(D) ORIENTIISPLAY

Your Total LCD Solution Provider
http://www.orientdisplay.com

SPECIFICATION
 FOR
 TFT MODULE

MODULE NO: AFY480272B0-4.3N12NTM-C REVISION NO: D

Customer's Approval:
\square

	SIGNATURE	DATE
PREPARED BY (RD ENGINEER)		
CHECKED BY		
APPROVED BY		

REVISION RECORD

REV NO.	REV DATE	CONTENTS	REMARKS
O	$2015-07-14$	First release	Preliminary
A	$2015-07-27$	Update drawing and surface luminance	P4,6,7
B	$2015-08-26$	Update drawing	P6
C	$2016-02-19$	Update the TBD data	Page4,7
D	$2016-05-10$	Update the Surface luminance Typ. according to the principle of TFT surface brightness multiplied by 90\%.	Page7

CONTENTS

1. GENERAL INFORMATION 4
2.ABSOLUTE MAXIMUM RATINGS 4
2. ELECTRICAL CHARACTERISTICS 4
3. BACKLIGHT CHARACTERISTICS 4
5.TOUCH PANEL CHARACTERISTICS 5
4. EXTERNAL DIMENSIONS 6
5. ELECTRO-OPTICAL CHARACTERISTICS 7
6. INTERFACE DESCRIPTION 9
7. AC CHARACTERISTICS 10
8. POWER SEQUENCE 12
9. RELIABILITY TEST CONDITIONS 13
10. INSPECTION CRITERION 14
11. HANDLING PRECAUTIONS 17
12. PRECAUTION FOR USE 18
13. PACKING SPECIFICATION 18
14. GENERAL INFORMATION

No.	Item	Contents	Unit
1	LCD size	4.3 inch (Diagonal)	$/$
2	LCD type	TN/Normally white/Transmissive	$/$
3	Viewing direction	12 O'clock	$/$
4	Gray scale inversion direction	6 O'clock *	$/$
5	Resolution	$480{ }^{*} 272$ Pixels	$/$
6	Module size $\left(\mathrm{W}^{*} \mathrm{H}^{*} \mathrm{~T}\right)$	$105.5^{*} 67.2^{*} 4.85$	mm
7	Active area $\left(\mathrm{W}^{*} \mathrm{H}\right)$	$95.04^{*} 53.856$	mm
8	Pixel pitch $\left(\mathrm{W}^{*} \mathrm{H}\right)$	$0.198^{*} 0.198$	mm
9	Interface Type	RGB interface	$/$
10	Module power consumption	0.0792 (Without backlight)	W
11	Back light Type	LED	$/$
12	Driver IC	ILI6480BQ or compatible	$/$
13	Weight	69	g

2. ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Min	Max	Unit
Power supply voltage(LCD Module)	VDD	-0.5	5	V
Back-light current (normal temp.)	ILED	-	50	mA
Operation temperature	Top	-20	70	${ }^{\circ} \mathrm{C}$
Storage temperature	Tst	-30	80	${ }^{\circ} \mathrm{C}$
Humidity	RH	-	$90 \%\left(M a \times 60^{\circ} \mathrm{C}\right)$	RH

3. ELECTRICAL CHARACTERISTICS

DC CHARACTERISTICS (at $\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Item	Symbol	Min	Typ	Max	Unit	Note
Power Supply Input Voltage	VDD	3.0	3.3	3.6	V	
I/O logic voltage	VDDIO	1.8	-	3.3	V	
Input voltage 'H' level	VIH	0.7 VDD	-	VDD	V	
Input voltage 'L' level	VIL	VSS	-	0.3 VDD	V	
Power Supply Current	IVDD	-	24	-	mA	
TFT gate on voltage	VGH	-	N/A	-	V	
TFT gate off voltage	VGL	-	N/A	-	V	
Analog power supply voltage	AVDD	-	N/A	-	V	
Differential input common mode voltage	Vcom	-	N/A	-	V	

4. BACKLIGHT CHARACTERISTICS

(at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{RH}=60 \%$)

Item	Symbol	Min.	Typ.	Max.	Unit	Note					
LED Forward Voltage	VF	-	15	-	V	IF=40mA					
LED Forward Current	IF	-	40	-	mA						
LED power consumption	PLED	-	0.6	-	W	Note1					
Number of LED	-	10								PCS	
Connection mode	-	5 in series 2 in parallel	$/$								
LED Life-Time	-	20000	-	-	Hrs	Note2					

Note1.Calculator Value for reference ILED \times VLED \times LED Quantity $=$ PLED
Note2.The LED Life-time define as the estimated time to 50% degradation of initial brightness at $\mathrm{Ta}=25^{\circ} \mathrm{C}$ and IF $=40 \mathrm{~mA}$. The LED lifetime could be decreased if operating IF is larger than 40 mA .

5.TOUCH PANEL CHARACTERISTICS (at $\mathbf{T a}=25^{\circ} \mathrm{C}$)

FPC Design	Item	Description	Note
[$]$ COF	IC solution on TP Model	GT911	
	Touch Count Max	5 point	
	Display Resolution*	$480^{* 2} 272$	
	Interface Type *	I2C	
	I2C Slave Address*	0x5D	
	Origin of Coordinate*	Top left corner	
[] COB	IC solution on Broad*		
	Driving Channels		
	Sensing Channels		

Parameter	Min	Typ	Max	Unit
Interface Signal Voltage* *	1.8	3.3	3.6	V
Power Voltage* $^{\text {Power ripple* }}$	2.6	3.3	3.6	V

Note1: The detail refer to the Specification For IC
Note2: '*'means that the item is optional according to the product requirement

6.EXTERNAL DIMENSIONS

7.ELECTRO-OPTICAL CHARACTERISTICS

Item	Symbol	Condition	Min	Typ	Max	Unit	Remark	Note
Response time	Tr+ Tf		-	15	24	ms	FIG. 1	Note4
Contrast ratio	Cr		380	500	-	---	FIG 2.	Note1
Surface luminance	Lv	$\theta=0^{\circ}$	384	472	-	$\mathrm{cd} / \mathrm{m}^{2}$	FIG 2.	Note2
Luminance uniformity	-	$\theta=0^{\circ}$	75	80	-	\%	FIG 2.	Note3
NTSC	-	$\theta=0^{\circ}$	-	50	-	\%	FIG 2.	Note5
Viewing angle	θ	$\varnothing=90^{\circ}$	60	70	-	deg	FIG 3.	Note6
		$\varnothing=270^{\circ}$	40	50	-	deg	FIG 3.	
		$\varnothing=0^{\circ}$	60	70	-	deg	FIG 3.	
		$\varnothing=180^{\circ}$	60	70	-	deg	FIG 3.	
CIE (x, y) chromaticity	Red x	$\begin{aligned} & \theta=0^{\circ} \\ & \varnothing=0^{\circ} \\ & \mathrm{Ta}=25^{\circ} \mathrm{C} \end{aligned}$	0.5344	0.5744	0.6144	-	FIG 2. CIE1931	Note5
	Red y		0.2963	0.3363	0.3763	-		
	Green x		0.3098	0.3498	0.3898	-		
	Green y		0.5595	0.5995	0.6395	-		
	Blue x		0.1032	0.1432	0.1832	-		
	Blue y		0.0607	0.1007	0.1407	-		
	White x		0.2792	0.3192	0.3592	-		
	White y		0.3145	0.3545	0.3945	-		

Note1.Definition of contrast ratio

Contrast Ratio(CR) is defined mathematically by the following formula. For more information see FIG 2.
Contrast Ratio $=\frac{\text { Average Surface Luminance with all white pixels (P1, P2, P3 } \ldots \ldots . \mathrm{Pn} \text {) }}{\text { Average Surface Luminance with all black pixels (P1, P2, P3Pn) }}$

Note2.Definition of surface luminance

Surface luminance is the LCD surface from the surface with all pixels displaying white. For more information see FIG 2.
$\mathrm{Lv}=$ Average Surface Luminance with all white pixels (P1, P2, P3Pn)

Note3.Definiton of luminance uniformity

The luminance uniformity in surface luminance (δ WHITE) is determined by measuring luminance at each test position 1 through 9 , and then dividing the maximum luminance of 9 points luminance by minimum luminance of 9 points luminance. For more information see FIG 2.

$$
\delta \text { WHITE }=\frac{\text { Minimum Surface Luminance with all white pixels }(\mathrm{P} 1, \mathrm{P} 2, \mathrm{P} 3 \ldots \ldots \mathrm{Pn})}{\text { Maximum Surface Luminance with all white pixels }(\mathrm{P} 1, \mathrm{P} 2, \mathrm{P} 3 \ldots . . \mathrm{Pn})}
$$

Note4. Definition of Response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (Ton) is the time between photo detector output intensity changed from 90% to 10%. And fall time (Toff) is the time between photo detector output intensity changed from 10% to 90%.For additional information see FIG1.

Note5. Definition of color chromaticity (CIE1931)

CIE (x, y) chromaticity, The x, y value is determined by screen active area center position P5, For more information see FIG 2.

Note6. Definition of Viewing angle.

Viewing angle is the angle at which the contrast ratio is greater than 10. angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG 3.

For Viewing angle and response time testing, the testing data is base on Autronic-Melchers's ConoScope or DMS series Instruments or compatible. For contrast ratio, Surface Luminance, Luminance uniformity and CIE, the testing data is base on TOPCON's BM-7 or BM-5 photo detector or compatible.

Note: For TFT module, Gray scale reverse occurs in the direction of panel viewing angle.

FIG.1. The definition of Response Time

FIG.2. Measuring method for Contrast ratio, surface luminance, Luminance uniformity, CIE (x, y) chromaticity

Size:S ≤ 5 "(see Figure a)
A:5mm B:5mm
H,V : Active Area
Light spot size $\varnothing=5 \mathrm{~mm}(\mathrm{BM}-5), \varnothing=7.7 \mathrm{~mm}(\mathrm{BM}-7) 500 \mathrm{~mm}$ distance or compatible distance from the LCD surface to detector lens.
test spot position: see Figure a.
measurement instrument: TOPCON's luminance meter

BM-5 or BM-7 or compatible (see Figure c)
Figure a
Size:5" $<\mathrm{S} \leq 12.3$ "(see figure b)
H,V : Active Area
Light spot size $\varnothing=5 \mathrm{~mm}(\mathrm{BM}-5), \varnothing=7.7 \mathrm{~mm}(\mathrm{BM}-7) 500 \mathrm{~mm}$ distance or compatible distance from the LCD surface to detector lens
test spot position: see Figure b
measurement instrument : TOPCON's luminance meter BM-5 or BM-7 or compatible (see Figure c)

Figure b

FIG.3. The definition of viewing angle

8.INTERFACE DESCRIPTION

LCM Interface description

Interface No.	Name	I/O or connect to	Description
1	LEDK	P	Power for LED backlight(Cathode)
2	LEDA	P	Power for LED backlight(Anode)
3	CS	I	Chip select pin
4	VDD	P	Power for LCD
$5-12$	Red(0-7)	I	Red data
$13-20$	Green(0-7)	I	Green data
$21-28$	Blue(0-7)	I	Blue data
29	GND	I	Ground
30	PCLK	I	Dot-clock signal
31	DISP	I	Display on/off
32	HSYNC	I	Horizontal sync input.
33	VSYNC	I	Vertical sync input
34	DEN	I	Data enable
35	SCL	I	Clock pin of serial interface
36	SDA	I/O	Data input pin in serial mode
37	XR(NC)	-	No connection
38	YD(NC)	-	No connection
39	XL(NC)	-	No connection
40	YU(NC)	-	No connection

CTP interface description

Interface No.	Name	I/O or connect to	Description
1	RESET	I	Reset low
2	VDD $/$ VCC	P	Power Supplyof CTP
3	GND	P	Ground
4	INT	O	State change interrupt
5	SCL	I	Serial interface clock
6	SDA	I/O	Serial interface date

9. AC CHARACTERISTICS

Input Output timing	Tclk	33.3	-	-	ns	DCLK $=30 \mathrm{MHz}$
DCLK clock time	Tcwl	40	-	60	$\%$	
DCLK clock low period	Tcwh	40	-	60	$\%$	
DCLK clock high period	Trck	9	-	-	ns	
Clock rising time	Tfck	9	-	-	ns	
Clock falling time	Thwh	1	-	-	DCLK	
HSD width	Th	55	60	65	us	
HSD period time	Thsu	12	-	-	ns	
HSD setup time	Thhd	12	-	-	ns	
HSD hold time	Tvwh	1	-	-	Th	
VSD width	Tvsu	12	-	-	ns	
VSD setup time	Tvhd	12	-	-	ns	
VSD hold time	Tdasu	12	-	-	ns	
Data setup time	Tdahd	12	-	-	ns	
Data hold time	Tdesu	12	-	-	ns	
DE setup time	Tdehd	12	-	-	ns	
DE hold time	Tsst	-	-	TBD	us	10% to 90% CL=60pF, RL=2Kohm
Source output setting time	Tgst	-	-	TBD	ns	10% to 90\%, CL=60pF
Gate output setting time	Tcst	-	-	TBD	us	10% to 90\%, CL=40nF, RL=50ohm
VCOM output setting time	Tvs	3	8	31	Th	HV mode By HDL[4:0] setting
Time from VSD to 1st line data input	Tve					

Parameter	Symbol	Value			Unit
		Min.	Typ.	Max.	
DCLK frequency	fclk	5	9	12	MHz
VSD period time	Tv	277	288	400	H
VSD display area	Tvd	272			H
VSD back porch	Tvb	3	8	31	H
VSD front porch	Tvfp	2	8	97	H
HSD period time	Th	520	525	800	DCLK
HSD display area	Thd	480			DCLK
HSD back porch	Thbp	36	40	255	DCLK
HSD front porch	Thfp	4	5	65	DCLK

10.POWER SEQUENCE

Power On Sequence

11.RELIABILITY TEST CONDITIONS

No.	Test Item	Test Condition	after t
1	High Temperature Storage	$80 \pm 2^{\circ} \mathrm{C} 240$ hours	Inspection after 2~4hours storage at room temperature, the sample shall be free from defects: 1.Current changing value before test and after test is 50% larger; 2. function defect: Non-display ,abnormal-d isplay, missing lines, Short lines, ITO corrosion; 3.visual defect: Air bubble in the LCD, Seal leak, Glass crack red to normal state after ature: Some defects such Fluorescence EL has. Mechanical Characteristic,
2	Low Temperature Storage	$-30 \pm 2^{\circ} \mathrm{C} 240$ hours	
3	High Temperature Operatin	$70 \pm 2^{\circ} \mathrm{C} / 120$ hours	
4	Low Temperature Operating	$-20 \pm 2^{\circ} \mathrm{C} / 120$ hours	
5	Temperature Cycle	$\begin{aligned} & -20 \pm 2^{\circ} \mathrm{C} \sim 25 \sim 70 \pm 2^{\circ} \mathrm{C} \times 10 \mathrm{cycles} \\ & (30 \mathrm{~min} .) \quad(5 \mathrm{~min} .) \quad(30 \mathrm{~min} .) \end{aligned}$	
6	Damp Proof Test	$50^{\circ} \mathrm{C} \times 90 \% \mathrm{RH} / 120$ hours	
7	Vibration Test	Frequency: $10 \mathrm{~Hz} \sim 55 \mathrm{~Hz} \sim 10 \mathrm{~Hz}$ Amplitude: $1.5 \mathrm{~mm}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}$ direction for total 3hours (Packing condition)	
8	Dropping test	Drop to the ground from 1 m height, one time, every side of carton. (Packing condition)	
9	ESD test	Voltage: $\pm 8 \mathrm{KV}$ R: 330Ω C: 150 pF Air discharge, 10time	
Remark: 1. The test samples should be applied to only one test item. 2. Sample size for each test item is $3 \sim 5$ pcs.			
3.For Damp Proof Test, Pure water(Resistance $>10 \mathrm{M} \Omega$) should be used.			
4.In case of malfunction defect caused by ESD damage, if it would be recovered to normal state after resetting, it would be judged as a good part.			
5. EL evaluation should be excepted from reliability test with humidity and temperature: Some defects such as black spot/blemish can happen by natural chemical reaction with humidity and Fluorescence EL has.			
6.Failure Judgment Criterion: Basic Specification, Electrical Characteristic, Mechanical Characteristic, Optical Characteristic.			

12. INSPECTION CRITERION

12.1 description

This specification is made to be used as the standard acceptance/rejection criteria for TFT LCM Product.

1.Sample plan

Sampling plan according to GB/T2828.1-2003/ISO 2859-1: 1999 and ANSI/ASQC Z1.4-1993, normal level 2 and based on:

Major defect: AQL 0.65
Minor defect: AQL 1.5

2. Inspection condition

- Viewing distance for cosmetic inspection is about $30 \pm 5 \mathrm{~cm}$ with bare eyes, and under an environment 600~1000lux for visual inspection and 0~200lux for function test., all directions for inspecting the sample should be within 45° against perpendicular line. (Normal temperature $18 \sim 28^{\circ} \mathrm{C}$ and normal humidity $60 \pm 15 \% \mathrm{RH}$).
- Driving voltage

The Vop value from which the most optical contrast can be obtained near the specified Vop in the specification (Within $\pm 0.5 \mathrm{~V}$ of the typical value at $25^{\circ} \mathrm{C}$.).
3. Definition of inspection zone in LCD

Zone A: character/Digit area
Zone B: viewing area except Zone A (ZoneA+ZoneB=minimum Viewing area)
Zone C: Outside viewing area (invisible area after assembly in customer's product)
Fig. 1 Inspection zones in an LCD.
Note: As a general rule, visual defects in Zone C are permissible, when it is no trouble for quality and assembly of customer's product.

12.2 Inspection criterion

12.2.1 function defect

Items to be inspected	Inspection criterion	Classification of defects
	1) No display 2) Display abnormally	
All functional defects	3) Missing vertical, horizontal segment 4) Short circuit 5) Back-light no lighting, flickering and abnormal lighting. 6) obvious striation 7) Current beyond specification value	MA
Missing	Missing component	
Outline dimension	Overall outline dimension exceed the drawing is not allowed.	

12.2.2 LCD pixel defect (bad dot) (defect type:MI)

Checking item	Judgment criterion		
Item\LCD size	$\mathrm{S} \leq 5.0$ Inch	$5.0<\mathrm{S} \leq 7.0$ Inch	$7<\mathrm{S} \leq 12.3$ Inch
Color bad dot-bright dot(R, G, B)	1	2	3
two adjacent bright point	0	1	2
three or more adjacent point	0	0	0
total points for bad dot-bright dot	1	2	5
Bad dot-dark dot	2	4	5
two adjacent dark point	1	2	3
three or more adjacent point	0	1	1
total points for bad dot -dark dot	3	6	7
patch bright dot		Invisible with ND5 \%,it is OK.	

12.2.3 Dot and line defect (defect type:MI)

Checking item	Judgment criterion					figure
	Diameter(mm)\LCD Size		S ≤ 5.0 Inch	$5<\mathrm{S} \leq 7$ Inch	$7<\mathrm{S} \leq 12.3$ Inch	
Dot defect	$\mathrm{D} \leq 0.1$		allowed	allowed	allowed	
	$0.1<\mathrm{D} \leq 0.2$		4	allowed	allowed	
	$0.2<\mathrm{D} \leq 0.3$		0	5	6	f_{b}
	$0.3<\mathrm{D} \leq 0.5$		0	0	6	$a \longrightarrow$
	$\mathrm{D}>0.5$		0	0	0	$D=(a+b) / 2$
	the distance between the two defect dot:DS $\geq 5 \mathrm{~mm}$					
line defect	Length(mm)	Width(mm)	Judgment criterion			
	disregard	$\mathrm{W} \leq 0.05$	allowed	allowed	allowed	
	L ≤ 5	$0.05<\mathrm{W} \leq 0.1$	4	5	7	$\sim+\cdots$
	L>5	$W>0.1$	0	0	0	
Concave point and air bubble for polarizer	LCD Size(mm)		Judgment criterion			
	$\mathrm{D} \leq 0.3$		allowed	allowed	allowed	
	$0.3<\mathrm{D} \leq 1.0$		3	4	5	$\rightleftarrows \stackrel{\ddagger b}{\longrightarrow}$
	$1.0<D \leq 1.5$		1	2	3	
	$\mathrm{D}>1.5$		0	0	0	$D=(a+b) / 2$
Fold mark, linear scar for polarizer	Length(mm)	Width(mm)	Judgment criterion			
	disregard	$W \leq 0.05$	allowed	allowed	allowed	
	$1<\mathrm{L} \leq 5$	$0.05<\mathrm{W} \leq 0.2$	3	4	5	
	$L>5$	$W>0.2$	0	0	0	
	Notes:1.If the fold mark and linear scar for polarizer is visible with operating condition,the defect is judged with line judge; 2.If the fold mark and linear scar for polarizer is visible with non-operating condition,the defect is judged with the above judgment standard.					

12.2.4 Corner and others crack for LCD (defect type:MI)

Checking item	judgment criterion	figure
electric conduction crack	$\mathrm{X} \leq 3.0 \mathrm{~mm}, \mathrm{Y} \leq 1 / 4 \mathrm{w}, \mathrm{Z} \leq \mathrm{t}, \mathrm{N} \leq 2$	

12.2.5 Module cosmetic criterion (defect type: MI)

Item	
Difference in Spec.	None allowed
Pattern peeling	No substrate pattern peeling and floating
Soldering defects	No soldering missing No soldering bridge No cold soldering Notes:detail judgment referring to IPC-A-610 grade II
Resist flaw on Printed Circuit Boards	visible copper foil ($\square 0.5 \mathrm{~mm}$ or more) on substrate pattern, none allowed
Accretion of metallic Foreign matter	No accretion of metallic foreign matters (Not exceed $\square 0.2 \mathrm{~mm}$)
Stain	No stain to spoil cosmetic badly
Plate discoloring	No plate fading, rusting and discoloring
Newton ring	Referring to limited sample
Mura	Invisible with 5\%ND,allowed
Light leaks	Referring to limited sample

13. HANDLING PRECAUTIONS

13.1 Mounting method

The LCD module consists of two thin glass plates with polarizes which easily be damaged. And since the module in so constructed as to be fixed by utilizing fitting holes in the printed circuit board.

Extreme care should be needed when handling the LCD modules.

13.2 Caution of LCD handling and cleaning

When cleaning the display surface, Use soft cloth with solvent [recommended below] and wipe lightly

- Isopropyl alcohol
- Ethyl alcohol

Do not wipe the display surface with dry or hard materials that will damage the polarizer surface.
Do not use the following solvent:

- Water
- Aromatics

Do not wipe ITO pad area with the dry or hard materials that will damage the ITO patterns
Do not use the following solvent on the pad or prevent it from being contaminated:
-. Soldering flux
-.Chlorine (Cl) , Sulfur (S)
If goods were sent without being silicon coated on the pad, ITO patterns could be damaged due to the corrosion as time goes on.

If ITO corrosion happen by miss-handling or using some materials such as Chlorine (CI), Sulfur (S) from customer, Responsibility is on customer.

13.3 Caution against static charge

The LCD module use C-MOS LSI drivers, so we recommended that you:
Connect any unused input terminal to Vdd or Vss, do not input any signals before power is turned on, and ground your body, work/assembly areas, assembly equipment to protect against static electricity.

13.4 Packing

Module employ LCD elements and must be treated as such.

- Avoid intense shock and falls from a height.
-.To prevent modules from degradation, do not operate or store them exposed direct to sunshine or high temperature/humidity

13.5 Caution for operation

- It is an indispensable condition to drive LCD's within the specified voltage limit since the higher voltage then the limit cause the shorter LCD life.
- An electrochemical reaction due to direct current causes LCD's undesirable deterioration, so that the use of direct current drive should be avoided.
- Response time will be extremely delayed at lower temperature then the operating temperature range and on the other hand at higher temperature LCD's how dark color in them. However those phenomena do not mean malfunction or out of order with LCD's, which will come back in the specified operation temperature.
- If the display area is pushed hard during operation, some font will be abnormally displayed but it resumes normal condition after turning off once.
- A slight dew depositing on terminals is a cause for electro-chemical reaction resulting in terminal open circuit.
Usage under the maximum operating temperature, $50 \% \mathrm{Rh}$ or less is required.

13.6 Storage

In the case of storing for a long period of time for instance, for years for the purpose or replacement use, the following ways are recommended.

- Storing in an ambient temperature $10^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$, and in a relative humidity of 45% to 75%. Don't expose to sunlight or fluorescent light.
- Storing in a polyethylene bag with the opening sealed so as not to enter fresh air outside in it. And with no desiccant.
- Placing in a dark place where neither exposure to direct sunlight nor light's keeping the storage temperature range.
- Storing with no touch on polarizer surface by the anything else.

It is recommended to store them as they have been contained in the inner container at the time of delivery from us.

13.7 Safety

- It is recommendable to crash damaged or unnecessary LCD's into pieces and wash off liquid crystal by either of solvents such as acetone and ethanol, which should be burned up later.
- When any liquid leaked out of a damaged glass cell comes in contact with your hands, please wash it off well with soap and water

14. PRECAUTION FOR USE

14.1 A limit sample should be provided by the both parties on an occasion when the both parties agreed its necessity. Judgment by a limit sample shall take effect after the limit sample has been established and confirmed by the both parties.
14.2 On the following occasions, the handing of problem should be decided through discussion and agreement between responsible of the both parties.

- When a question is arisen in this specification
- When a new problem is arisen which is not specified in this specifications
- When an inspection specifications change or operating condition change in customer is reported to ODNA , and some problem is arisen in this specification due to the change
- When a new problem is arisen at the customer's operating set for sample evaluation in the customer site.

15. PACKING SPECIFICATION

Please consult our technical department for detail information.

