      |
| f <sub>EX</sub>  | External Frequency    | U=                       | 125      | 270  | 410           | KHz  |
|                  | Duty Cycle            | -                        | 45       | 50   | 55            | %    |
| $T_R, T_F$       | Rise/Fall Time        | :-                       | -        | -    | 0.2           | μs   |
|                  | Write Mod             | e (Writing data from MPU | to ST706 | 6U)  |               |      |
| Tc               | Enable Cycle Time     | Pin E                    | 1200     | (2)  | -             | ns   |
| T <sub>PW</sub>  | Enable Pulse Width    | Pin E                    | 140      | -    | -             | ns   |
| $T_R, T_F$       | Enable Rise/Fall Time | Pin E                    | 1-       | -    | 25            | ns   |
| T <sub>AS</sub>  | Address Setup Time    | Pins: RS,RW,E            | 0        | -    | -             | ns   |
| TAH              | Address Hold Time     | Pins: RS,RW,E            | 10       | -    | -             | ns   |
| T <sub>DSW</sub> | Data Setup Time       | Pins: DB0 - DB7          | 40       | -    | -             | ns   |
| TH               | Data Hold Time        | Pins: DB0 - DB7          | 10       | -    | -1            | ns   |

# 12.2 Read Operation

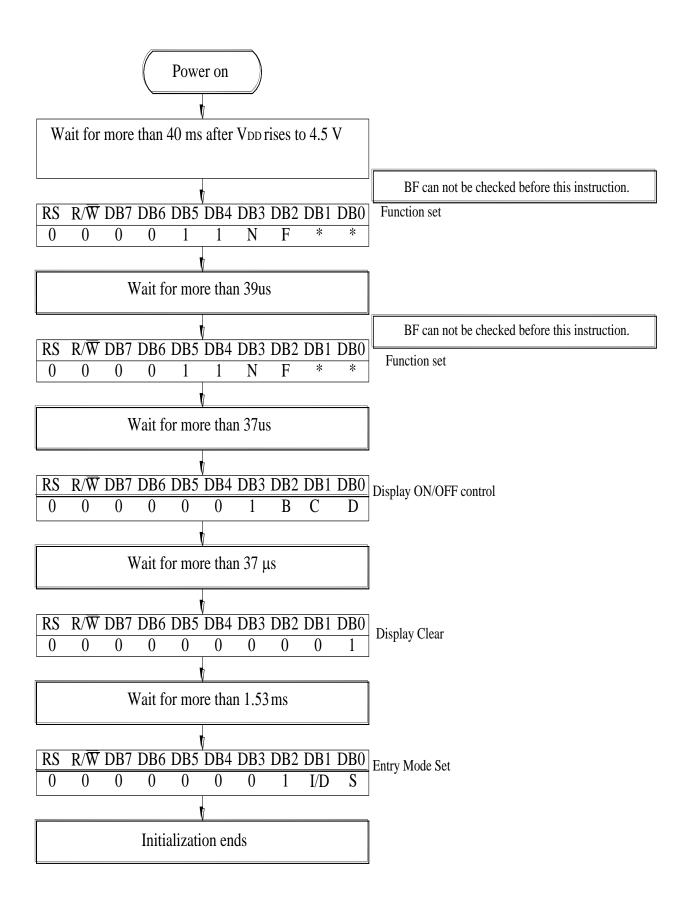



NOTE: \*VOL1 is assumed to be 0.8V at 2 MHZ operation.

Ta=25°C, VDD= $5.0\pm0.5$ V


|                  | Read Mode             | (Reading Data from S | T7066U to M | PU) |     |    |
|------------------|-----------------------|----------------------|-------------|-----|-----|----|
| Tc               | Enable Cycle Time     | Pin E                | 1200        | -   | -   | ns |
| T <sub>PW</sub>  | Enable Pulse Width    | Pin E                | 140         |     | -   | ns |
| $T_R, T_F$       | Enable Rise/Fall Time | Pin E                | -           | -   | 25  | ns |
| TAS              | Address Setup Time    | Pins: RS,RW,E        | 0           | -   | -   | ns |
| T <sub>AH</sub>  | Address Hold Time     | Pins: RS,RW,E        | 10          | -   | 2   | ns |
| T <sub>DDR</sub> | Data Setup Time       | Pins: DB0 - DB7      | -           | -   | 100 | ns |
| T <sub>H</sub>   | Data Hold Time        | Pins: DB0 - DB7      | 10          | -   | -   | ns |

### 12.3 Timing Diagram of VDD Against V0.


Power on sequence shall meet the requirement of Figure 4, the timing diagram of VDD against V0.



# **13.Initializing of LCM**



4-Bit Ineterface



8-Bit Ineterface

# **14.Quality Assurance**

#### **Screen Cosmetic Criteria**

| Item | Defect               | Judgment Criterion                                                                                                                      | Partition |  |
|------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------|--|
| 1    | Spots                | A)Clear                                                                                                                                 | Minor     |  |
| 2    | Bubbles in Polarizer | Size: d mmAcceptable Qty in active aread≤0.3Disregard0.3 <d≤1.0< td="">31.0<d≤1.5< td="">11.5<d< td="">0</d<></d≤1.5<></d≤1.0<>         | Minor     |  |
| 3    | Scratch              | Minor                                                                                                                                   |           |  |
| 4    | Allowable Density    | Above defects should be separated more than 30mm each other.                                                                            | Minor     |  |
| 5    | Coloration           | Not to be noticeable coloration in the viewing area of the LCD panels.  Back-light type should be judged with back-light on state only. | Minor     |  |

# 15.Reliability

#### **Content of Reliability Test**

| Environmental Test                            |                                                                                                                                   |                              |                        |  |  |  |  |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------|--|--|--|--|
| Test Item                                     | Content of Test                                                                                                                   | <b>Test Condition</b>        | Applicable<br>Standard |  |  |  |  |
| High<br>Temperature<br>storage                | Endurance test applying the high storage temperature for a long time.                                                             | 80°C<br>96hrs                |                        |  |  |  |  |
| Low<br>Temperature<br>storage                 | Endurance test applying the high storage temperature for a long time.                                                             | -30°C<br>96hrs               |                        |  |  |  |  |
| High<br>Temperature<br>Operation              | Endurance test applying the electric stress (Voltage & Current) and the thermal stress to the element for a long time.            | 70°C<br>96hrs                |                        |  |  |  |  |
| Low<br>Temperature<br>Operation               | Endurance test applying the electric stress under low temperature for a long time.                                                | -20°C<br>96hrs               |                        |  |  |  |  |
| High<br>Temperature/<br>Humidity<br>Storage   | Endurance test applying the high temperature and high humidity storage for a long time.                                           | 60°C,90%RH<br>96hrs          |                        |  |  |  |  |
| High<br>Temperature/<br>Humidity<br>Operation | Endurance test applying the electric stress (Voltage & Current) and temperature / humidity stress to the element for a long time. | 60°C,90%RH<br>96hrs          |                        |  |  |  |  |
| Temperature<br>Cycle                          | Endurance test applying the low and high temperature cycle.  -30°C 25°C 80°C  30min 5min 30min 1 cycle                            | -30°C→80°C<br>10 cycles      |                        |  |  |  |  |
| Mechanical Test                               |                                                                                                                                   |                              |                        |  |  |  |  |
| Vibration test                                | Endurance test applying the vibration during transportation and using.                                                            | 50Hz→3mm p-p<br>Total 0.5hrs |                        |  |  |  |  |

<sup>\*\*\*</sup>Supply voltage for logic system=5V. Supply voltage for LCD system =Operating voltage at 25°C