

145 Royal Crest Court Unit 42 Markham, ON, Canada L3R 9Z4 Tel: 905-477-1166 Fax: 905-477-1782 http://www.orientdisplay.com

SPECIFICATION FOR LCM MODULE

MODULE NO.: AMG12232GR-B-Y6WFDY DOC.REVISION 02

Customer Approval:

	SIGNATURE	DATE
PREPARED BY (RD ENGINEER)		Oct-18-2006
PREPARED BY (QA ENGINEER)		
CHECKED BY		
APPROVED BY		

DOCUMENT REVISION HISTORY

Version	DATE	DESCRIPTION	CHANGED BY
00	Sep-15-2005	First issue	
01	Oct-13-2006	Change compatible IC	
02	Oct-13-2006	RoHS compliant	

CONTENTS

1. Functions & Features	1
2. Mechanical specifications	1
3. Block diagram	1
4. Dimensional Outline	2
5. Pin description	3
6. Maximum absolute limit	3
7. Electrical characteristics	4
8. Timing Characteristics	5
9. Control and display command	6
10. Backlight characteristics	7
11.Electrol-Optical characteristics	7
12. Quality Specifications	8~16

1. FUNCTIONS & FEATURES

1.1. Format : 122x32dots

1.2. LCD mode : STN / Positive transflective mode / Yellow-green

1.3. Viewing direction : 6 o'clock

1.4. Driving scheme : 1/32 Duty cycle, 1/5 Bias

1.5. Power supply voltage(V_{DD}) : 5.0V

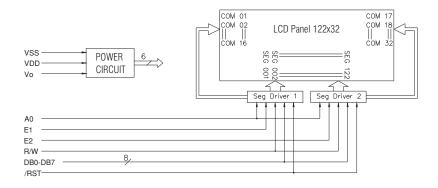
1.6. LCD driving voltage : 4.5V (reference voltage)

1.7. Operation temp: $-20\sim70^{\circ}$ C1.8. Storage temp: $-30\sim80^{\circ}$ C1.9. Backlight color: Yellow-green

1.10. RoHS compliant.

2. MECHANICAL SPECIFICATIONS

2.1. Module size :80.0mm(L)*36.0mm(W)*13.5MAX mm(H)


 2.2. Viewing area
 : 60.5mm(L)*18.5mm(W)

 2.3. Dot pitch
 : 0.44mm(L)*0.49mm(W)

 2.4. Dot size
 : 0.40mm(L)*0.45mm(W)

2.5. Weight : Approx.

3. BLOCK DIAGRAM

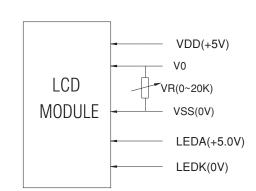


Figure 2. Block diagram

4. DIMENSIONAL OUTLINE

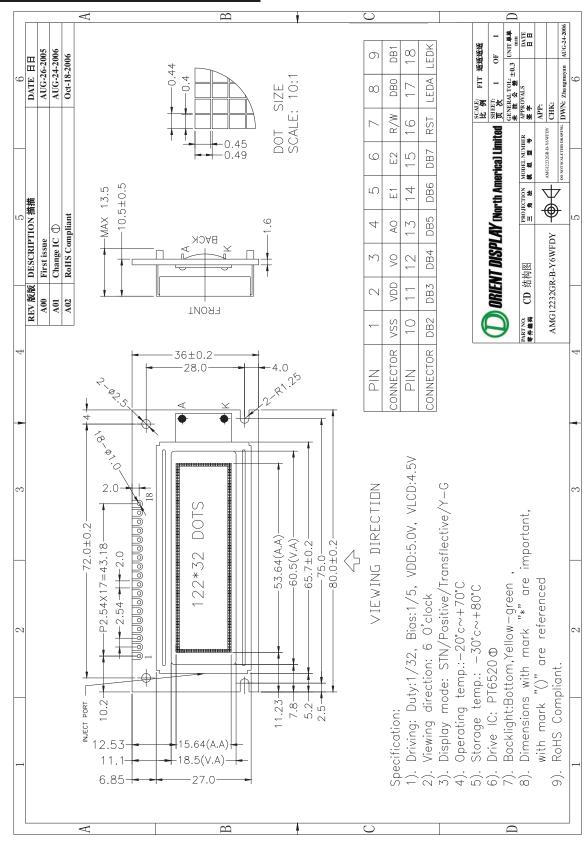


Figure 1. Dimension outline

5. PIN DESCRIPTION

No.	Symbol	Function
1	VSS	GND
2	VDD	Power supply
3	VO	Supply voltage for LCD drive
4	A0	Register selection. (H: Data register L: Instruction register)
5	E1	Enable signal for IC1(left half of the panel)
6	E2	Enable signal for IC2(right half of the panel)
7	R/W	Read /write selection. (H: Read L: write)
8~15	DB0~DB7	Data bus lines
16	/RST	Reset signal(The rise of the signal is for active and keep RET='h')
17	LEDA	Power supply for backlight(+)
18	LEDK	Power supply for backlight(-)

6. MAXIMUM ABSOUTE LIMIT

(For IC)

Parameter	Symbol	Condition	Unit
Supply voltage (1)	Vss	−8.0 ~ +0.3	V
Supply voltage (2)	V5	-16.5 ~ +0.3	V
Supply voltage (3)	V1, V4, V2, V3	V5 ~ +0.3	V
Input voltage	VIN	Vss - 0.3 ~ +0.3	V
Output voltage	V0	Vss - 0.3 ~ +0.3	V
Allowable loss	PD	250	mW
Operating temperature	Topr	− 30 ~ +85	°C
Storage temperature	Tstg	<i>−</i> 65 ~ +150	°C
Soldering temperature/time	Tsolder	260 / 10 (at lead)	°C / Sec

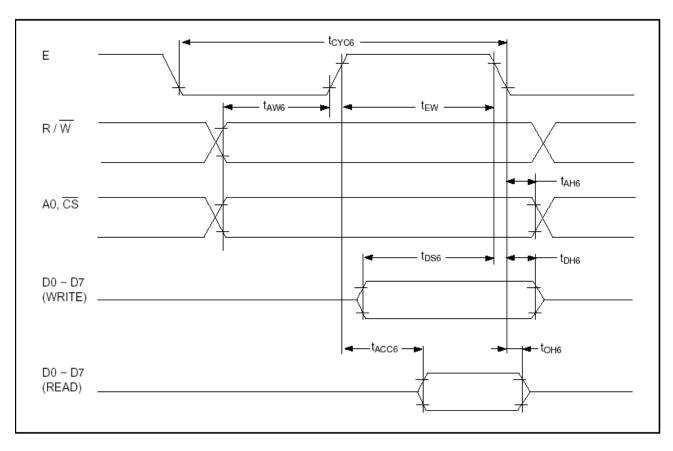
Notes

- 1. All voltages are based on VDD = 0V.
- 2. The following condition must always hold true with voltages V1, V2, V3, V4 and V5: $VDD \ge V1 \ge V2 \ge V3 \ge V4 \ge V5$
- 3. The LSI may be permanently damaged if used with any value in excess of the absolute maximum ratings. During normal operation, the LSI should preferably be used within the specified electrical characteristics. Failure to meet them can cause the LSI to malfunction or lose its reliability.
- 4. Generally, flat package LSIs may have moisture resistance lowered when solder dipped. In mounting LSIs on a board, it is recommended to use a method which is least unlikely to give thermal stress on the package resin.

7. ELECTRICAL CHARACTERISTICS

Parameter		Symbol	Cond	ition	Min	Тур	Max	Unit	Applicable Pin
Operating	Recommended	Vss	*	1	-5.5	-5.0	-4.5	V	Vss
voltage (1)	Allowable	VSS		ı	-7.0	_	-2.4	V	V 55
	Recommended	V5			-13.0	_	-3.5	V	V5
Operating	Allowable	VS			-13.0	_	_	V	*10
voltage (2)	Allowable	V1, V2			$0.6 \times V5$	_	VDD	V	V1, V2
	Allowable	V3, V4			V5	_	$0.4 \times V5$	V	V3, V4
High-level ir	anut voltago	VIHT			Vss + 2.0	_	VDD	V	*2
nigii-ievei ii	iput voitage	VIHC			$0.2 \times Vss$	_	VDD	٧	*3
Low-level in	nut valtaga	VILT			Vss	_	Vss + 0.8	V	*2
Low-level in	put voltage	VILC			Vss	_	$0.8 \times Vss$	٧	*3
		Voht	IOH = -3.0 mA		Vss + 2.4	_	_		*4
High-level o	utput voltage	Vohc1	IOH = -2.0 mA		Vss + 2.4	_	_	٧	*5
		Vohc2	IoH = -120 μA		$0.2 \times Vss$	_	_		OSC2
		Volt	IOL = 3.0 mA		_	_	Vss + 0.4		*4
Low-level or	utput voltage	Volc1	IOL = 2.0 mA	_	_	Vss + 0.4	V	*5	
		VOLC2	IoL = 120 μA		_	_	0.8 × Vss		OSC2
Input leakag	je current	Ι⊔			-1.0	_	1.0	μΑ	*6
Output leak	age current	llo			-3.0	_	3.0	μΑ	*7
LCD driver	ON register	Ron	To = 0590	V5 = -5.0V	_	5.0	7.5	kΩ	SEG0~79 *11
LCD driver (ON resistor	RON	Ta = 25°C	V5 = -3.5V	_	10.0	50.0	K22	COM0~15
Static currer	nt dissipation	IDDQ	CS = CL = VDD		_	0.05	1.0	μΑ	VDD
			During diaglas	fcL = 2 kHz	_	2.0	5.0		VDD *12
D		IDD (1)	During display V5 = –5.0V	$R_f = 1 M\Omega$	_	9.5	15.0	μΑ	*13
Dynamic current dissipation		V5 = -5.0V	fcL = 18 kHz	_	5.0	10.0]	*14	
		IDD (2)	During access toyc = 200 kHz		_	300	500	μΑ	*8
Input pin ca	pacitance	CIN	Ta = 25°C f = 1 MHz			5.0	8.0	pF	All input pins
Ossillation f	roguenes:	foco	$R_f = 1.0 M\Omega \pm 2\%$	15	18	21	Id-I-	*0	
Oscillation f	requency	fosc	$R_f = 1.0 M\Omega \pm 2\%$	Rf = 1.0 M Ω ± 2% Vss = -3.0V			21	— kHz	*9
Reset time		tr			1.0		1000	μs	RES

Notes:


- *1. Operation over a wide range of voltages is guaranteed, except where a sudden voltage change occurs during access.
- *2. Pins A0, D0 D7, E (RD), R/W (WR) and CS
- *3. Pins CL, FR, M/S and RES
- *4. Pins D0 D7
- *5. Pin FR
- *6. Pins A0, E (RD), R/W (WR), CS, CL and RES
- Applicable when pins D0 D7 and FR are at high impedance.
- *8. This value is current consumption when a vertical stripe pattern is written at toyc. Current consumption during

- access is nearly proportionate to access frequency (tcvc). Only Top (1) is consumed while no access is made.
- Relationship between the oscillation frequency, frame and Rr (see Figures 5.1 – 5.3).
- *10. Operating voltage ranges of Vss and V5 (see Figure 5.4).
- *11. Resistance with a voltage of 0.1V applied between the output pin (SEG, COM) and each power pin (V1, V2, V3, V4). It is specified within the operating voltage range.
- *12, 13, 14. Current consumed by each discrete IC, not including LCD panel and wiring capacitances.
- *12. Applicable to SED1520FAA and SED1521FAA
- *13. Applicable to SED1520Foa
- *14. Applicable to SED1521Foa

8. TIMING CHARACTERISTICS Ta = -210 to 75° C, VSS = -5.0V $\pm 10\%$

Parameter	Symbol	Signal	Condition	Min	Тур	Max	Unit	
System cycle time	tcyc6 *1	A0, CS		1000	_	_	ns	
Address setup time	tAW6	R/W		20	_	_	ns	
Address hold time	tAH6	FV VV		10	_	_	ns	
Data setup time	tDS6			80	_	_	ns	
Data hold time	tDH6	D0 D7		10	_	_	ns	
Output disable time	toH6	D0 – D7		CL = 100 pF	10	_	60	ns
Access time	tACC6		CL = 100 pF	_	_	90	ns	
Enable pulse width: Read	4E1A7	_		100	_	_	ns	
Enable pulse width: Write	tEW	E		80	_	_	ns	

- *1 toyos indicates the cycle time during which \(\overline{CS} \cdot E = "H". It does not mean the cycle time of signal E.
- *2 Each of the values where Vss = -3.0V is about 200% of that where Vss = -5.0V (i.e., the listed value).
- *3 The rise or fall time of input signals should be less than 15 ns.

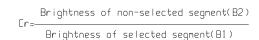
System bus read/write II (68-family MPU)

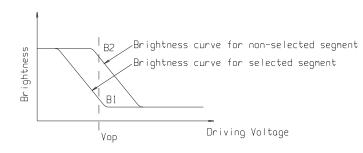
9. CONTROL AND DISPLAY INSTRUCTION

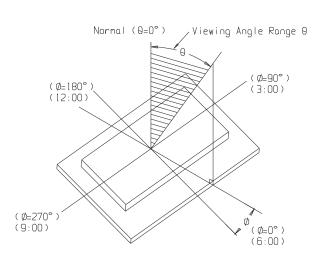
	0						Code	9					F	
	Command	Α0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	Fui	nction
(1)	Display ON/OFF	0	1	0	1	0	1	0	1	1	1	0/1	Turns all display on or display RAM data or in	
													1: ON 0: OFF (Power-saving	mode with static drive on)*
(2)	Display Start Line	0	1	0	1	1	0		Disp ddre				Specifies RAM line cor line (COM0) of display	responding to uppermost
(3)	Set Page Address	0	1	0	1	0	1	1	1	0	Page	(0-3)	Sets display RAM page	e in page address register.
(4)	Set Column (Segment) Address	0	1	0	0	(Colui	mn A	ddre	ss (()–79)	Sets display RAM colu address register.	mn address in column
(5)	Read Status	0	0	1	sy	ADC	ij.	H	0	0	0	0	Reads the following sta	atus:
					Busy	AE	ON/OFF	RESET					BUSY 1: Internal op ADC 1: CW output 0: CCW outpu	: (forward)
													ON/OFF1: Display off RESET 1: Being rese	
(6)	Write Display Data	1	1	0			١	Vrite	Data	a			Writes data from data Display RAM location bus into display RAM, whose address has been	
(7)	Read Display Data	1	0	1			F	Read	Dat	a			Reads data from display RAM onto data bus.	preset is accessed. After access, the column ad- dress is incremented by 1.
(8)	Select ADC	0	1	0	1	0	1	0	0	0	0	0/1	Used to invert relations between display RAM segment driver outputs	column addresses and
													0: CW output (forward) 1: CCW output (revers	
(9)	Static Drive ON/OFF	0	1	0	1	0	1	0	0	1	0	0/1	Selects normal display	or static driving operation.
													1: Static drive (power-s 0: Normal driving	saving mode)
(10)	Select Duty	0	1	0	1	0	1	0	1	0	0	0/1	Selects LCD cell drivin	g duty
													1: 1/32 0: 1/16	
(11)	Read Modify Write	0	1	0	1	1	1	0	0	0	0	0		dress counter by 1 when (This is not done when
(12)	End	0	1	0	1	1	1	0	1	1	1	0	Clears read modify wri	te mode.
(13)	Reset	0	1	0	1	1	1	0	0	0	1	0	Sets display start line r Also sets column addre address counter to 0.	egister on the first line. ess counter and page

^{*} With display off (command (1)), static drive going on (9) invokes power-saving mode.

BACK LIGHT CHARACTERISTICS

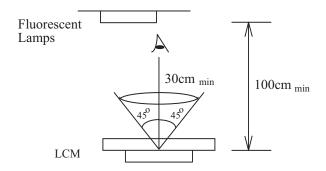

LCD Module with bottom Backlight **ELECTRICAL RATINGS**


 $Ta = 25^{\circ}C$

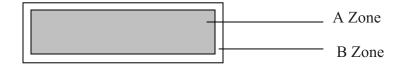

Item	Symbol	Condition	Min	Тур	Max	Unit
Forward Voltage	VF	IF=100mA	4.0	4.2	4.4	V
Reverse Current	IR	VR=10V			100	uA
Luminous Intensity (With LCD dots off)	Lv	IF=100mA				Cd/m ²
Wave length	λρ	IF=100mA	568	570	575	nm
Color		Y	ellow-g	reen		

$\frac{\textbf{11. ELECTRO-OPTICAL CHARACTERISTICS}}{(\text{V}_{\text{OP}}=4.5\text{V}, \text{Ta}=25^{\circ}\text{C}})$

Item	Symbo	Condition	Min	Тур	Max	Unit
		$Ta = -20^{\circ}C$	4.8	5.1	5.4	
Operating Voltage	Vop	$Ta = 25^{\circ}C$	4.2	4.5	4.8	V
	_	Ta = 70°C	3.5	3.8	4.1	
Pagnanga tima	Tr	Ta = 25°C		185		ms
Response time	Tf	1a – 25 C		200		ms
Contrast	Cr	$Ta = 25^{\circ}C$		4		
Viewing and an are	θ	C => 2	-40		+40	deg
Viewing angle range	Ф	Cr≥2	-40		+40	deg



12.QUALITY SPECIFICATIONS


12.1 Standard of the product appearance test

Manner of appearance test: The inspection should be performed in using 20W x 2 fluorescent lamps. Distance between LCM and fluorescent lamps should be 100 cm or more. Distance between LCM and inspector eyes should be 30 cm or more.

Viewing direction for inspection is 45° from vertical against LCM.

Definition of zone:

A Zone: Active display area (minimum viewing area). B Zone: Non-active display area (outside viewing area).

12.2 Specification of quality assurance

AQL inspection standard

Sampling method: MIL-STD-105E, Level II, single sampling

Defect classification (Note: * is not including)

Classify		Item	Note	AQL	
Major	Display state	Display state Short or open circuit			
		LC leakage			
		Flickering			
		No display			
		Wrong viewing direction			
		Contrast defect (dim, ghost)	2		
		Back-light	1,8		
	Non-display	Flat cable or pin reverse	10		
		Wrong or missing component	11		
Minor	Display	Background color deviation	2	1.0	
	state	Black spot and dust	3		
		Line defect, Scratch	4		
		Rainbow	5		
		Chip	6		
		Pin hole	7		
		Protruded	12		
	Polarizer	Bubble and foreign material	3		
	Soldering	Poor connection	9		
	Wire	Poor connection	10		
	TAB	Position, Bonding strength	13		

Note on defect classification

No.	Item	Criterion
1	Short or open circuit	Not allow
	LC leakage	
	Flickering	
	No display	
	Wrong viewing direction	
	Wrong Back-light	
2	Contrast defect	Refer to approval sample
	Background color deviation	
3	Point defect, Black spot, dust (including Polarizer) $\phi = (X+Y)/2$	Point Size
4	Line defect, Scratch	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
		Unit: mm
5	Rainbow	Not more than two color changes across the viewing area.

No	Item	Criterion		
6	Chip Remark: X: Length direction Y: Short	Acceptable criterion $\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	direction Z: Thickness direction t: Glass thickness W: Terminal Width	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
		Acceptable criterion $\begin{array}{c cccc} X & Y & Z \\ \hline & \leq 3 & \leq 2 & \leq t \\ \hline & \text{shall not reach to ITO} \end{array}$		
		Acceptable criterion $\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		

No.	Item	Criterion		
7	Segment pattern $W = \text{Segment width}$ $\phi = (X+Y)/2$	(1) Pin hole $\phi < 0.10 \text{mm is acceptable.}$ Y		
8	Back-light	(1) The color of backlight should correspond its specification.(2) Not allow flickering		
9	Soldering	(1) Not allow heavy dirty and solder ball on PCB. (The size of dirty refer to point and dust defect) (2) Over 50% of lead should be soldered on Land. Lead Land 50% lead		
10	Wire	 (1) Copper wire should not be rusted (2) Not allow crack on copper wire connection. (3) Not allow reversing the position of the flat cable. (4) Not allow exposed copper wire inside the flat cable. 		
11*	PCB	(1) Not allow screw rust or damage. (2) Not allow missing or wrong putting of component.		

No	Item	Criterion	
12	Protruded W: Terminal Width	Acceptable criteria: $Y \le 0.4$	
13	TAB	1. Position $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		2 TAB bonding strength test TAB P (=F/TAB bonding width) ≥650gf/cm ,(speed rate: 1mm/min) 5pcs per SOA (shipment)	
14	Total no. of acceptable Defect	A. Zone Maximum 2 minor non-conformities per one unit. Defect distance: each point to be separated over 10mm B. Zone It is acceptable when it is no trouble for quality and assembly in customer's end product.	

12.3 Reliability of LCM

Reliability test condition:

Item	Condition	Time (hrs)	Assessment
High temp. Storage	80°C	48	
High temp. Operating	70°C	48	
Low temp. Storage	-30°C	48	No abnormalities
Low temp. Operating	-20°C	48	in functions
Humidity	40°C/ 90%RH	48	and appearance
Temp. Cycle	$0^{\circ}\text{C} \leftarrow 25^{\circ}\text{C} \rightarrow 50^{\circ}\text{C}$	10cycles	
	$(30 \min \leftarrow 5 \min \rightarrow 30 \min)$		

Recovery time should be 24 hours minimum. Moreover, functions, performance and appearance shall be free from remarkable deterioration within 50,000 hours under ordinary operating and storage conditions room temperature (20±8°C), normal humidity (below 65% RH), and in the area not exposed to direct sun light.

12.4 Precaution for using LCD/LCM

LCD/LCM is assembled and adjusted with a high degree of precision. Do not attempt to make any alteration or modification. The followings should be noted.

General Precautions:

- 1. LCD panel is made of glass. Avoid excessive mechanical shock or applying strong pressure onto the surface of display area.
- 2. The polarizer used on the display surface is easily scratched and damaged. Extreme care should be taken when handling. To clean dust or dirt off the display surface, wipe gently with cotton, or other soft material soaked with isoproply alcohol, ethyl alcohol or trichlorotriflorothane, do not use water, ketone or aromatics and never scrub hard.
- 3. Do not tamper in any way with the tabs on the metal frame.
- 4. Do not make any modification on the PCB without consulting Orient Display.
- 5. When mounting a LCM, make sure that the PCB is not under any stress such as bending or twisting. Elastomer contacts are very delicate and missing pixels could result from slight dislocation of any of the elements.

- 6. Avoid pressing on the metal bezel, otherwise the elastomer connector could be deformed and lose contact, resulting in missing pixels and also cause rainbow on the display.
- 7. Be careful not to touch or swallow liquid crystal that might leak from a damaged cell. Any liquid crystal adheres to skin or clothes, wash it off immediately with soap and water.

Static Electricity Precautions:

- 1. CMOS-LSI is used for the module circuit; therefore operators should be grounded whenever he/she comes into contact with the module.
- 2. Do not touch any of the conductive parts such as the LSI pads; the copper leads on the PCB and the interface terminals with any parts of the human body.
- 3. Do not touch the connection terminals of the display with bare hand; it will cause disconnection or defective insulation of terminals.
- 4. The modules should be kept in anti-static bags or other containers resistant to static for storage.
- 5. Only properly grounded soldering irons should be used.
- 6. If an electric screwdriver is used, it should be grounded and shielded to prevent sparks.
- 7. The normal static prevention measures should be observed for work clothes and working benches.
- 8. Since dry air is inductive to static, a relative humidity of 50-60% is recommended.

Soldering Precautions:

- 1. Soldering should be performed only on the I/O terminals.
- 2. Use soldering irons with proper grounding and no leakage.
- 3. Soldering temperature: 280°C+10°C
- 4. Soldering time: 3 to 4 second.
- 5. Use eutectic solder with resin flux filling.
- 6. If flux is used, the LCD surface should be protected to avoid spattering flux.
- 7. Flux residue should be removed.

Operation Precautions:

- 1. The viewing angle can be adjusted by varying the LCD driving voltage Vo.
- 2. Since applied DC voltage causes electro-chemical reactions, which deteriorate the display, the applied pulse waveform should be a symmetric waveform such that no DC component remains. Be sure to use the specified operating voltage.
- 3. Driving voltage should be kept within specified range; excess voltage will shorten display life.
- 4. Response time increases with decrease in temperature.
- 5. Display color may be affected at temperatures above its operational range.
- 6. Keep the temperature within the specified range usage and storage. Excessive temperature and humidity could cause polarization degradation, polarizer peel-off or generate bubbles.
- 7. For long-term storage over 40°C is required, the relative humidity should be kept below 60%, and avoid direct sunlight.

Limited Warranty

Orient Display LCDs and modules are not consumer products, but may be incorporated by Orient Display's customers into consumer products or components thereof, Orient Display does not warrant that its LCDs and components are fit for any such particular purpose.

- 1. The liability of Orient Display is limited to repair or replacement on the terms set forth below. Orient Display will not be responsible for any subsequent or consequential events or injury or damage to any personnel or user including third party personnel and/or user. Unless otherwise agreed in writing between Orient Display and the customer, Orient Display will only replace or repair any of its LCD which is found defective electrically or visually when inspected in accordance with Orient Display general LCD inspection standard .(Copies available on request)
- 2. No warranty can be granted if any of the precautions state in handling liquid crystal display above has been disregarded. Broken glass, scratches on polarizer mechanical damages as well as defects that are caused accelerated environment tests are excluded from warranty.
- 3. In returning the LCD/LCM, they must be properly packaged; there should be detailed description of the failures or defect.