

145 Royal Crest Court Unit 42 Markham, ON, Canada L3R 9Z4 Tel: 905-477-1166 Fax: 905-477-1782 http://www.orientdisplay.com

# SPECIFICATIONS FOR LCD MODULE

| CUSTOMER          |          |
|-------------------|----------|
| CUSTOMER PART NO. |          |
| ACMMI PART NO.    | AMC0801A |
| DESCRIPTION       |          |
| APPROVED BY       |          |
| DATE              |          |

| PREPARED BY | CHECKED BY | APPROVED BY |
|-------------|------------|-------------|
|             |            |             |
|             |            |             |

#### DOCUMENT REVISION HISTORY:

| DATE                          | PAGE        | DESCRIPTION                                                                 |
|-------------------------------|-------------|-----------------------------------------------------------------------------|
| 1999.8.<br>2005.3.<br>2005.12 | -<br>-<br>4 | First release  Modify the full specification  Update the part number system |
|                               |             |                                                                             |
|                               |             |                                                                             |
|                               |             |                                                                             |
|                               |             |                                                                             |
|                               |             |                                                                             |

### **Contents**

- 1. Module Classification Information
- 2. Precautions in use of LCD Modules
- 3. General Specification
- 4. Absolute Maximum Ratings
- 5. Electrical Characteristics
- 6. Optical Characteristics
- 7. Interface Pin Function
- 8. Power Supply
- 9. Contour Drawing & Block Diagram
- 10. Function Description
- 11. Character Generator ROM Pattern
- 12. Instruction Table
- 13. Timing Characteristics
- 14. Initializing of LCM
- 15. Quality Assurance
- 16. Reliability

# 1. Module Classification Information

# $\frac{A M C}{1} \frac{1 6 0 2}{2} \frac{A R}{3} - \frac{B}{6} - \frac{B}{7} \frac{6 W}{8} \frac{T}{9} \frac{D W}{10} - \frac{S P}{13}$

|    |                                                            | 5 0 7 0 9 10 11 12 13           |  |  |  |  |  |  |  |  |  |  |  |
|----|------------------------------------------------------------|---------------------------------|--|--|--|--|--|--|--|--|--|--|--|
| 1  | Brand: Orient Display                                      | (N.A.) Ltd.                     |  |  |  |  |  |  |  |  |  |  |  |
| 2  | Display Type : C→ Cha                                      | aracter Type, G→ Graphic Type,  |  |  |  |  |  |  |  |  |  |  |  |
|    | NONE-                                                      | → Custom-made                   |  |  |  |  |  |  |  |  |  |  |  |
| 3  | Display Font : Characters X Lines / Rows X Columns /Others |                                 |  |  |  |  |  |  |  |  |  |  |  |
| 4  | Model serials no.                                          |                                 |  |  |  |  |  |  |  |  |  |  |  |
| 5  | RoHS compliant: R→YES NONE→ NO                             |                                 |  |  |  |  |  |  |  |  |  |  |  |
| 6  | IC Package Type: M→ SMT Type                               |                                 |  |  |  |  |  |  |  |  |  |  |  |
|    | 3 71                                                       | B→ COB Type                     |  |  |  |  |  |  |  |  |  |  |  |
|    |                                                            | T→ TAB Type                     |  |  |  |  |  |  |  |  |  |  |  |
|    |                                                            | G→ COG Type<br>F→ COF Type      |  |  |  |  |  |  |  |  |  |  |  |
|    |                                                            | S→ Special                      |  |  |  |  |  |  |  |  |  |  |  |
| 7  | LCD Mode:                                                  | P→TN Positive                   |  |  |  |  |  |  |  |  |  |  |  |
| '  | LOD MOGE:                                                  | N→TN Negative                   |  |  |  |  |  |  |  |  |  |  |  |
|    |                                                            | Y→ STN Positive, Yellow Green   |  |  |  |  |  |  |  |  |  |  |  |
|    |                                                            | B→ STN Negative, Blue           |  |  |  |  |  |  |  |  |  |  |  |
|    |                                                            | G→ STN Positive, Gray           |  |  |  |  |  |  |  |  |  |  |  |
|    |                                                            | W→ FSTN Positive                |  |  |  |  |  |  |  |  |  |  |  |
|    |                                                            | T→ FSTN Negative                |  |  |  |  |  |  |  |  |  |  |  |
|    |                                                            | F→ FFSTN Negative<br>S→ Special |  |  |  |  |  |  |  |  |  |  |  |
| 8  | Viewing direction                                          | 6→ 6:00,12→12:00, S→Special     |  |  |  |  |  |  |  |  |  |  |  |
| 9  | Temperature range                                          | N → Normal Temperature          |  |  |  |  |  |  |  |  |  |  |  |
| 3  | Temperature range                                          | W→ Wide Temperature             |  |  |  |  |  |  |  |  |  |  |  |
|    |                                                            | S→ Special                      |  |  |  |  |  |  |  |  |  |  |  |
| 10 | LCD Polarizer Type                                         | R→ Reflective                   |  |  |  |  |  |  |  |  |  |  |  |
|    |                                                            | T→ Transmissive                 |  |  |  |  |  |  |  |  |  |  |  |
|    |                                                            | F→ Transflective                |  |  |  |  |  |  |  |  |  |  |  |
| 44 | Dooklight Turns                                            | S→ Special N→ None              |  |  |  |  |  |  |  |  |  |  |  |
| 11 | Backlight Type                                             | D→ LED                          |  |  |  |  |  |  |  |  |  |  |  |
|    |                                                            | E→ EL                           |  |  |  |  |  |  |  |  |  |  |  |
|    |                                                            | F→ CCFL                         |  |  |  |  |  |  |  |  |  |  |  |
|    |                                                            | S→ Special                      |  |  |  |  |  |  |  |  |  |  |  |
| 12 | Backlight Color                                            | Y→ Yellow-green                 |  |  |  |  |  |  |  |  |  |  |  |
|    |                                                            | B→ Blue                         |  |  |  |  |  |  |  |  |  |  |  |
|    |                                                            | A→ Amber                        |  |  |  |  |  |  |  |  |  |  |  |
|    |                                                            | W→ White<br>G→ Green            |  |  |  |  |  |  |  |  |  |  |  |
|    |                                                            | R→ Red                          |  |  |  |  |  |  |  |  |  |  |  |
|    |                                                            | S→ Special                      |  |  |  |  |  |  |  |  |  |  |  |
| 13 | Internal Code                                              |                                 |  |  |  |  |  |  |  |  |  |  |  |
|    |                                                            |                                 |  |  |  |  |  |  |  |  |  |  |  |
|    |                                                            |                                 |  |  |  |  |  |  |  |  |  |  |  |

### 2. Precautions in use of LCD Modules

- (1) Avoid applying excessive shocks to the module or making any alterations or modifications to it.
- (2)Don't make extra holes on the printed circuit board, modify its shape or change the components of LCD module.
- (3)Don't disassemble the LCM.
- (4)Don't operate it above the absolute maximum rating.
- (5)Don't drop, bend or twist LCM.
- (6) Soldering: only to the I/O terminals.
- (7)Storage: please storage in anti-static electricity container and clean environment.

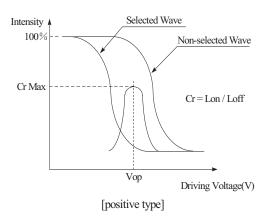
### 3. General Specification

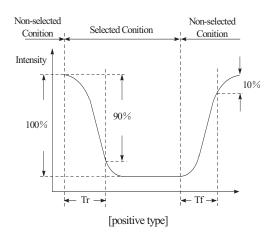
| Item                                 | Dimension                | Unit |
|--------------------------------------|--------------------------|------|
| Number of Characters                 | 8 characters x 1 Lines   | _    |
| Module dimension(No Backlight)       | 80.0 x 36.0 x 10.0 (MAX) | mm   |
| Module dimension(With LED Backlight) | 80.0 x 36.0 x 13.0 (MAX) | mm   |
| View area                            | 61.0 x 15.8              | mm   |
| Active area                          | 56.50 x 10.75            | mm   |
| Dot size                             | 1.25 x 1.30              | mm   |
| Dot pitch                            | 1.30 x 1.35              | mm   |
| Character size                       | 6.45 x 10.75             | mm   |
| Character pitch                      | 7.15                     | mm   |
| LCD type                             | STN                      | •    |
| Duty                                 | 1/8                      |      |
| View direction                       | 6 o'clock or 12 o'clock  |      |
| Backlight Type                       | None, YELLOW-GREEN       |      |

# 4. Absolute Maximum Ratings

| It                   | em              | Symbol              | Min      | Max     | Unit                   |
|----------------------|-----------------|---------------------|----------|---------|------------------------|
| Input Voltage        |                 | $V_{I}$             | -0.3     | VDD+0.3 | V                      |
| Supply Voltage For I | Logic           | VDD-V <sub>SS</sub> | -0.3     | 7.0     | V                      |
| Supply Voltage For I | LCD             | $V_{DD}$ - $V_0$    | Vdd-13.5 | 0       | V                      |
| Standard             | Operating Temp. | Тор                 | 0        | 50      | $^{\circ}$             |
| Temperature LCM      | Storage Temp.   | Tstr                | -10      | 60      | $^{\circ}$ C           |
| Wide Temperature     | Operating Temp. | Тор                 | -20      | 70      | $^{\circ}$             |
| LCM                  | Storage Temp.   | Tstr                | -30      | 80      | $^{\circ}\!\mathbb{C}$ |

# **5. Electrical Characteristics**


| Item                                        | Symbol              | Condition                                           | Min                   | Тур | Max          | Unit |  |
|---------------------------------------------|---------------------|-----------------------------------------------------|-----------------------|-----|--------------|------|--|
| Supply Voltage For Logic                    | $V_{DD}$ - $V_{SS}$ | _                                                   | 4.5                   | 5.0 | 5.5          | V    |  |
| Supply Voltage For LCD                      | $V_{DD}$ - $V_0$    | Ta=25°C                                             | 4.4                   | 5.0 | 5.4          | V    |  |
| Input High Volt.                            | $V_{\mathrm{IH}}$   | _                                                   | $0.7~\mathrm{V_{DD}}$ | _   | $V_{DD}$     | V    |  |
| Input Low Volt.                             | $ m V_{IL}$         | _                                                   | V <sub>SS</sub>       | _   | $0.3~V_{DD}$ | V    |  |
| Supply Current                              | $I_{DD}$            | V <sub>DD</sub> =5V                                 | 0.5                   | 1.0 | 2.0          | mA   |  |
| Supply Voltage of<br>Yellow-green backlight | $ m V_{LED}$        | Forward current =100 mA  Number of LED die 2x10= 20 | 3.8                   | 4.1 | 4.3          | V    |  |


### 6. Optical Characteristics

| Item           | Symbol | Condition | Min | Тур | Max | Unit |  |
|----------------|--------|-----------|-----|-----|-----|------|--|
| View Angle     | (V)θ   | CR≧2      | -20 | _   | 35  | deg  |  |
| View ringie    | (Н)ф   | CR≥2      | -30 | _   | 30  | deg  |  |
| Contrast Ratio | CR     | _         | _   | 3   | _   | _    |  |
| Response Time  | T rise | _         | _   | _   | 250 | ms   |  |
| response Time  | T fall | _         | _   | _   | 250 | ms   |  |

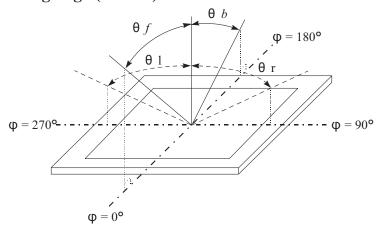
#### **Definition of Operation Voltage (Vop)**

#### Definition of Response Time (Tr, Tf)





#### **Conditions:**

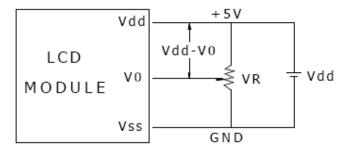

Operating Voltage: Vop V

Viewing Angle( $\theta$ ,  $\varphi$ ):  $0^{\circ}$ ,  $0^{\circ}$ 

Frame Frequency: 64 HZ

Driving Waveform: 1/N duty, 1/a bias

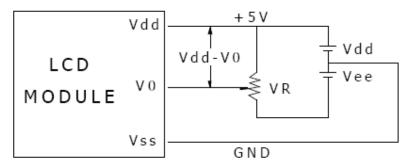
#### Definition of viewing angle ( $CR \ge 2$ )




# 7. Interface Pin Function

| Pin No. | Symbol   | Level      | Description                              |
|---------|----------|------------|------------------------------------------|
| 1       | $V_{SS}$ | 0V         | Ground                                   |
| 2       | $V_{DD}$ | 5.0V       | Supply Voltage for logic                 |
| 3       | V0       | (Variable) | Operating voltage for LCD                |
| 4       | RS       | H/L        | H: DATA, L: Instruction code             |
| 5       | R/W      | H/L        | H: Read(MPU→Module) L: Write(MPU→Module) |
| 6       | Е        | H,H→L      | Chip enable signal                       |
| 7       | DB0      | H/L        | Data bit 0                               |
| 8       | DB1      | H/L        | Data bit 1                               |
| 9       | DB2      | H/L        | Data bit 2                               |
| 10      | DB3      | H/L        | Data bit 3                               |
| 11      | DB4      | H/L        | Data bit 4                               |
| 12      | DB5      | H/L        | Data bit 5                               |
| 13      | DB6      | H/L        | Data bit 6                               |
| 14      | DB7      | H/L        | Data bit 7                               |
| 15      | LED(+)   |            | Anode of LED Backlight                   |
| 16      | LED(-)   |            | Cathode of LED Backlight                 |

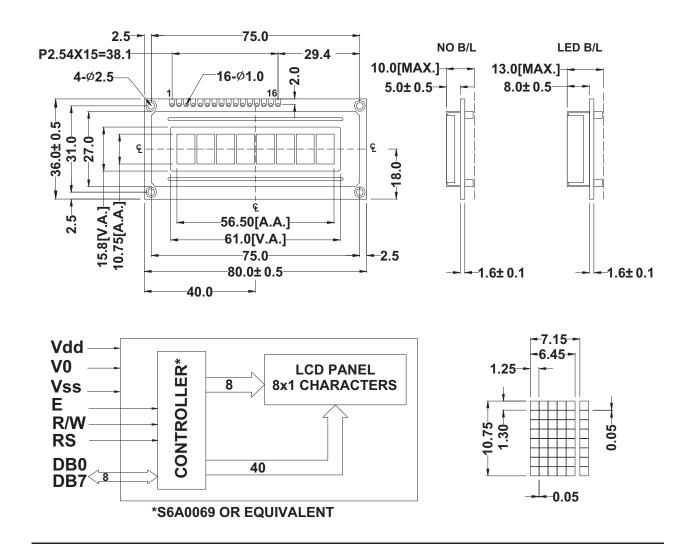
### **8. POWER SUPPLY**


#### SINGLE SUPPLY VOLTAGE TYPE



Vdd-V0: LCD Driving Voltage

VR: 10K - 20K


#### **DUAL SUPPLY VOLTAGE TYPE**



Vdd-V0: LCD Driving Voltage

VR: 10K - 20K

### 9. Contour Drawing & Block Diagram



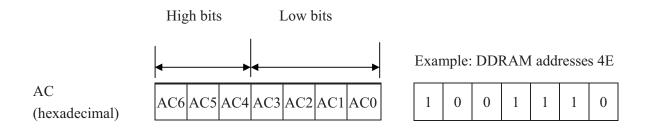
### 10. Function Description

The LCD display Module is built in a LSI controller, the controller has two 8-bit registers, an instruction register (IR) and a data register (DR).

The IR stores instruction codes, such as display clear and cursor shift, and address information for display data RAM (DDRAM) and character generator (CGRAM). The IR can only be written from the MPU. The DR temporarily stores data to be written or read from DDRAM or CGRAM. When address information is written into the IR, then data is stored into the DR from DDRAM or CGRAM. By the register selector (RS) signal, these two registers can be selected.

| RS | R/W | Operation                                               |
|----|-----|---------------------------------------------------------|
| 0  | 0   | IR write as an internal operation (display clear, etc.) |
| 0  | 1   | Read busy flag (DB7) and address counter (DB0 to DB7)   |
| 1  | 0   | Write data to DDRAM or CGRAM (DR to DDRAM or CGRAM)     |
| 1  | 1   | Read data from DDRAM or CGRAM (DDRAM or CGRAM to DR)    |

#### **Busy Flag (BF)**


When the busy flag is 1, the controller LSI is in the internal operation mode, and the next instruction will not be accepted. When RS=0 and R/W=1, the busy flag is output to DB7. The next instruction must be written after ensuring that the busy flag is 0.

#### **Address Counter (AC)**

The address counter (AC) assigns addresses to both DDRAM and CGRAM

#### **Display Data RAM (DDRAM)**

This DDRAM is used to store the display data represented in 8-bit character codes. Its extended capacity is 80×8 bits or 80 characters. Below figure is the relationships between DDRAM addresses and positions on the liquid crystal display.



#### Display position DDRAM address

 1
 2
 3
 4
 5
 6
 7
 8

 00
 01
 02
 03
 04
 05
 06
 07

### 1-Line by 8-Character Display

#### **Character Generator ROM (CGROM)**

The CGROM generate 5×8 dot or 5×10 dot character patterns from 8-bit character codes. See Table 2.

#### **Character Generator RAM (CGRAM)**

In CGRAM, the user can rewrite character by program. For  $5\times8$  dots, eight character patterns can be written, and for  $5\times10$  dots, four character patterns can be written.

Write into DDRAM the character code at the addresses shown as the left column of table 1. To show the character patterns stored in CGRAM.

# Relationship between CGRAM Addresses, Character Codes (DDRAM) and Character patterns

Table 1.

For 5 \* 8 dot character patterns

| Character Codes (DDRAM data) | CGRAM Address                                                                                                         | Character Patterns<br>(CGRAM data)      |                                                  |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------|
| 7 6 5 4 3 2 1 0              | 5 4 3 2 1 0                                                                                                           | 7 6 5 4 3 2 1 0                         |                                                  |
| High Low                     | High Low                                                                                                              | High Low                                |                                                  |
| 0 0 0 0 * 0 0 0              | 0 0 0 0<br>0 0 1<br>0 1 0<br>0 1 1<br>1 0 0<br>1 0 1<br>1 1 1<br>0 0 0<br>0 1 1<br>1 1 0<br>1 1 1 0<br>0 0 0<br>0 0 1 | * * * * * * * * * * * * * * * * * * *   | Character pattern (1)  Cursor pattern  Character |
| 0 0 0 0 * 0 0 1              | 0 0 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                     | * * * * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | pattern(2)  Cursor pattern                       |
|                              | 0 0 1                                                                                                                 |                                         |                                                  |
| 0 0 0 0 * 1 1 1              | 1 1 1 1 0 0<br>1 0 1<br>1 1 0<br>1 1 1                                                                                | * * *                                   |                                                  |

For 5 \* 10 dot character patterns

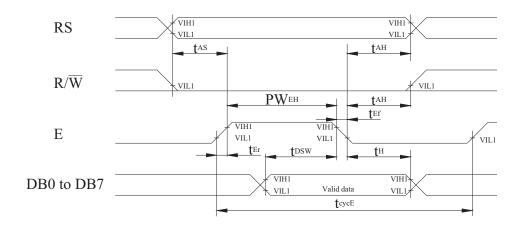
| J |   | . U | u o | t CI | 1 a i | ac           | tei | <u> </u> | ) a ı | teri | 18 |     |     |                                                |                                                |                                           |                                           | <br>              |           |                   |   |                            |                            |                            |                 |   |                    |
|---|---|-----|-----|------|-------|--------------|-----|----------|-------|------|----|-----|-----|------------------------------------------------|------------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------|-----------|-------------------|---|----------------------------|----------------------------|----------------------------|-----------------|---|--------------------|
|   |   |     |     |      |       | o d<br>d a t |     |          |       |      | C  | GR. | A M | I A                                            | d d                                            | res                                       | SS                                        | _                 |           |                   |   | P a                        |                            |                            |                 |   |                    |
|   | 7 | 6   | 5   | 4    | 3     | 2            | 1   | 1        | 0     |      |    | 5   | 4   | 3                                              | 2                                              | 1                                         | 0                                         | 7                 | 6         | 5                 | 4 | 3                          | 2                          | 1                          | 0               |   |                    |
|   |   | Ηi  | g h |      |       | Lo           | w   |          |       |      | Н  | igł | 1   |                                                | Lo                                             | w                                         |                                           | I                 | Hig       | ; h               |   | L                          | o w                        | 7                          |                 |   |                    |
|   | 0 | 0   | 0   | 0    | *     | 0            | 0   | )        | 0     |      |    | 0   | 0   | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>1 | 0<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>0<br>0 | 0<br>0<br>1<br>1<br>0<br>0<br>1<br>1<br>0 | 0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0 | * * * * * * * * * | * * * * * | * * * * * * * * * | 0 | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0 | 0 0 0 0 0 0 0 0 | * | C haracter pattern |
|   |   |     |     |      |       |              |     |          |       |      |    |     |     | 1                                              | -                                              | 1                                         |                                           | *                 | *         | *                 | * | *                          | *                          | *                          | *               |   | _ Cursor pattern   |
|   |   |     |     |      |       |              |     |          |       |      |    |     |     | 1                                              | 1                                              | 1                                         | 1                                         | *                 | *         | *                 | * | *                          | *                          | *                          | *               |   |                    |

■ : " High "

# 11. Character Generator ROM Pattern

Table.2

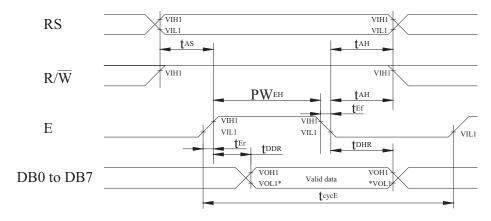
| S Hanne d                       |                  |      |      |      |      |      |      |      |      |      |          |          |          |      |      |      |
|---------------------------------|------------------|------|------|------|------|------|------|------|------|------|----------|----------|----------|------|------|------|
| Upper 4<br>Lower Bits<br>4 Bits |                  | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010     | 1011     | 1100     | 1101 | 1110 | 1111 |
| xxxx00000                       | CG<br>RAM<br>(1) |      |      | 0    | a    | P    | •    | P    |      |      |          | _        | 9        | Ξ.   | α    | þ    |
| xxxx0001                        | (2)              |      | I    | 1    | A    | Q    | a    | 9    |      |      | •        | 7        | Ŧ        | 4    | ä    | q    |
| xxxx0010                        | (3)              |      | II   | 2    | B    | R    | b    | ۲    |      |      | r        | 1        | IJ       | X    | β    | Θ    |
| xxxx0011                        | (4)              |      | #    | 3    | C    | 5    | C    | 5    |      |      | L        | Ż        | Ť        | ŧ    | ٤    | 60   |
| xxxx0100                        | (5)              |      | \$   | 4    | D    | T    | d    | ŧ.   |      |      | <b>\</b> | I        | ŀ        | þ    | μ    | Ω    |
| xxxx0101                        | (6)              |      | 7,   | 5    | E    | U    | e    | u    |      |      |          | 7        | Ŧ        | 1    | G    | ü    |
| xxxx0110                        | (7)              |      | &    | 6    | F    | Ų    | f    | Ų    |      |      | П≻       | Ħ        | _        | 3    | ρ    | Σ    |
| xxxx0111                        | (8)              |      | 7    | 7    | G    | W    | 9    | W    |      |      | Ъ        | ‡        | 7        | Ŧ    | 9    | π    |
| xxxx1000                        | (1)              |      | (    | 8    | H    | X    | h    | X    |      |      | 4        | 2        | *        | ij   | Ţ    | X    |
| xxxx1001                        | (2)              |      | )    | 9    | I    | Y    | i    | Ч    |      |      | ţ        | ጛ        | J        | IĻ   | -1   | У    |
| xxxx1010                        | (3)              |      | *    |      | J    | Z    | j    | Z    |      |      | I        |          | ስ        | V    | j    | Ŧ    |
| xxxx1011                        | (4)              |      | +    | 7    | K    |      | k    | {    |      |      | 7        | <u> </u> | L        |      | ×    | F    |
| xxxx1100                        | (5)              |      | ,    | <    |      | ¥    | 1    |      |      |      | ₽        | 5)       |          |      | ¢    | Ħ    |
| xxxx1101                        | (6)              |      |      |      | M    |      | M    | }    |      |      | ュ        | Z        | ጎ        |      | Ł    | ÷    |
| xxxx1110                        | (7)              |      |      | >    | N    | ۸    | ГΙ   | ÷    |      |      | 3        | t        | <b>†</b> | •••  | ħ    |      |
| xxxx1111                        | (8)              |      | /    | ?    | 0    |      | 0    | ÷    |      |      | ij       | y        | 7        |      | Ö    |      |


# 12. Instruction Table

| Instruction                      |    |     |     | Ins | structi | ion Co | ode |     | Description | Execution time |                                                                                                                                    |               |  |
|----------------------------------|----|-----|-----|-----|---------|--------|-----|-----|-------------|----------------|------------------------------------------------------------------------------------------------------------------------------------|---------------|--|
| Thisti uction                    | RS | R/W | DB7 | DB6 | DB5     | DB4    | DB3 | DB2 | DB1         | DB0            | Description                                                                                                                        | (fosc=270Khz) |  |
| Clear Display                    | 0  | 0   | 0   | 0   | 0       | 0      | 0   | 0   | 0           | 1              | Write "00H" to DDRAM and set<br>DDRAM address to "00H" from AC                                                                     | 1.53ms        |  |
| Return Home                      | 0  | 0   | 0   | 0   | 0       | 0      | 0   | 0   | 1           | _              | Set DDRAM address to "00H" from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.   | 1.53ms        |  |
| Entry Mode<br>Set                | 0  | 0   | 0   | 0   | 0       | 0      | 0   | 1   | I/D         | SH             | Assign cursor moving direction and enable the shift of entire display.                                                             | 39µs          |  |
| Display<br>ON/OFF<br>Control     | 0  | 0   | 0   | 0   | 0       | 0      | 1   | D   | С           | В              | Set display (D), cursor (C), and blinking of cursor (B) on/off control bit.                                                        | 39µs          |  |
| Cursor or<br>Display Shift       | 0  | 0   | 0   | 0   | 0       | 1      | S/C | R/L | _           | _              | Set cursor moving and display shift control bit, and the direction, without changing of DDRAM data.                                | 39µs          |  |
| Function Set                     | 0  | 0   | 0   | 0   | 1       | DL     | N   | F   | _           | _              | Set interface data length (DL:8-bit/4-bit), numbers of display line (N:2-line/1-line)and, display font type (F:5×11 dots/5×8 dots) | 39μs          |  |
| Set CGRAM<br>Address             | 0  | 0   | 0   | 1   | AC5     | AC4    | AC3 | AC2 | AC1         | AC0            | Set CGRAM address in address counter.                                                                                              | 39μs          |  |
| Set DDRAM<br>Address             | 0  | 0   | 1   | AC6 | AC5     | AC4    | AC3 | AC2 | AC1         | AC0            | Set DDRAM address in address counter.                                                                                              | 39µs          |  |
| Read Busy<br>Flag and<br>Address | 0  | 1   | BF  | AC6 | AC5     | AC4    | AC3 | AC2 | AC1         | AC0            | Whether during internal operation or not can be known by reading BF. The contents of address counter can also be read.             | 0µs           |  |
| Write Data to<br>RAM             | 1  | 0   | D7  | D6  | D5      | D4     | D3  | D2  | D1          | D0             | Write data into internal RAM (DDRAM/CGRAM).                                                                                        | 43μs          |  |
| Read Data<br>from RAM            | 1  | 1   | D7  | D6  | D5      | D4     | D3  | D2  | D1          | D0             | Read data from internal RAM (DDRAM/CGRAM).                                                                                         | 43μs          |  |

\* "-": don't care

# **13. Timing Characteristics**


### 13.1 Write Operation

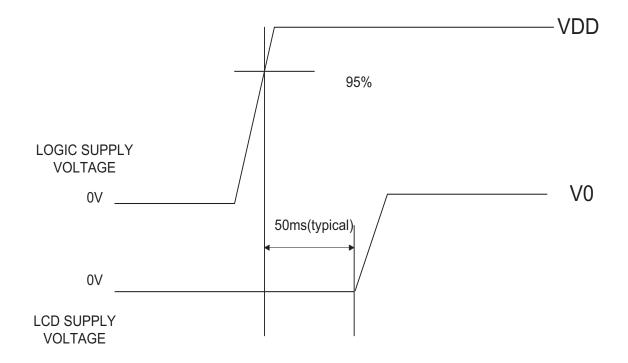


Ta=25°C, VDD= $5.0 \pm 0.5$ V

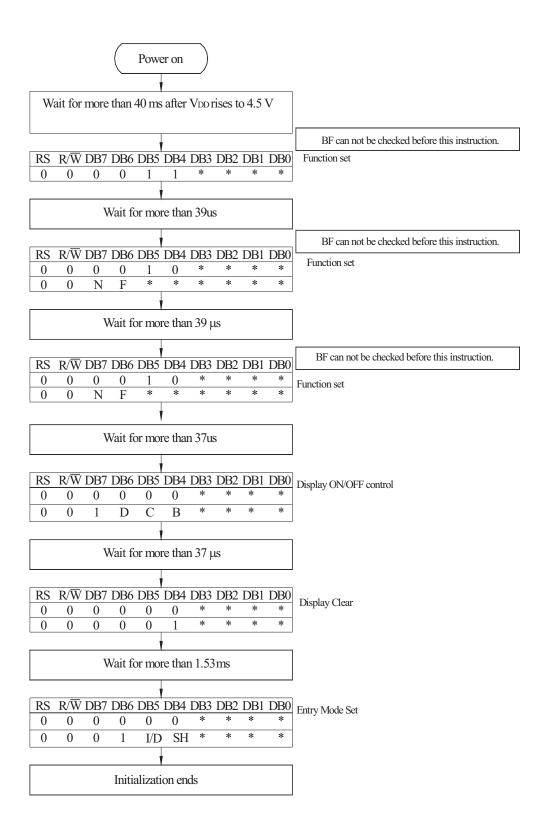
| Item                               | Symbol                             | Min  | Тур | Max | Unit |
|------------------------------------|------------------------------------|------|-----|-----|------|
| Enable cycle time                  | $t_{ m cycE}$                      | 1200 | _   | _   | ns   |
| Enable pulse width (high level)    | $PW_{EH}$                          | 140  | _   | _   | ns   |
| Enable rise/fall time              | $t_{\mathrm{Er}}, t_{\mathrm{Ef}}$ | _    | _   | 25  | ns   |
| Address set-up time (RS, R/W to E) | $t_{AS}$                           | 0    | _   | _   | ns   |
| Address hold time                  | $t_{\mathrm{AH}}$                  | 10   | _   | _   | ns   |
| Data set-up time                   | $t_{ m DSW}$                       | 40   | _   | _   | ns   |
| Data hold time                     | $t_{ m H}$                         | 10   | _   | _   | ns   |

### 13.2 Read Operation

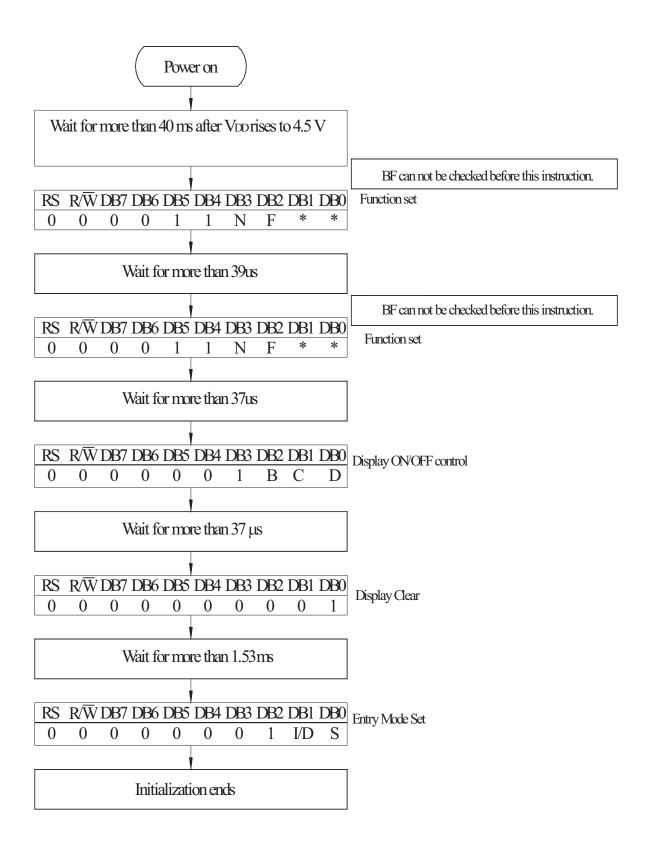



NOTE: \*VOL1 is assumed to be 0.8V at 2 MHZ operation.

Ta=25°C, VDD=5.0± 0.5V


| Item                               | Symbol                             | Min  | Тур | Max | Unit |
|------------------------------------|------------------------------------|------|-----|-----|------|
| Enable cycle time                  | $t_{ m cycE}$                      | 1200 | _   | _   | ns   |
| Enable pulse width (high level)    | $PW_{EH}$                          | 140  | _   | _   | ns   |
| Enable rise/fall time              | $t_{\mathrm{Er}}, t_{\mathrm{Ef}}$ | _    | _   | 25  | ns   |
| Address set-up time (RS, R/W to E) | t <sub>AS</sub>                    | 0    | _   | _   | ns   |
| Address hold time                  | $t_{AH}$                           | 10   | _   | _   | ns   |
| Data delay time                    | t <sub>DDR</sub>                   | _    | _   | 100 | ns   |
| Data hold time                     | t <sub>DHR</sub>                   | 10   | _   | _   | ns   |

#### 13.3 Timing Diagram of VDD Against V0.


Power on sequence shall meet the requirement of Figure 4, the timing diagram of VDD against V0.



### **14.Initializing of LCM**



4-Bit Ineterface



8-Bit Ineterface

# **15.Quality Assurance**

#### **Screen Cosmetic Criteria**

| Item | Defect               | Judgment Criterion                                                                                                                              | Partition |  |  |  |
|------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|--|--|
| 1    | Spots                | A)Clear                                                                                                                                         | Minor     |  |  |  |
| 2    | Bubbles in Polarizer |                                                                                                                                                 | Minor     |  |  |  |
| 3    | Scratch              | In accordance with spots cosmetic criteria. When the light reflects on the panel surface, the scratches are not to be remarkable.               | Minor     |  |  |  |
| 4    | Allowable Density    | Minor                                                                                                                                           |           |  |  |  |
| 5    | Coloration           | other.  Not to be noticeable coloration in the viewing area of the LCD panels.  Back-light type should be judged with back-light on state only. |           |  |  |  |

# **16.Reliability**

#### **Content of Reliability Test**

| Environmental Test                            |                                                                                                                                   |                                                                |                        |  |  |  |  |  |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------|--|--|--|--|--|
| Test Item                                     | Content of Test                                                                                                                   | <b>Test Condition</b>                                          | Applicable<br>Standard |  |  |  |  |  |
| High<br>Temperature<br>storage                | Endurance test applying the high storage temperature for a long time.                                                             | 60℃<br>96hrs                                                   |                        |  |  |  |  |  |
| Low<br>Temperature<br>storage                 | Endurance test applying the high storage temperature for a long time.                                                             | -10℃<br>96hrs                                                  |                        |  |  |  |  |  |
| High<br>Temperature<br>Operation              | Endurance test applying the electric stress (Voltage & Current) and the thermal stress to the element for a long time.            | 50℃<br>96hrs                                                   |                        |  |  |  |  |  |
| Low<br>Temperature<br>Operation               | Endurance test applying the electric stress under low temperature for a long time.                                                | 0°C<br>96hrs                                                   |                        |  |  |  |  |  |
| High<br>Temperature/<br>Humidity<br>Storage   | Endurance test applying the high temperature and high humidity storage for a long time.                                           | 60℃,90%RH<br>96hrs                                             |                        |  |  |  |  |  |
| High<br>Temperature/<br>Humidity<br>Operation | Endurance test applying the electric stress (Voltage & Current) and temperature / humidity stress to the element for a long time. | 50℃,90%RH<br>96hrs                                             |                        |  |  |  |  |  |
| Temperature<br>Cycle                          | Endurance test applying the low and high temperature cycle.  -10°C 25°C 60°C  30min 5min 30min 1 cycle                            | -10°C/60°C<br>10 cycles                                        |                        |  |  |  |  |  |
| Mechanical Test                               |                                                                                                                                   |                                                                |                        |  |  |  |  |  |
| Vibration test                                | Endurance test applying the vibration during transportation and using.                                                            | 10~22Hz→1.5mmp-p<br>22~500Hz→1.5G<br>Total 0.5hrs              |                        |  |  |  |  |  |
| Shock test                                    | Constructional and mechanical endurance test applying the shock during transportation.                                            | 50G Half sign<br>wave 11 msedc<br>3 times of each<br>direction |                        |  |  |  |  |  |

<sup>\*\*\*</sup>Supply voltage for logic system=5V. Supply voltage for LCD system=Operating voltage at 25  $^{\circ}$ C