

145 Royal Crest Court Unit 42 Markham, ON, Canada L3R 9Z4 Tel: 905-477-1166 Fax: 905-477-1782 http://www.orientdisplay.com

SPECIFICATIONS FOR LCD MODULE

CUSTOMER	
CUSTOMER PART NO.	
ACMMI PART NO.	AMC1602H
DESCRIPTION	
APPROVED BY	
DATE	

PREPARED BY	CHECKED BY	APPROVED BY

DOCUMENT REVISION HISTORY:

DATE	PAGE	DESCRIPTION
DATE 1999.8. 2005.3. 2005.12	PAGE - 4	DESCRIPTION First release Modify the full specification Update the part number system

Contents

- 1. Module Classification Information
- 2. Precautions in use of LCD Modules
- 3. General Specification
- 4. Absolute Maximum Ratings
- 5. Electrical Characteristics
- 6. Optical Characteristics
- 7. Interface Pin Function
- 8. Power Supply
- 9. Contour Drawing & Block Diagram
- 10. Function Description
- 11. Character Generator ROM Pattern
- 12. Instruction Table
- 13. Timing Characteristics
- 14. Initializing of LCM
- 15. Quality Assurance
- 16. Reliability

1. Module Classification Information

	1 2 3 4	4 5 6 7 8 9 10 11 12 13							
1	Brand : Orient Display	(N.A.) Ltd.							
2	Display Type : $C \rightarrow$ Character Type, $G \rightarrow$ Graphic Type,								
	NONE→ Custom-made								
3	Display Font : Charact	ters X Lines / Rows X Columns /Others							
4	Model serials no.								
5	RoHS compliant: $R \rightarrow YES$ NONE $\rightarrow NO$								
6	IC Package Type:	$M \rightarrow SMT$ Type							
		$B \rightarrow COB Type$ T $\rightarrow TAB Type$							
		$G \rightarrow COG Type$							
		F→ COF Type							
		$S \rightarrow Special$							
7	LCD Mode:	P→TN Positive N→TN Negative							
		$Y \rightarrow STN$ Positive, Yellow Green							
		$B \rightarrow STN$ Negative, Blue							
		$G \rightarrow STN$ Positive, Gray							
		$W \rightarrow FSTN$ Positive T $\rightarrow FSTN$ Negative							
		$F \rightarrow FFSTN$ Negative							
		$S \rightarrow Special$							
8	Viewing direction	6→ 6:00,12→12:00, S→Special							
9	Temperature range	$N \rightarrow Normal Temperature$							
		$W \rightarrow Wide Temperature$ S \rightarrow Special							
10	LCD Polarizer Type	$R \rightarrow Reflective$							
		$T \rightarrow Transmissive$							
		$F \rightarrow Transflective$							
11	Backlight Type	$S \rightarrow Special$ $N \rightarrow None$							
	Dacklight Type	$D \rightarrow LED$							
		$E \rightarrow EL$							
12	Backlight Color	$S \rightarrow Special$ $Y \rightarrow Yellow-green$							
12		B→ Blue							
		A→ Amber							
		$W \rightarrow White$ $G \rightarrow Green$							
		$R \rightarrow Red$							
		S→ Special							
13	Internal Code								

2. Precautions in use of LCD Modules

- (1)Avoid applying excessive shocks to the module or making any alterations or modifications to it.
- (2)Don't make extra holes on the printed circuit board, modify its shape or change the components of LCD module.
- (3)Don't disassemble the LCM.
- (4)Don't operate it above the absolute maximum rating.
- (5)Don't drop, bend or twist LCM.
- (6)Soldering: only to the I/O terminals.
- (7)Storage: please storage in anti-static electricity container and clean environment.

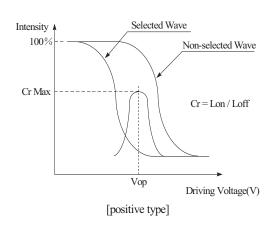
3. General Specification

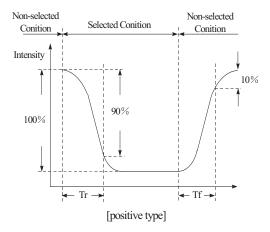
Item	Dimension	Unit
Number of Characters	16 characters x 2 Lines	—
Module dimension(No Backlight)	100.0 x 38.8 x 10.0 (MAX)	mm
Module dimension(With LED Backlight)	100.0 x 38.8 x 14.0 (MAX)	mm
View area	80.2 x 20.4	mm
Active area	76.37 x 16.02	mm
Dot size	0.75 x 0.90	mm
Dot pitch	0.83 x 0.98	mm
Character size	4.07 x 7.76	mm
Character pitch	4.82 x 8.26	mm
LCD type	STN	
Duty	1/16	
View direction	6 o'clock or 12 o'clock	
Backlight Type	None, YELLOW-GREEN	

4. Absolute Maximum Ratings

It	em	Symbol	Min	Max	Unit
Input Voltage		VI	-0.3	VDD+0.3	V
Supply Voltage For	Logic	VDD-V _{SS}	-0.3	7.0	V
Supply Voltage For	LCD	V _{DD} -V ₀	Vdd-13.5	0	V
Standard	Operating Temp.	Тор	0	50	°C
Temperature LCM	Storage Temp.	Tstr	-10	60	°C
Wide Temperature Operating Temp.		Тор	-20	70	°C
LCM	Storage Temp.	Tstr	-30	80	°C

5. Electrical Characteristics

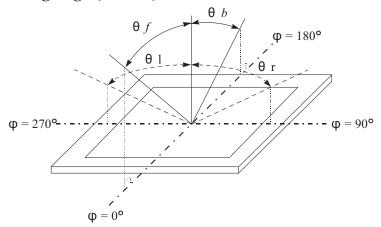

Item	Symbol	Condition	Min	Тур	Max	Unit	
Supply Voltage For Logic	V _{DD} -V _{SS}	—	4.5	5.0	5.5	V	
Supply Voltage For LCD	V_{DD} - V_0	Ta=25℃	4.0	4.6	5.0	V	
Input High Volt.	V_{IH}	-	$0.7 V_{DD}$	_	V _{DD}	V	
Input Low Volt.	V _{IL}	—	V _{SS}		0.3 V _{DD}	V	
Supply Current	I _{DD}	V _{DD} =5V	1.0	1.3	2.2	mA	
Supply Voltage of Yellow-green backlight	V _{LED}	Forward current =140 mA Number of LED die 2x14= 28	3.8	4.1	4.3	V	


6. Optical Characteristics

Item	Symbol	Condition	Min	Тур	Max	Unit
View Angle	(V)θ	$CR \ge 2$	-20	_	35	deg
view ringie	(H)ф	$CR \ge 2$	-30	_	30	deg
Contrast Ratio	CR	—	_	3	_	_
Response Time	T rise	—	_	_	250	ms
	T fall	—	—	—	250	ms

Definition of Operation Voltage (Vop)

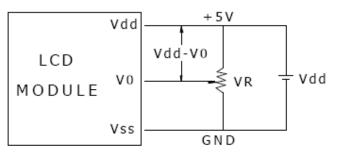
Definition of Response Time (Tr, Tf)



Conditions :

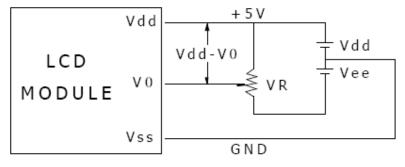
Operating Voltage : Vop Frame Frequency : 64 HZ Viewing Angle(θ , $\phi):0^\circ$, 0° Driving Waveform : 1/N duty , 1/a bias

Definition of viewing angle($CR \ge 2$)

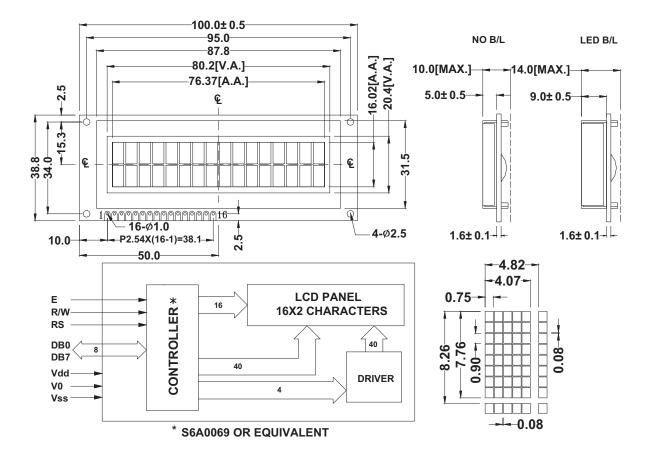


7. Interface Pin Function

Pin No.	Symbol	Level	Description
1	V _{SS}	0V	Ground
2	V_{DD}	5.0V	Supply Voltage for logic
3	V0	(Variable)	Operating voltage for LCD
4	RS	H/L	H: DATA, L: Instruction code
5	R/W	H/L	H: Read(MPU \rightarrow Module) L: Write(MPU \rightarrow Module)
6	Е	H,H→L	Chip enable signal
7	DB0	H/L	Data bit 0
8	DB1	H/L	Data bit 1
9	DB2	H/L	Data bit 2
10	DB3	H/L	Data bit 3
11	DB4	H/L	Data bit 4
12	DB5	H/L	Data bit 5
13	DB6	H/L	Data bit 6
14	DB7	H/L	Data bit 7
15	LED(+)		Anode of LED Backlight
16	LED(-)		Cathode of LED Backlight


8. POWER SUPPLY

SINGLE SUPPLY VOLTAGE TYPE


Vdd-V0: LCD Driving Voltage VR: 10K - 20K

DUAL SUPPLY VOLTAGE TYPE

Vdd-V0: LCD Driving Voltage VR: 10K - 20K

9. Contour Drawing & Block Diagram

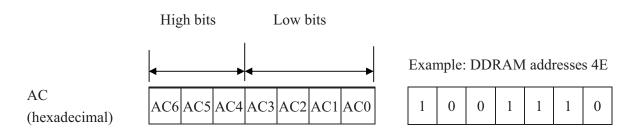
10. Function Description

The LCD display Module is built in a LSI controller, the controller has two 8-bit registers, an instruction register (IR) and a data register (DR).

The IR stores instruction codes, such as display clear and cursor shift, and address information for display data RAM (DDRAM) and character generator (CGRAM). The IR can only be written from the MPU. The DR temporarily stores data to be written or read from DDRAM or CGRAM. When address information is written into the IR, then data is stored into the DR from DDRAM or CGRAM. By the register selector (RS) signal, these two registers can be selected.

RS	R/W	Operation
0	0	IR write as an internal operation (display clear, etc.)
0	1	Read busy flag (DB7) and address counter (DB0 to DB7)
1	0	Write data to DDRAM or CGRAM (DR to DDRAM or CGRAM)
1	1	Read data from DDRAM or CGRAM (DDRAM or CGRAM to DR)

Busy Flag (BF)


When the busy flag is 1, the controller LSI is in the internal operation mode, and the next instruction will not be accepted. When RS=0 and R/W=1, the busy flag is output to DB7. The next instruction must be written after ensuring that the busy flag is 0.

Address Counter (AC)

The address counter (AC) assigns addresses to both DDRAM and CGRAM

Display Data RAM (DDRAM)

This DDRAM is used to store the display data represented in 8-bit character codes. Its extended capacity is 80×8 bits or 80 characters. Below figure is the relationships between DDRAM addresses and positions on the liquid crystal display.

Display position DDRAM address

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F
40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F

2-Line by 16-Character Display

Character Generator ROM (CGROM)

The CGROM generate 5×8 dot or 5×10 dot character patterns from 8-bit character codes. See Table 2.

Character Generator RAM (CGRAM)

In CGRAM, the user can rewrite character by program. For 5×8 dots, eight character patterns can be written, and for 5×10 dots, four character patterns can be written.

Write into DDRAM the character code at the addresses shown as the left column of table 1. To show the character patterns stored in CGRAM.

Relationship between CGRAM Addresses, Character Codes (DDRAM) and Character patterns

Table 1.

For 5 * 8 dot character patterns

Character Codes (DDRAM data)	CGRAM Address Character Patterns (CGRAM data)	
7 6 5 4 3 2 1 0	5 4 3 2 1 0 7 6 5 4 3 2 1 0	
High Low	High Low High Low	
0 0 0 0 * 0 0 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	haracter attern(1) Cursor patter
0 0 0 0 * 0 0 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	haracter attern(2) Cursor patter
0 0 0 0 * 1 1 1	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	

For 5 * 10 dot character patterns

			ra D R							СС	θR.	A N	1 A	. d d	res	s	-		act R A							
7	(6	5	4	3		2	1	0		5	4	3	2	1	0	7	6	5	4	3	2	1	0		
	ł	Ηi	g h			Ι	0	W		Н	igh	L		Lo	w		1	Hig	g h		L	. o w	7			
0	()	0	0	*		0	0	0		0	0	0 0 0 0 0 0 0 0 0 1 1	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\$	0 1 0 1 0 1 0 1 0 1 0	* * * * * * * *	* * * * * * * *	* * * * * * * *	00//////	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0		C l p a
													1	0	1	0	*	*	*	0	0	0	0	0	+	С

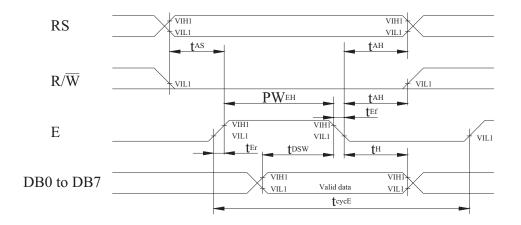
C haracter pattern

Cursor pattern

🔳 : " High "

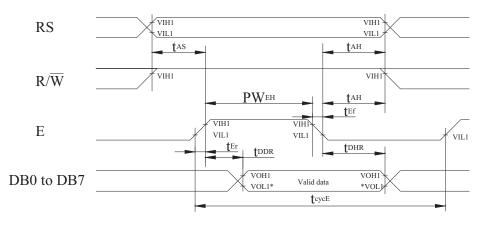
11. Character Generator ROM Pattern

Upper 4		0004							4000	4004	4040					
Lower Bits 4 Bits	0000 CG	0001	0010	0011	0100	0101		0111	1000	1001	1010	1011	1100	1101	1110	1111
xxxx0000	RAM (1)			Q	al	┣┛		P					9	Ξ.	Ċ,	p
xxxx0001	(2)			1	H	Q	а	٩				7	Ŧ	4	ä	q
xxxx0010	(3)		II	2	E	R	b	r			T	亻	Ņ	X	ß	θ
xxxx0011	(4)		#	3	С	S	C	S			L	7	Ŧ	Ð	ε	60
xxxx0100	(5)		\$	4	D	T	d	t			N	Ι	ŀ	Þ	μ	Ω
xxxx0101	(6)		7	5		U	e	U				7	,	1	σ	Ü
xxxx0110	(7)		8.	6		Ų	ŧ.	V			7	ħ			ρ	Σ
xxxx0111	(8)		7	7	G	Ŵ	9	W			7	ŧ	7	7	g	π
xxxx1000	(1)		(8	\mathbf{H}	Х	h	Х			4	2	7	Ņ	<u>,</u>	X
xxxx1001	(2))	9	I	Y	i	У			¢	ን	ļ	Ib	-1	Ч
xxxx1010	(3)		*		J	Ζ	j	Z			I		Ŋ	V	j	Ŧ
xxxx1011	(4)		╋	9	K		k	{			7	ţ			X	Ъ
xxxx1100	(5)		,	<		¥	1				Þ	IJ	7	7	¢	Ħ
xxxx1101	(6)				М		M	}			ュ	Ζ	ኅ	2	Ł	-
xxxx1110	(7)			\rangle	Ņ	۸	n	÷			Э	t	T	••	'n	
xxxx1111	(8)		/	?	0		0	÷			'n	У	7		ö	


12. Instruction Table

Instruction				In	structi	ion Co	de	Description	Execution time				
instruction	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	(fosc=270Khz)	
Clear Display	0	0	0	0	0	0	0	0	0	1	Write "00H" to DDRAM and set DDRAM address to "00H" from AC	1.53ms	
Return Home	0	0	0	0	0	0	0	0	1	_	Set DDRAM address to "00H" from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.	1.53ms	
Entry Mode Set	0	0	0	0	0	0	0	1	I/D	SH	Assign cursor moving direction and enable the shift of entire display.	39µs	
Display ON/OFF Control	0	0	0	0	0	0	1	D	С	В	Set display (D), cursor (C), and blinking of cursor (B) on/off control bit.	39µs	
Cursor or Display Shift	0	0	0	0	0	1	S/C	R/L	_	_	Set cursor moving and display shift control bit, and the direction, without changing of DDRAM data.	39µs	
Function Set	0	0	0	0	1	DL	N	F	_	_	Set interface data length (DL:8-bit/4-bit), numbers of display line (N:2-line/1-line)and, display font type (F:5×11 dots/5×8 dots)	39µs	
Set CGRAM Address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address counter.	39µs	
Set DDRAM Address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address counter.	39µs	
Read Busy Flag and Address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Whether during internal operation or not can be known by reading BF. The contents of address counter can also be read.	0µs	
Write Data to RAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM/CGRAM).	43µs	
Read Data from RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM/CGRAM).	43µs	

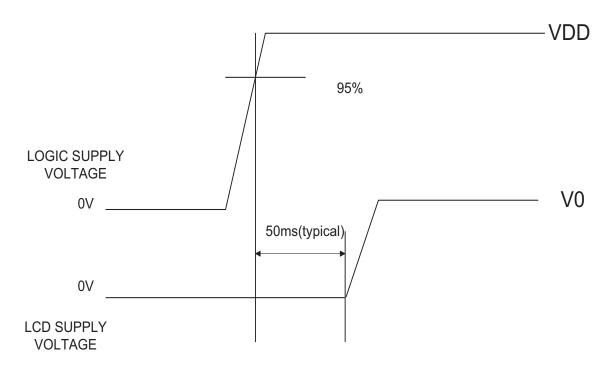
* "-": don't care


13. Timing Characteristics

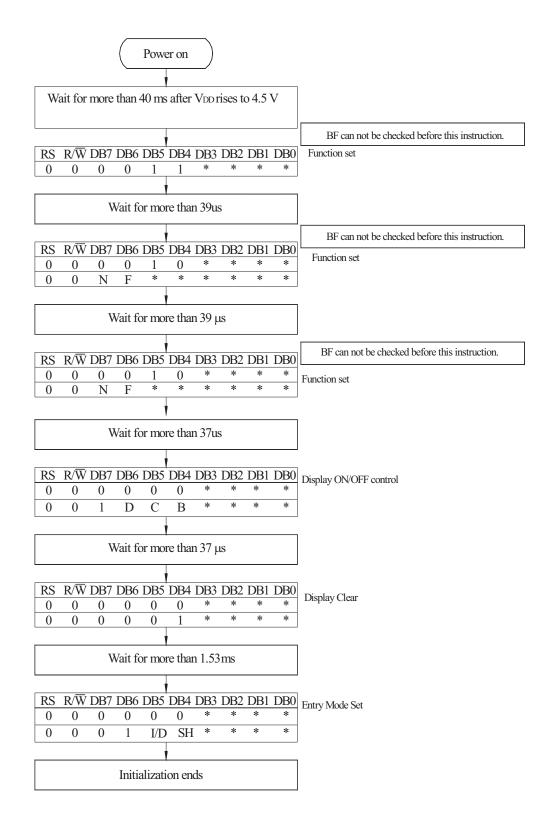
13.1 Write Operation

			14	250, 11	$DD=3.0\pm0.3$ V
Item	Symbol	Min	Тур	Max	Unit
Enable cycle time	t_{cycE}	1200			ns
Enable pulse width (high level)	$\mathrm{PW}_{\mathrm{EH}}$	140			ns
Enable rise/fall time	$t_{\rm Er}, t_{\rm Ef}$	_	_	25	ns
Address set-up time (RS, R/W to E)	t _{AS}	0	_	_	ns
Address hold time	$t_{\rm AH}$	10	_	_	ns
Data set-up time	t _{DSW}	40	_	_	ns
Data hold time	t _H	10	_		ns

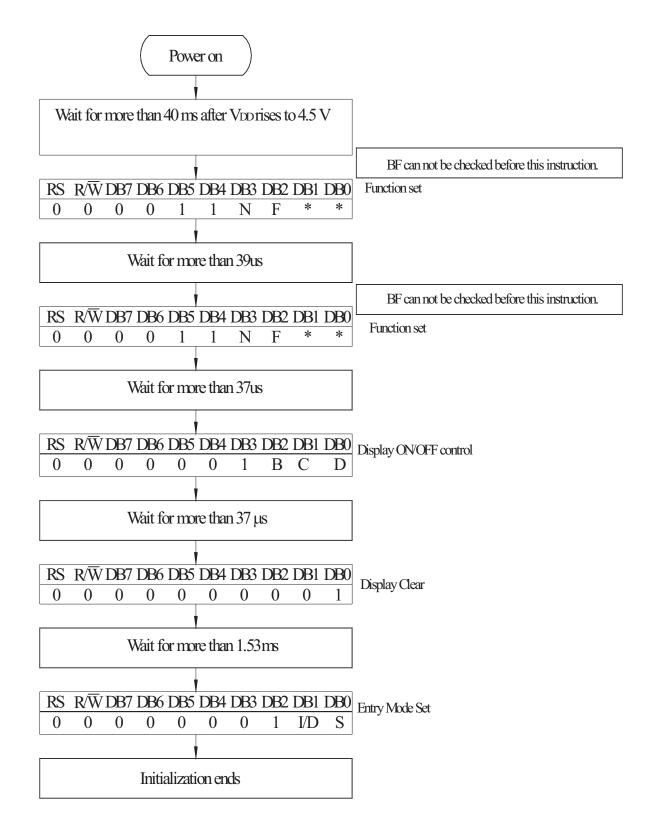
Ta=25°C, VDD=5.0±0.5V


NOTE: *VOL1 is assumed to be 0.8V at 2 MHZ operation.

Ta=25°C, VDD=5.0±0.5V


Item	Symbol	Min	Тур	Max	Unit
Enable cycle time	t_{cycE}	1200	—	_	ns
Enable pulse width (high level)	$\mathrm{PW}_{\mathrm{EH}}$	140	—	_	ns
Enable rise/fall time	$t_{\rm Er}, t_{\rm Ef}$	_	_	25	ns
Address set-up time (RS, R/W to E)	t _{AS}	0	_	_	ns
Address hold time	t _{AH}	10	_	_	ns
Data delay time	t _{DDR}	_	_	100	ns
Data hold time	t _{DHR}	10	—	_	ns

13.3 Timing Diagram of VDD Against V0.


Power on sequence shall meet the requirement of Figure 4, the timing diagram of VDD against V0.

14.Initializing of LCM

4-Bit Ineterface

8-Bit Ineterface

15.Quality Assurance

Screen Cosmetic Criteria

Item	Defect	Judgment Criterion	Partition
1	Spots	A)ClearAcceptable Qty in active area $d \leq 0.1$ Disregard $0.1 < d \leq 0.2$ 6 $0.2 < d \leq 0.3$ 2 $0.3 < d$ 0Note: Including pin holes and defective dots which must be within one pixel size.B)UnclearAcceptable Qty in active area Disregard $d \leq 0.2$ Acceptable Qty in active area Disregard $0.2 < d \leq 0.5$ Acceptable Qty in active area Disregard $0.2 < d \leq 0.5$ Acceptable Qty in active area Disregard $0.2 < d \leq 0.5$ Acceptable Qty in active area Disregard $0.7 < d \leq 0.7$ 2 0 $0.7 < d = 0$ 0	Minor
2	Bubbles in Polarizer	$ \begin{array}{ c c c c c } \hline \underline{Size: d mm} & \underline{Acceptable Qty in active area} \\ \hline d \leq 0.3 & Disregard \\ 0.3 < d \leq 1.0 & 3 \\ 1.0 < d \leq 1.5 & 1 \\ 1.5 < d & 0 \\ \hline \end{array} $	Minor
3	Scratch	In accordance with spots cosmetic criteria. When the light reflects on the panel surface, the scratches are not to be remarkable.	Minor
4	Allowable Density	Above defects should be separated more than 30mm each other.	Minor
5	Coloration	Not to be noticeable coloration in the viewing area of the LCD panels. Back-light type should be judged with back-light on state only.	Minor

16.Reliability

Content of Reliability Test

Environmental	Test				
Test Item	Content of Test	Test Condition	Applicable Standard		
High Temperature storage	Endurance test applying the high storage temperature for a long time.	60°C 96hrs			
Low Temperature storage	Endurance test applying the high storage temperature for a long time.	-10℃ 96hrs			
High Temperature Operation	Endurance test applying the electric stress (Voltage & Current) and the thermal stress to the element for a long time.	50℃ 96hrs			
Low Temperature Operation	Endurance test applying the electric stress under low temperature for a long time.	0°C 96hrs			
High Temperature/ Humidity Storage	Endurance test applying the high temperature and high humidity storage for a long time.	60°C,90%RH 96hrs			
High Temperature/ Humidity Operation	Endurance test applying the electric stress (Voltage & Current) and temperature / humidity stress to the element for a long time.	50°C,90%RH 96hrs			
Temperature Cycle	Endurance test applying the low and high temperature cycle. $-10^{\circ}C$ $25^{\circ}C$ $60^{\circ}C$ 30min $5min$ $30min1 cycle$	-10°C/60°C 10 cycles			
Mechanical Tes	t				
Vibration test	Endurance test applying the vibration during transportation and using.	10~22Hz→1.5mmp-p 22~500Hz→1.5G Total 0.5hrs			
Shock test	Constructional and mechanical endurance test applying the shock during transportation.	50G Half sign wave 11 msedc 3 times of each direction			

***Supply voltage for logic system=5V. Supply voltage for LCD system =Operating voltage at $25\,^{\circ}$ C